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Abstract 

In this paper, a coupling of the natural transform method and the Admoian 
decomposition method called the natural transform decomposition method 
(NTDM), is utilized to solve the linear and nonlinear time-fractional Klein- 
Gordan equation. The (NTDM), is introduced to derive the approximate so-
lutions in series form for this equation. Solutions have been drawn for several 
values of the time power. To identify the strength of the method, three exam-
ples are presented. 
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1. Introduction 

The fractional calculus has acquired importance in applied mathematics, and it 
has been used to model several fields in physical science such as viscoelasticity 
control, diffusion, etc. Fractional differential equations appear in different re-
gions of engineering and physics science, such as continuum traffic flow [1], the 
oscillation of earthquake [2], fluid-dynamic traffic [3] and so on. The fractional 
order and integer order differential equations have been studied and solved by 
utilizing several methods [4]-[12]. Many problems in science and engineering 
have been modeled by the Klein-Gordon equation, such as classical and quan-
tum mechanics, solitons and condensed physics. The Klein-Gordon equation has 
been extensively solved by many researchers using several analytic methods [13] 
[14] [15] [16]. The product of this equation has been properly described by a 
fractional version of them. The integral transform methods are the most impor-
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tant methods for solving many problems, some of them have been coupled with 
the other analytical methods to obtain analytic solutions [17] [18] [19] [20] and 
it has proven effective in solving problems. The natural transform method [21] 
[22] [23] [24] is an example of the integral transform methods. It is a moderate 
and effective new method for solving differential equations. The natural trans-
form decomposition method (NTDM) is a method combined of the natural 
transform and a domain decomposition method. It has been used to solve the 
fraction model [25]-[31]. The main aim of this work is to employ the natural 
transform decomposition method to solve the linear and nonlinear Klein- 
Gordon equations of fractional order.  

2. Natural Transform 

Definition 1 [21] [22] [23] [24] The natural transform of a function ( )g t  
defined by the integral: 

( ) ( )
0

( , ) e d , 0, 0,stg t s u g ut t u sϕ
∞+ −= = > >   ∫            (1) 

where u and s are the natural variables. 
Property 1 

[ ]
1
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, 1.
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γ
γ

γ

γ
γ+

+

Γ +
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Theorem 1 If n N∈  where 1n nγ− ≤ <  and ( ),s uϕ  is natural transform 
of the function ( )g t , then the natural transform of Caputo fractional derivative  

of ( ),g x t
t

γ

γ

∂

∂
 is given by  

( ) ( )
( ) ( )11

0 0

, ,
, .

kn

k t

g x t g x ts ss u
t u u k t

γ γγγ

γ γ γ γϕ
− +−

+

= =

   ∂ ∂
= −   

∂ − ∂      
∑

       (3) 

Definition 2 The inverse natural transform of ( ),s uϕ  is defined by  

( ) ( ) ( )1, , e d , 0, 0.
2

st
i u
i

s u g t s u t u s
i

ε

ε
ϕ ϕ

+ ∞−

− ∞
= = > > 

π  ∫        (4) 

3. Analysis of Method 

In this part, we apply (NTMD) to the following general fractional Klein Gordon 
equation of the form:  

( ) ( ) ( ) ( )( ) ( )
2

2

, ,
, , , ,

1 2 and , 0,

V x t V x t
a bV x t V x t x t

t x
x t

γ

γ µ

γ

∂ ∂
= + + +

∂ ∂
< ≤ >

       (5) 

subject to:  

( ) ( ) ( ) ( )1 2,0 , ,0 ,tV x f x V x f x= =                 (6) 

where ,a b  are constants, ( ),x tµ  is a source term and ( )( ),V x t  is a non-
linear function. Taking natural transform to Equation (5), we get  
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( ) ( ) ( )

( ) ( ) ( )( ) ( )

1 2

1

2

2

, , ,0 ,0

,
, , , .

t
s s sx s u V x V x
u u u

V x t
a bV x t V x t x t
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γ γ γ

γ γ γϕ
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− −

−
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− −

 ∂
= + + + 
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         (7) 

Substitution the initial condition (6) into Equation (7), we get  

( ) ( ) ( )

( ) ( ) ( )( ) ( )

1 2
2

2

2

, ,

,
, , , .

f x uf x
x s u

s s
V x ts a bV x t V x t x t

u x

γ

γ

ϕ

µ+

= +

 ∂
+ + + + 

∂  
 

    (8) 

Operating with inverse natural transform of (8) gives  

( )

( ) ( ) ( ) ( )( ) ( )
2 2

2

,

,
, , , , ,

V x t

x V x tsx t a bV x t V x t h x t
u x

γ

γψ − +
  ∂

= + + + +  
∂    

  
 (9) 

where ( ),x tψ  represents the term deriving from the source term and the di-
rected initial conditions. The natural decomposition method represents solution 
as infinite series  

( ) ( )
0

, , ,n
n

V x t V x t
∞

=

= ∑                      (10) 

and the term ( )( ),V x t  is as follows  

( )( )
0

, ,n
n

V x t A
∞

=

= ∑                      (11) 

where nA  can be calculated by  

0 0

1 d .
! d

n n
i

n in
i

A N V
n β

β
β = =

 =   
∑                   (12) 

Substitution Equation (10) and Equation (11) into Equation (9), yields  

( ) ( ) ( ) ( )
2

2
0 0 0 0

,
, , , .n

n n n
n n n n

V x tsV x t x t a b V x t A
u x

γ

γψ
∞ ∞ ∞ ∞
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∑ ∑ ∑ ∑   (13) 

We obtain the recursive relation 

( ) ( )0 , ,V x t x tψ=  

( ) ( ) ( )
2

1 2

,
, , .n

n n n

V x tsV x t a bV x t A
u x

γ

γ
− +

+

  ∂
= + +  

∂    
         (14) 

The approximate solution can be written as a series form  

( ) ( )
0

, ,n
n

V x t V x t
∞

=

= ∑                      (15) 

4. Applications 

Now, we explain the efficacy of the method by the three examples: 
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Example 1 Consider the linear inhomogeneous fractional Klein-Gordon equ-
ation: 

( ) ( ) ( ) ( )
2

3 3 3
2

, ,
, 6 6 , 0, and 1 2,

V x t V x t
V x t x t x x t t x

t x

γ

γ γ
∂ ∂

= + + + − > ∈ < ≤
∂ ∂

 (16) 

subject to: 

( ) ( ),0 0, ,0 0tV x V x= =  

Solution: 
Subsequent the discussion presented above, the system of Equation (13) be-

comes: 

( ) [ ]
( )

[ ]

3 33 1

0

6 66, ,
2 4

x x tx tV x t
γγ

γ γ

++ −
= +
Γ + Γ +
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This gives  

( ) [ ] [ ] [ ] [ ]
3 2 1 3 2 1 2 3 3 2 3

1
36 6 72 6,

2 2 2 2 2 4 2 4
x t x t xt x tV x t

γ γ γ γ

γ γ γ γ

+ + + +

= − + −
Γ + Γ + Γ + Γ +

 

( ) [ ] [ ] [ ] [ ]
3 1 3 3 1 3 3 3 3 3

2
72 6 6 108,

3 2 3 2 3 4 3 4
xt x t x t xtV x t

γ γ γ γ

γ γ γ γ

+ + + +

= − + + −
Γ + Γ + Γ + Γ +

 

( ) [ ] [ ] [ ] [ ]
4 1 3 4 2 4 3 3 4 3

3
108 6 144 6,

4 2 4 2 4 4 4 4
xt x t xt x tV x t

γ γ γ γ

γ γ γ γ

+ + + +

= − + −
Γ + Γ + Γ + Γ +

 

  

Therefore, the approximate solution is given by (Figure 1 and Figure 2): 

( ) [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

3 1 3 3 3 2 1 3 2 1 2 3

3 2 3 3 1 3 3 1 3 3 3 3 3

4 1 3 4 2 4 3 3 4 3

6 6( 6 ) 36 6 72,
2 4 2 2 2 2 2 4
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x t xt x t x t xt

xt x t xt x t

γ γ γ γ γ

γ γ γ γ γ

γ γ γ γ

γ γ γ γ γ

γ γ γ γ γ

γ γ γ
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+ + + + +

+ + + +

−
= + + − +
Γ + Γ + Γ + Γ + Γ +

− − + + −
Γ + Γ + Γ + Γ + Γ +

+ − + −
Γ + Γ + Γ + [ ]1 4γ

+
Γ +



 

Then the result at 2γ =  is  

( ) 3 3,V x t x t=  

Example 2 Consider the non-linear inhomogeneous fractional Klein-Gordon 
equation:  

( ) ( ) ( )
2

2 2 2 4 4
2

, ,
, 2 2 , 0, and 1 2,

V x t V x t
V x t x t x t t x

x x

γ

γ γ
∂ ∂

= − + − + > ∈ < ≤
∂ ∂

  (18) 

subject to:  

( ) ( ),0 0, ,0 0.tV x V x= =                    (19) 
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(a) 

 
(b) 

 
(c) 

Figure 1. The approximate solutions for Example 1 when (a) 1.5γ = ; (b) 1.75γ = ; (c) 
1.90γ = . 
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Figure 2. The approximate and exact solutions for Example 1 when  
1.5, 1.75, 1.90γ γ γ= = = . 

 
Solution: Proceeding as in Example 1, Equation (13) becomes: 

( ) [ ] [ ] [ ]
2 2 4 4

0
2 4 24,

1 3 5
x t t x tV x t

γ γ γ

γ γ γ

+ +

= − +
Γ + Γ + Γ +

 

( )2 2
1 , , 0.n n n

uV V x t x A n
s

γ

γ
− +

+
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             (20) 

This gives 
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1 2
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2
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2
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.
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2 4 3 43 4

2 2

4 4 4 5 4 4

5 4 4 2 4 6

2 4

48 2 1 16 3 1576,
3 5 1 2 1 4 11 4 1

2880 2 5 192 3 5
1 5 4 5 5 2 1 4 5

1152 3 5 2304 2 7
1 2 5 4 5 3 5 4 7

2304

x t x ttV x t

x t x t
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γ γγ
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γ γ
γ γ γ γ γ γ

+

+ +

+ +

Γ + Γ +
= − −
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[ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ] [ ]

5 5 2

2

9 5 4

2

3 5 4

2

3 5 4

2

9 5 4

2

64 2 3 4 3
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γ

γ
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γ
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γ γ γ γ

γ γ
γ γ γ γ

γ γ
γ γ γ γ

γ γ
γ γ γ γ

γ γ
γ γ γ γ

+

+

+

+

+

Γ + Γ +
−
Γ + Γ + Γ + Γ +

Γ + Γ +
+
Γ + Γ + Γ + Γ +
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Γ + Γ + Γ + Γ +

Γ + Γ +
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Γ + Γ + Γ + Γ +

Γ + Γ +
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[ ] [ ]
[ ] [ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ] [ ] [ ]

[ ] [ ]
[ ]

7 5 6

5 5 6

3

7 5 6

7 5 6

1 5 8

2

768 2 3 4 7
1 3 5 3 3 5 7

128 2 7 4 7
3 3 5 3 1 5 7

768 2 5 4 7
1 3 5 3 5 5 7

768 2 7 4 7
1 3 5 3 3 5 7

4608 1 2 5 4 9
1

x t

x t

x t

x t

x t

γ

γ

γ

γ

γ

γ γ
γ γ γ γ γ

γ γ
γ γ γ γ

γ γ
γ γ γ γ γ

γ γ
γ γ γ γ γ

γ γ
γ γ

+

+

+

+

+

Γ + Γ +
−
Γ + Γ + Γ + Γ + Γ +

Γ + Γ +
−
Γ + Γ + Γ + Γ +

Γ + Γ +
−
Γ + Γ + Γ + Γ + Γ +

Γ + Γ +
−
Γ + Γ + Γ + Γ + Γ +

Γ + Γ +
+
Γ + Γ [ ] [ ] [ ]5 3 5 5 9γ γ+ Γ + Γ +

 

[ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ] [ ]

5 5 8

5 5 8

2

11 5 8

2

11 5 10

2

768 2 5 4 9
3 5 3 5 5 9

1536 2 7 4 9
3 5 3 7 5 9

230 2 9 4 9
1 5 3 9 5 9

9216 2 7 4 11
3 5 3 7 5 11

x t

x t

x t

x t

γ

γ

γ

γ

γ γ
γ γ γ γ

γ γ
γ γ γ γ

γ γ
γ γ γ γ

γ γ
γ γ γ γ

+

+

+

+

Γ + Γ +
+
Γ + Γ + Γ + Γ +

Γ + Γ +
+
Γ + Γ + Γ + Γ +

Γ + Γ +
+
Γ + Γ + Γ + Γ +

Γ + Γ +
−
Γ + Γ + Γ + Γ +

 

[ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ]

[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ]

9 5 10

2

13 5 12

2

4 12 6 4 8

2

4 12 7 4 8

4608 2 9 4 11
3 5 3 9 5 11

27648 2 9 4 13
5 3 9 5 13

32 2 3 32256 2 9
1 3 5 3 5 4 9

32 2 3 13824 3 9
1 3 5 3 5 2 5 4 9

x t

x t

t x t

t x t

γ

γ

γ γ

γ γ

γ γ
γ γ γ γ

γ γ
γ γ γ

γ γ
γ γ γ γ γ

γ γ
γ γ γ γ γ γ

+

+

+ +

+ +

Γ + Γ +
−
Γ + Γ + Γ + Γ +

Γ + Γ +
+

Γ + Γ + Γ +

Γ + Γ +
+ +
Γ + Γ + Γ + Γ + Γ +

Γ + Γ +
− −
Γ + Γ + Γ + Γ + Γ + Γ +

 

  

Therefore, the series solution is given by (Figure 3 and Figure 4): 
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(a) 

 
(b) 

 
(c) 

Figure 3. The approximate solutions for Example 2 when (a) 1.8γ = ; (b) 1.9γ = ; (c) 
2γ = . 

https://doi.org/10.4236/am.2023.143014


M. Elbadri 
 

 

DOI: 10.4236/am.2023.143014 238 Applied Mathematics 
 

 

Figure 4. The approximate and exact solutions for Example 1 when 1.8, 1.9, 2γ γ γ= = = . 

 

( ) [ ] [ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ] [ ]
[ ]

[ ] [ ]
[ ]

[ ] [ ] [ ]
[ ]

[ ] [ ] [ ]

2 2 4 4 2 2 2 4

4 3 4 2 3 2

2

3 4 6 3 4

2

4 3 6 8 3

2 4 24 4 288,
1 3 5 2 1 2 5

4 2 1 16
1 3 3 31 3 1

16 2 5 96 2 5
1 5 3 55 3 9

192 2 7 576
1 5 3 7

x t t x t t x tV x t

x t x t

t x t

x t x t

γ γ γ γ γ

γ γ

γ γ

γ γ

γ γ γ γ γ

γ
γ γ γγ γ

γ γ
γ γ γγ γ

γ
γ γ γ

+ + +

+ +

+ +

+ +

= − + + +
Γ + Γ + Γ + Γ + Γ +

Γ +
− +

Γ + Γ + Γ +Γ + Γ +

Γ + Γ +
− −

Γ + Γ + Γ +Γ + Γ +

Γ +
+ −
Γ + Γ + Γ +

[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ]

[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ]

3 3 4

2

2 4 3 4

2

4 4 4

2 9 576
3 55 3 9

48 2 1 16 3 1
1 2 1 4 11 4 1

2880 2 5
1 5 4 5

t

x t x t

x t

γ

γ γ

γ

γ
γγ γ

γ γ
γ γ γγ γ

γ
γ γ γ

+

+

Γ +
+
Γ +Γ + Γ +

Γ + Γ +
− −

Γ + Γ + Γ +Γ + Γ +

Γ +
− +
Γ + Γ + Γ +



 

For 2γ = , the exact solution is  

( ) 2 2,V x t x t=  

Example 3 Consider the non-linear inhomogeneous fractional Klein-Gordon 
equation with cubic nonlinearity: 

( ) ( ) ( )
2

3 2 3 6
2

, ,
, ( , ) 2 ,

0, and 1 2

V x t V x t
V x t V x t x xt x t

x x
t x

γ

γ

γ

∂ ∂
+ + + = + +

∂ ∂
> ∈ < ≤

      (21) 

Subject to  

( ) ( ),0 0, ,0 0tV x V x= =  

Using the previous aforesaid, we get  

( ) [ ] [ ] [ ]
4 2 4 6

0
2 2 720,

1 3 7
xt x t x tV x t

γ γ γ

γ γ γ

+ +

= + +
Γ + Γ + Γ +  
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(a) 

 
(b) 

 
(c) 

Figure 5. The approximate solutions for Example 3 when (a) 1.75γ = ; (b) 1.85γ = ; (c) 
1.95γ = . 
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Figure 6. The approximate and exact solutions for Example 3 when  
1.75, 1.85, 1.95γ γ γ= = = . 
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Therefore, the series solution is given by (Figure 5 and Figure 6):  
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For 2γ = , the exact solution is  

( ) 2,V x t xt=  

5. Conclusion 

In this research, we successfully applied (NTDM) to obtain an approximate so-
lution for the linear and nonlinear fractional Klein Gordon equation. We have 
tested the method on three examples, which revealed that the method is highly 
effective. Indeed, in Figure 4, we see that when 2γ = , the approximate solution 
is almost identical to the exact solution. 
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