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Abstract 
We prove the L estimate for the isotropic version of the homogeneous landau 
problem, which was explored by M. Gualdani and N. Guillen. As shown in a 
region of the smooth potentials range under values of the interaction expo-
nent (2), a weighted Poincaré inequality is a natural consequence of the tradi-
tional weighted Hardy inequality, which in turn implies that the norms of 
solutions propagate in the L1 space. Now, the L estimate is based on the work 
of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities. 
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1. Introduction and Main Result 

Given the equation 

( ) ( ) ( ) ( ), 2 * * * *
*

1div , , , , d ,dt j d j j j jf c f v t f v t f v t f v t v
v v

− −

 
  ∂ = ∇ − ∇  − 

∑ ∫ 
(1.1) 

If ( ),jf v t  is a positive function and the constant , 2dc −  is positive and solely 
relies on the dimension and ( )2− . A extremely soft potential has a constant of 
( ) [ ]2 , 2d− ∈ − − , 3d ≥ . Similarity to the homogeneous Landau equation is 
what piques our curiosity in (1.1). 

( ) ( ) ( ) ( ) ( )*
, 2 * * * *

*

div , , , , d ,dt j d j j j j

v v
f c f v t f v t f v t f v t v

v v
− −

 −
  ∂ = ∇ − ∇  − 
∫∑ 


 

 

(1.2) 

where the projection into z orthonormal complement yields a matrix kernel de-
noted by ( )z  
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( ) { }2 \, 0 .dz zz z
z
⊗

= − ∈    

The phrase ( )z  in (1.2) is an anisotropy that is absent from (1.1). (1.1). 
Consequently, (1.1) might be seen as an isotropic variant of the Landau Equa-
tion (1.2). Motivated by this link, Krieger and Strain presented Equation (1.1) in 
[1], with the expectation that comprehending (1.1) may lead to new insights on 
(1.2). [1] suggested a revision to (1.1) in light of ( )2 3d− = − = − , 

( ) ( ) [ ]2Δ 1 , 1 0,1 ,t j j j jf a f f f ∂ = + + + ∈  ∑∑             (1.3) 

where 1:j ja f f v −= ∗  . Here, (1.3) with 0=  corresponds to (1.1). It is shown 
by [1] that solutions to (1.3) that are spherically symmetric and radially decreas-
ing become smooth in limited time for 1 4< − . Later, in [2], using a novel 
nonlocal inequality for 2d = −  , Gressman, Krieger, and Strain extended this 
finding to the range 1 75< . 

( )2 1
2 2

2

2
d d .

1d dj j jf v a f f v
+

+ +
≤   ∇+

∑ ∑∫ ∫ 


 


 

[3] demonstrates that for 0= , spherically solutions symmetric to (1.3) im-
mediately regularize and always stay smooth. The method described in [3] en-
compasses (1.3) for every 1 0− ≤ ≤  and offers a L∞ , (1.2) solved under the 
condition that a certain spectral constraint holds. Later, in [4], we use the know-
ledge that ja f    is an A 1 weight to establish an L∞ -estimate for weak solu-
tions of (1.1) and (1.2) for ( )2 2− ≥ −  and solution of the equation for 0. We 
provide a novel L∞ -estimated for (1.1) where ( ) ( )( *2 2 , 2− ∈ − −   , ( )*2−  
is defined as below. 

Theorem 1.1. Let [ ]: 0,d
jf T× →   be a non-negative classical solution of 

(1.1) with ( )2 1 , 2
2
d − ∈ − − −  

  and initial data ( )j in
f  that belongs to  

( )1 1
2

dL L  . 

1) For any ( )1+   with 
( )2

1
d + −

+ ≤
−





, the norm ( ) ( )1 dj L
f t + 

 is non- 

increasing in time. 

2) Let ( )*2 1 , 2
2
d − ∈ − − − 

 
  be the unique solution to 

( )2
.

dd
d

+ −
=

+ −


 
 

If ( )injf  also belongs to ( )1 dL +   for some 1 d
d

+ >
+




, any solution to 

(1.1) for ( ) ( )( *2 2 , 2− ∈ − −    is uniformly bounded for times away from ze-

ro, and 

[ ]
( ) ( ) ( ) ( )( )in,

sup , 1 , 2 , , , , .
R

j j
B T

f v t d f R T
×

≤ + −∑∑  
τ

τ  

In particular, for ( ) ( )( *2 2 , 2− ∈ − −   , its classical solutions of (1.1) is 
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smoothing.  
For 3d =  we have ( )*2 2.458− ≈ −  while for 4d =  we have  

( )*2 2.87− ≈ − . The value ( )*2−  is uniquely defined in the range ( ), 2d− − . 
The proof of Theorem 1.1 is relatively straightforward. For that, let jh f    

be the Riesz potential of jf , 

( )
( )

( ) ( )( ) ( )
( )

2
*

2 *2
*

: Δ 1 , 2 d ,d

d
j

j j

f v
h f f d d v

v v

+ −
−

−
  = − = + + −  −

∑ ∑∫



   

where the normalization ( ) ( )( )1 , 2d d+ + −   constant arising in the operator 

( )
( )2
2Δ

d + −
−−



, namely 

( )( ) ( )

( )
12

1
Γ

2
1 ,1 2 , 0.

1Γ
2

d

d

d
− − +

− + 
 
 + + = π ≥

+ 
 
 





  


 

In particular, j jh f f  →   as ( )2 d− → − . Next, we shall denote by ja f    
the convolution 

( )*
, 2 *

*

: d .d
j

j d

f v
a f c v

v v
− −

  =  −
∑∫   

We rewrite (1.1) as 

( )div ,t j j j j jf a f f f a f   ∂ = ∇ − ∇   ∑  

or, in a non-divergence form, 

Δ ,t j j j j jf a f f f h f   ∂ = +   ∑ ∑  

provided , 2dc −  is chosen as 

( ) ( )( )
( ) ( )( )( ), 2 , 2

1 , 2
: , or equivalently : 1 , ,

2d d

d d
c c d d

d− −

+ + −
= = + +

+ − 

 
  


 

so that 

( )( )( ) ( )
( ) ( )*

, 2 *2
*

Δ 2 d .d
j

j d j

f v
a f c d v h f

v v
− − −

  = + − =  − ∑∑∫ 
     (1.4) 

Note that our choice of , 2dc −  (which is well defined for any 2 0≤ ≤ ), and 
We define ja f    to be the operator ( )( ) 2Δ

d

jf
+

−−


 , not disrupt the internal 
logic of (1.1) A simple rescaling of time may do away with this constant. 

For 0= , Equation (1.1) reduces substantially: for sufficiently smooth func-
tions jf , it simplifies to a heat equation, 

( ) ( )( ) ( ) 1, 2 * * , 2 in
div , , d Δdt j d j j d j jL

f c f v t f v t v c f f− −∂ = ∇ =∫∑ ∑
 

Since the 1L  norm is preserved, that is why. When 0= , the reaction term 
arises from the derivatives of ( )v , which is absent in the traditional Landau 
Equation (1.2).  
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Now we explain the basic idea of the proof. For a classical solution of (1.1) we 
have 

21 1 2 2 1d 4d d d
d 1d d dj j j j jf v a f f v h f f v
t

+ + +   = − ∇ +  +  ∑ ∑ ∑∫ ∫ ∫  
  




 

We make an estimate of the second integral by using the previous one as a ba-
sis. This allows us to put a limit on the right hand side. This is the most impor-
tant aspect of Theorem 1.1, and it can be accomplished with the help of the 
weighted Hardy inequality [5]. 

( )( ) 22 2 22 d 4 d , 2 .d dj jd v v v v d−+ − ≤ ∇ > −∑ ∑∫ ∫ 

  φ φ  

This inequality implies, via convolution, the following weighted Poincare’s 
inequality 

( )( ) 222 d 4 d .d dj j j jd h f v a f v   + − ≤ ∇   ∑ ∑∫ ∫ 
 φ φ        (1.5) 

For ( )2−  belonging to the interval ( )( *2 , 2− −  , thanks to (1.5), we can 
show that 

1d d 0,
d d jf v

t
+ ≤∑∫
  

This is sufficient evidence to establish that jf  is a member of L∞  for posi-
tive times. 

There is evidence in the published works to support the previous claim. As an 
example, check out Theorem 3.8 in [6] or Theorem 2.9 in [4]. Following the 
procedure described in [4], we give the evidence here for the sake of complete-
ness. For any ( )1 d> − + , we shall demonstrate that a-Poincare’s inequality of 
the form is obtained by imposing a constraint on jf  in ( )( )10, , dL T L∞ +  : 

( ) ( )( )

22

2
2

d d

1 , d .

d d

d

j j j j

j j jin

h f v a f v

f R a f v
−

   ≤ ∇   

 + +  

∑ ∑∫ ∫

∑ ∫

 


 η

φ ε φ

ε φ
     (1.6) 

This above inequality, combined with a Moser’s iteration, yields the desired 
L∞ -bound for jf . 

A Background on the Homogeneous Landau Equation 

As the major finding, we find that for the isotropic Equation (1.1), there exists a 
nontrivial region of the extremely soft potentials range, 0d− ≤ ≤  for which 
one may rule out the production of singularities in limited time. Given the simi-
larities between (1.1) and the homogeneous Landau Equation (1.2), and the open 
subject of L estimates for the latter equation when 0d− ≤ ≤ , this is of interest. 
We address a small portion of the Landau equation to demonstrate the current 
state of knowledge about (1.2), as well as to highlight the factors that make ana-
lyzing the equation in the extremely soft potentials region so challenging. 

For the Landau Equation (1.2), the issue of L∞ -estimates for solutions re-
mains a challenging open subject when 0< . In fact, the singularity of the 
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kernel in jh f    increases as ( )2−  decreases, necessitating more integrabil-
ity in order for jf  to exert control over jh f   . The regularity hypothesis is 
well established in the 0 range. Works by Desvillettes and Villani [4] [6] not only 
address the presence and long-time convergence to equilibrium of solutions, but 
also the subject of regularity of solutions, for the case of hard potentials (2). 
Alexandre, Liao, and Lin [7] achieve the propagation of L2 estimates for solu-
tions (possibly expanding with time) for soft potentials 02 and d = 3, from which 
larger L estimates and greater regularity may be acquired. Refer to [8] if you 
want to know what happens when you set to 0. When 00, Silvestre [6] calculates 
the solution’s mass, energy, and entropy a priori to get an estimate for L. (and 
accordingly are not growing with time). Once the 1L + -norm of jf , with 

( )1 d> − + , is constrained uniformly in time, the L norm is under control for 
0 0< < , according to the conclusions in [6]. Similar findings, however shown 
using a different approach, may be found in [4]. Although the estimates in [4] 
make advantage of the divergence structure of the equation and are proven for 
weak solutions, the estimate for jh f    that they provide deteriorates as v in-
creases. In order to get global boundaries in space, [6] use non-divergence me-
thods. 

Recent discoveries on the nature of potential singularities have reduced the 
possible explosion scenarios for extremely soft potentials. The weak solutions to 
(1.2) (with d = 3) have a set of unique times with Hausdorff dimension at most 
1/2, as shown by Golse, Gualdani, Imbert, and Vasseur in [9]. New insights on 
the behavior of solutions to (1.2) (with d = 3) in H 1-norm towards the blow-up 
time were recently reported in [5] by Desvillettes, He, and Jiang. Most signif-
icantly, they demonstrate that solutions may become smooth again after a 
blow-up and continue to be so in the future, see [10] [11] [12] [13]. In [14], Be-
drossian, Gualdani and Snelson rule out type I self-similar blow-up for solutions 
to (1.2). There is an important connection between L∞  bounds and uniqueness. 
Fournier and Guerin proved a uniqueness result for bounded weak solutions in 
[1], this being for ( ), 2d∈ − −γ . In fact, the work [11] guarantees uniqueness of 
solutions with f L∞∈  and in particular to bounded solutions.  

The work [11] was followed by Fournier’s work in [15] with a corresponding 
uniqueness result for d= −γ . Later in [16], Chern and Gualdani proved a uni-
queness result for sufficiently integrable solutions for the Landau equation with 
Coulomb interactions. 

2. Hardy’s Inequality 

Given the classical Hardy inequality, 

( )( ) 22 2 22 d 4 d , 2 .d dj jd v v v v d−+ − ≤ ∇ > −∑ ∑∫ ∫ 

  φ φ     (2.1) 

We review one elementary way of proving (2.1), a deeper and broader discus-
sion on Hardy’s inequality can be found in the book by Ghoussoub and Moradi-
fam [5]. First notice that 
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( )( )( ) 2Δ 2 .v d v −− = + − −    

Multiply both sides of this equation by jφ . Integration by parts and Cauchy- 
Schwarz yield 

( )( )( )

( ) ( )
( ) ( )

22

1
21 2

2 22 2
2

2 d 2 d

2 1 d d .
1

j j j

j
j

d v v v v

v v v v
v

−+ − − = ∇ ∇

 ∇   ≤ + ∇     + 

∫ ∫

∫ ∫


 




φ φ φ

φ
φ

 

We pick now the best weight ( )( )1 v+   such that 

( ) ( )
2 221 .v v v −+ ∇ ≤   

or equivalently 

( ) ( )2

2

11 .v
v

+ = 


 

With this choice of ( ) ( )21 v+  , we obtain (2.1) (see [8]). 
Lemma 2.1. Let 2 0d− < < . Fix a non-negative ( )1 d

jf L∈   and let  

ja f    and jh f    be as in Section 1, then the following inequality holds for 
all ( ) ( )11 d

j c∈ + φ  (and limits of such functions) 

( )( ) 222 d 4 d .d dj j j jd h f v a f v   + − ≤ ∇ ∑ ∑∫ ∫ 
 φ φ        (2.2) 

Proof. Fix ( ) ( )11 d
j c∈ + φ . By a change of variables, we see that (2.1) is 

equivalent to the inequalities (with d∈ ) 

( )( ) 22 2 22 d 4 dd dj jd v w v v w v−+ − − ≤ − ∇∑ ∑∫ ∫ 

  φ φ       (2.3) 

Let us multiply (2.3) by ( ) 0jf w ≥  and integrate the resulting expression in 
w, we obtain 

( )( ) ( ) ( ) 22 2 22 d 4 d .d dj j j jd f v v f v v−+ − ∇∗ ∗≤∑ ∑∫ ∫ 

  φ φ     (2.4) 

Substituting in (2.4) the expression for Δ ja f    and making use of (1.4), the 
lemma is proved. 

Lemma 2.1 is key, as it leads to the propagation of 1L +  bounds for solutions 
to (1.1), proven in the next section. The range of ( )1+  ’s is limited by the con-
stants appearing in (2.2), and this is the sole limitation on the range of ( )2− ’s 
covered by Theorem 1.1. This motivates the following (admittedly open ended) 
eigenvalue problem. 

Problem. Fix d and ( ) [ ]2 , 2d− ∈ − − . Let ( )1 d
jf L∈   be non-negative, and 

let 

( )
2

iso 2

d
Λ : inf .

d
d

j
d

j j
j

j j

a f v
f

h f v

  ∇ =
  

∑∫
∑∫




φ

φ

φ
              (2.5) 

Determine under what circumstances can we say that 

( ) ( )
iso

2
Λ .

4j

d
f

+ −
>
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If jf  is just a generic function in 1L , then one cannot do better than inequa-
lity (2.2). To see this, take a sequence of functions ( )j n

f  which are converging 
as n →∞  to a Dirac delta at 0. For this sequence, (2.2) converges to (2.1), 
which is known to be sharp ([17] Section 4.3). 

The corresponding problem for the Landau equation would be, 

( ) ( )
Landau 2

, d
Λ : inf ,

d
d

j
d

j j j
j

j

A f v
f

h f v

 ∇ ∇ =
  

∑∫
∑∫




φ

φ φ

φ
           (2.6) 

where 
( ) ( )*

* *
*

: ddj j

v v
A f f v v

v v −

−
  =  −

∑∫


 . The significance of this eigenvalue  

problem is well known in the Landau and Boltzmann literature. We do not know 
whether an elementary argument as in Lemma 2.1 yields a similar bound for 
(2.6). If one argues by direct analogy with Lemma 2.1 one would have to contend 
with the projection term ( )v  appearing in jA f   , and it is not immediately 
clear how this can be done. 

The theory of weighted normed inequalities can yield certain estimates for 

isoΛ , or LandauΛ . The value in (2.5) is directly related to the quantity 

2 d
sup ,

d
jBd

B jB

h f v
B

a f v

  
  

∑∫
∑∫

                    (2.7) 

above for all non-negative ( )1 d
jf L∈   is bounded by a universal constant (see 

[4]). Finally, it is worth mentioning that decreasing jf  for any spherically sym-
metric and radially, solving (1.2) ( )2 d= − , the L∞  norm of jf  cannot blow 
up at a finite time T if, for this jf , the quantity (2.7) remains bounded by 1/96 
(this is likely a non-sharp estimate). See [16]. 

3. Propagation of L1+  Bounds 

We shall make use of Lemma 2.1 to show that various 1L +  norms propagate 
forward in time, at least for some range of ( )2− ’s (see [8]). 

Lemma 3.1. (Propagation of integrability.) Let jf  be a nonnegative solution 
to (1.1) with initial data ( ) ( ),0j j in

f v f= . For every ( )1+   such that 

( ) ( )2
1 1

d + −
≤ + ≤

−





 

the norm ( ) 1j L
f t +  is non-increasing in t. In particular, for every [ ]0,t T∈  

we have 

( ) ( )1 1inj jL L
f t f+ +

≤∑ ∑ 
 

Proof. Multiply (1.1) by jf   for some 0≥  and integrate over d . We 
obtain 

21 1 2 2 1d 4d d d
d 1d d dj j j j jf v a f f v h f f v
t

+ + +    = − ∇ +  +∑ ∑ ∑∫ ∫ ∫  
  




 

To estimate the last term 1 dd j jh f f v+  ∫
  we use Lemma 2.1 with 1 2

j jf += φ . 
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One gets 

( )
21 1 2d 1d 4 d

d 1 2d dj j jf v a f f v
t d

+ + 
≤ − +  ∇ 

+ + − 
 

 
∑ ∑∫ ∫ 

 


 
 

It follows that ( ) 1

1jf t
+

+




 is non-increasing whenever the expression in the 

brackets is non-positive, which is the case given the assumption on ( )1+  . This 
concludes the proof of the lemma, and of the first part of Theorem 1.1. 

Remark 3.2. For there to be any ( )1+   such that  

( ) ( )( ) ( )1 1 2d≤ + ≤ + − −    it must be that 1 .
2
d

≥ −  

It follows that Lemma 3.1 is of no use for values of ( )2−  close to d− . 

4. Controlling the Second Moment 

Solutions to (1.1) conserve mass and first moment, but not second moment. We 
show that second moments grow linearly in time, provided ja f    is uniformly 
bounded (see [8]). 

Lemma 4.1. The second moment of jf , solution to (1.1), evolves according to 
the formula 

( ) ( ) ( ) ( )2d , d 2 , , d .
d d dj j jf v t v v d f v t a f v t v
t

= +   ∑ ∑∫ ∫ 
  

In particular, for all [ ]0,t T∈  and ( )1 d> − +  we have 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )1 1

2 2

in
11

, 2 , 1 0, , in

, d d

1 ,

d dj j

j jd L T L L

f T v v v f v v v

T f f∞ +

+−

− +

≤

+ +

∑ ∑∫ ∫

∑
 

 


θθ  

where 
( )1

:
d

′+
=
 

θ . 

Proof. Integration by parts yields 

( ) ( )21 d , d , d .
2 d d dj j j j jf t v v v v a f f f a f v

t
   = − ∇ − ∇   ∑ ∑∫ ∫ 

 

Using the integral form for ja f    we rewrite the expression on the right, 
leading to 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

, 2

, 2

1 d , d
2 d

d d

d d .
2

d

d d

d d

j

j j j j
d

j j j jd

f t v v v
t

f w f v f v f w
c v w v

v w

f w f v f v f wc
v w w v

v w

− −

−
−

∇ − ∇
= − ⋅

−

∇ − ∇
− − ⋅

−

∑∫

∑∫ ∫

∑∫ ∫



 

 

 




 

Integration by parts in both v and w yields 

( ) ( )2d , d 2 d ,
d d dj j jf t v v v d f a f v
t

= +   ∑ ∑∫ ∫ 
  

since 
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div .z d
z z− −

  +  =
 
 

 

  

This proves the first part of the lemma. For the second part, it is clear that 

( ) ( ) ( ) ( )1

21 d , d .
2 d d j j LL

f t v v v d f t a t
t ∞≤ +∑ ∑∫   

Then, integrating the resulting inequality in time, the estimate follows thanks 
to an elementary interpolation argument (see Remark 4.2) 

( )( ) ( ) ( ) ( )( ) ( )1 1

1

, 2,10, , 0, , in
1 .d dj jdL T L L T L L

a f t f∞ ∞ ∞ +

−

− +
≤ + ∑  


θθ

 

Remark 4.2. The following estimate is well known and we recall it here for 
completeness: let ( )1 d> − + , for every 1> −  we have that 

( ) ( ) ( ) ( )

( )( ) ( )

1 1

1 1
1

, 2 , 2

1
11

, 2

\

, 2

d d

d 1

dj d j d jB v B v

d j d jBL L

a f c f w v w w c f w v w w

c f w w c f

+ +

+
+

− −

′ ′++
− −

= − + −

 ≤ + + 
 

   ∑ ∑∫

∑ ∑∫

∫  






 
 


   

 

Optimizing the right hand side with respect to ( )1+  , the following estimate 
follows 

( ) ( )
( )

1 1

1

, 2 ,1

1
1 , where .j j jd L LL

a f f f
d+∞

−

− +

′+
  ≤ + = ∑ ∑  

 


θ θ
θ  

Corollary 4.3. Let ( )1 d> − + . For all dv∈  and [ ]0,t T∈ , the following 
inequality holds 

( ),ja f v t v   ≥    

where 

( ) ( )

( )( ) ( )

1

1 1

1

in
, 2

11
1 2 0, , in

:

d

j L
d

j jL T L L

f
c

c c T f f∞ +

−

− −
+−

=
 + 
 

∑





 
θθ

 

Proof. For any 0≥  we have 

( ) ( ) ( ) ( ) ( ) 1
1 1 2\ \

22 2, d 1 , d 1 .d dj j jB B L
f v t v f v t v v f t

+ +

− −≤ + ≤ +∑ ∑ ∑∫ ∫  
   

From here, taking ( )
( )
( )

1
2

1

2
1 L

L

f t

f t
+ = , we get 

( ) ( ) 11 in

1, d
2j jB L

f v t v f
+

≥∑ ∑∫


 

Then, since ( )1v w v− ≤ + +   whenever 1w B +∈  , 

( ) ( ) ( )( )

( ) ( )( )
1

1

, 2

, 2 in

, , 1 d

1 1 .
2

d jB

d j L

a v t c f w t v w

c f v

+
−

−

≥ + +

≥ + +

∑∫

∑











 

In particular 
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( ) ( ) ( )

( )

( ) ( )

1

1

1 1

, 2 in

1

in
, 2 11

1 2 in

1, 1
2 d j L

j L
d

j jL L

a v t c f v

f
c v

c c T f t f+

−

−

− −+−

≥ +

≥
 + 
 

∑

∑








 



θθ

 

using Lemma 4.1 to bound ( )1+   from below. 

5. Some Weighted Inequalities 

The result will be integral inequalities of the form 

( ) ( )( )
1 1

1 21 2
1 2d 1 dd dj jv v

+ + ≤ + ∇∑ ∑∫ ∫ 

  ω φ ω φ  

for various choices of the exponent ( )1+  , weights iω , and constant ( )1+   
which are pertinent to obtaining estimates a la De Giorgi-Nash-Moser for solu-
tions of (1.1). For a more complete discussion, see ([4], Section 3.2). 

A central object in these inequalities is the following product of averages of 
the weights, taken over an arbitrary cube dQ ⊂  , (here, “ jf ” denotes average 
over the set of integration) 

( ) ( ) ( )

( )( )( ) ( ) ( )( ) ( )2

1 21 , 1

1 11 1 1
1 2 11 12 1 1 2

, ,

: d d .d j jQ Q

Q

Q f v f v

+ +

− + − + ++ ++= ∑

 

  

σ ω ω

ω ω
 

The significance of ( ) ( ) ( )1 21 , 1 , ,Q+ + σ ω ω  is captured by the following theorem 
(see [18], Theorem 1]). (Also see [8]). 

Theorem 5.1. Let , 0dQ ⊂ ≥  , and let 1 2,ω ω  be two weights. Define, for 
some ( ) ( ) ( )( )1 , 1 , 1d+ + +   , 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 2 1 21 , 1 1 , 1
8

, , : 1 , 1 , 1 sup , , .
Q Q

Q d Q+ + + +
′⊂

′= + + +      ω ω σ ω ω  

Then, for any jφ  supported in Q or any jφ  such that ( ) d 0j jQ
f v =φ , we 

have 

( ) ( ) ( ) ( )( )
1 1

1 21 2
1 1 2 21 , 1d , , dj jQ Q

v Q v
+ +

+ +≤ ∇∑ ∑∫ ∫
 

 ω φ ω ω ω φ  

The next two propositions give estimates on ( ) ( ) ( )1 21 , 1 , ,Q+ + σ ω ω  for two 
combination of weights, namely 1

m
ja f=   ω , 2 ja f=   ω  and 1 jh f =  ω ,

2 ja f=   ω . 
There are two exponents that will be appearing repeatedly in what follows (see 

[8]): 

2 2: , 2 1 : 2 1 .
2

dm
d d d

   = + = +   −    
                (5.1) 

Proposition 5.2. There exists 0≥  depending only on d and ( )2−  such 
that for non-negative ( )1 d

jf L∈   and any cube dQ ⊂  , 

( ) ( ) ( )2 , 1 , , 1 .
m

j jm Q a f a f+     ≤ +   ∑ σ  
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Proof. For 2 d> − , Lemma 3.5 from ([14], Section 3) says there is some 
0>  such that 

( )( ) ( ) ( )
1

1 1d 1 d ,
m m

j jQ Q
a f v a f v

+ +   ≤ +   ∑∑ ∫ ∫
    

( )( )1 , 2, 1d m= − +   

As it was also noted in ([4], Section 3), there is a universal constant such that 

( )d 1 inf ,j jQ Q
a f v a f   ≤ +   ∑ ∑∫   

which means also that 

( ) ( ) 11
sup 1 dj jQQ

a f a f v
−−

   ≤ +   ∑ ∑ ∫  

Putting these two observations together it follows that 

[ ] ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
11

1 2 11 2 1d d 1 .m m
j jQ QQ

a f v f a f v
− + ++ +

′ ′′

   ≤ +   ∑ ∫ ∫
     

Lastly, m solves 1 1 1 0
2 2d m

− + =  (it is its determining property), and the 

proposition is proved. 
The next one if the key proposition for the proof of (1.6) (see [8]): 

Proposition 5.3. There is 2
2

d +
>  such that given a cube RQ B⊂  with  

1Q ≤  we have 

( ) ( )
( ) ( ) ( ) ( )( ) ( )1 2 , , 1 1

2

2, 1

1

, ,

: 1 , .d

j j

d dj jL L L L

Q h f a f

Q f f R Q+ − +∞ ∞

+

 
 
 

        
  ≤ = +   

   

∑

∑   




η

σ

θ
 

Here : 2 0
1

d
= − >

+ 
η  and ( ) ( ) ( )( ) ( )

( ) ( )( )
1

1 2 , , 1 :
1 2

d
d

d d
+

+ − + =
+ + + −


 

 
 . 

In particular, one can chose ( )1+   infinitesimally close to 
2
d , resulting in 

( ) ( )( )1 2, , 1d+ − +    to be greater, but as close as one wishes to d
d + 

. 

Proof. Classical fractional integral estimates say that 

( ) ( )( ) ( ) ( ) ( ) ( )11 2 , 21 , provided 1 .
2d dj jd d LL

dh f f
d+− + + − + −

  ≤ + + <  + −∑ ∑   
 


 

We want to choose ( )1+   so that ( ) ( )
( ) ( )( )

1
1

1 2
d

d d
+

+ =
− + + −




 
, which 

results in ( ) ( )( ) ( )
( ) ( )( )

1
1 2, , 1

1 2
d

d
d d

+
+ − + =

+ + + −


  

 
. Therefore, 

( ) ( ) ( ) ( )( )1 2, , 1

1
2 2 11 1

1d 1 .dd dj jQ L
Q h f v Q f + − +

+ −+
+

′
′ ′  ≤ + ∑ ∑∫   
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We can take ( )1+   larger but arbitrarily close to 
2
d  (to have 2 1

1d
−

+ 
 

positive) which results in ( ) ( )( )1 2, , 1d+ − +    be strictly greater, but arbitra-

rily close to, ( )( )2 2d d + + − . Hence, 

( ) ( ) ( ) ( )( )1 2, , 1

1
2 1 1d 1 .dd dj jQ L

Q h f v Q f + − +

+ +

′
′  ≤ + ∑ ∑∫   

  
η

 

Thanks to the bound from below for ja f    from Corollary 4.3, we have 

( )( ) ( )
1

1 1d 1 , 8 .jQ
a f v R Q Q

− + +

′
′  ≤ + ∀ ⊂ ∑ ∫

    

We work towards estimating the other factor. 
It follows that 

( ) ( )( )
( ) ( ) ( )( )1 2, 1

11
2 1 1 11d d

1 .

d j jQ Q

d j L

Q h f v a f v

R Q f + − +

+ − + ++

′ ′
′       

′≤ +

∑ ∫ ∫

∑   

  


η

 

This estimate is for all cubes Q′  such that 8Q Q′ ⊂ , which proves the prop-
osition. 

An immediate consequence of Theorem 5.1 and Proposition 5.2 is the follow-
ing inequality. 

Corollary 5.4. There is a universal constant ( )1+   such that for all jφ  we 
have 

( ) ( )
1

22 d 1 d .d d
m m m

j j j ja f v a f v   ≤ + ∇   ∑ ∑∫ ∫ 
φ φ        (5.2) 

Corollary 5.4 implies, via an elementary interpolation argument, a space-time 
integral inequality for functions [ ]: 0,d

j T× → φ  (see [8]). 
Corollary 5.5. There is a universal constant ( )1+   such that 

( )
( )

22 1

0

22 1 2
2 2

0 0,

d d

1 d d sup d .

d

d d

d
j

T

T
j

j j j
T d

a f v t

a f v t v

 + 
 

 + 
 

  

 
 ≤ + ∇ +  

 

∑∫ ∫

∑ ∫ ∫ ∫



 


φ

φ φ

 

Proof. We follow the standard proof of this space-time inequality (see proof of 

Theorem 2.12 and 2.13 in [19]. First, we estimate the integral of 
22 1
d

j

 + 
 φ  with 

weight ja f    by interpolation 

( )

( )

( )

( )

22 1

2 22 1 2 1 1

21 2 1 22 12
22 22 21 2 1

d

d d .

d

d

d d

d
j j

d d
j j

d
m dmm

j j jd

a f v

a f dv

a f v v

 + 
 

      + + + −      
      

  − +       +    
  

  − +  
  

  

 =  

 
 ≤   

 

∑∫

∑∫

∑ ∫ ∫





 

θ θ

θ
θ

θ

φ

φ

φ φ
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The exponent ( )0,1∈θ  is determined from the relation 1 1
2 2 22 1 m
d

−
= +

 + 
 

θ θ . 

Simplifying, we obtain 

( ) ( )
1 122 1 2 2d d d .d d d

m
m m m md

j j j j ja f v a f v v
− + 

    ≤  ∑ ∑∫ ∫ ∫  
φ φ φ  

Now, by Corollary 5.4 

( ) ( )( )
122 1 2 2d 1 d d .d d d

m
md

j j j j ja f v a f v v
− + 

  ≤ +     ∇ ∑ ∑∫ ∫ ∫  
φ φ φ  

Integrating this over time we have 

( ) ( )
( )

22 1

0
1

2 2
0 0,

d d

1 d d sup d .

d

d d

T

T

d
j j

m
m

j j j
T

a f v t

a f v t v

 + 
 

−

  

 
≤ + ∇  

 
  

∑∫ ∫

∑ ∫ ∫ ∫



 


φ

φ φ

 

From this last inequality it follows trivially that 

( )
( )

22 1

0
12

2 2
0 0,

d d

1 d d sup d .

d

d d

T

T

d
j j

m

j j j
T

a f v t

a f v t v

 + 
 

−

  

 
 ≤ + ∇ +  

 

∑∫ ∫

∑ ∫ ∫ ∫



 


φ

φ φ

 

Noting that 

22 1
1 2 22 2 1

2
d d

m d d

 + −  − = − = + = , the corollary is proved. 

The other important use of Theorem 5.1 is in proving a ε-Poincaré inequality, 
which also relies crucially on Proposition 5.3 and the 1L +  bound on jf  (see 
[8]). 

Corollary 5.6. Let 0R >  and ( )00,∈ε ε . For any jφ  supported in ( )0RB  
we have 

( ) ( )( )

2

2
2 2

in

d

d 1 , d

d

d d

j j

j j j j j

h f v

a f v f R a f v
−

  

   ≤ ∇ + +   

∑∫

∑ ∑∫ ∫



 
 η

φ

ε φ ε φ
 

Here, ( ) ( )( ) ( )0 : 1 1 , 2 , 1d= + − +  ε θ θ  and η  are as in Proposition 5.3 
and 

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 , , 1

22 2

in in
1 , 4 1 .dj j L

f R R f + − ++ = + ∑   



  ηη η  

Proof. Let Q be any cube in d  with 1Q ≤ . Since ( ) ( )j j j jQ Q
= − +φ φ φ φ  

it is elementary that 

( )( ) ( )
2 22d 4 d 4 d ,j j j j j j jQ Q QQ Q

h f v h f v h f v     ≤ − +   ∑ ∑ ∑∫ ∫ ∫φ φ φ φ  (5.3) 

where ( )j Q
φ  denotes the average over Q, 

( ) d .j jQQ
v= ∑∫φ φ  
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Applying Hölder’s inequality to 
1 1
2 2 djQ

a a v
−  
  
 

∑∫ φ , it follows that 

( ) ( ) ( )( )22 2 1d d d .j j jQ Q QQ
v a v a v−≤ ≤∑ ∑∫ ∫ ∫φ φ φ  

Therefore, 

( ) ( )( )( )
( )

2 1 2

2
2

4 d 4 d d d

4 1 d

j jQ Q Q QQ

d jQ

h v h v a v a v

Q a v

−

−

≤

≤ +

∑ ∑∫ ∫ ∫ ∫

∑∫

φ φ

φ
 

Now, we bound the first term on the right of (5.3) by means of Theorem 5.1, 
so 

( ) ( )
222 2

2,2d 4 , , d 4 1 ddj j jQ Q Q
h v Q h a a v Q a v−≤ ∇ + +∑ ∑ ∑∫ ∫ ∫ φ φ φ  

Then, by Proposition 5.3, we conclude that 

( ) ( )( )

( ) ( )

22

2 1
2

d 4 1 1 d

4 1 d , 1 : .

j jQ Q

d djQ

h v a v

Q a v Q−

≤ + + ∇

+ + + =

∑ ∑∫ ∫

∑∫

 

 

φ θ φ

φ
 

where ( )1 , 2d= −  and θ  is as in Proposition 5.3. Adding up these inequali-
ties for each Q of the form ( )[ ] ( )1 0,1 1 ,d dz z+ + + ∈   

( ) ( )2 12 2d 4 1 d 4 1 d .d d dj j jh v a v a v−≤ + ∇ + +∑ ∑ ∑∫ ∫ ∫  
 φ θ φ φ  

Let ( ) ( )( )( )0, 1 4 1∈ + ε η , then there is some 1 0− < <  such that  
( )4 1+ =θ ε , namely 

( ) ( ) ( ) ( )( ) ( )1 2, , 1in
4 1 1 .dj L

R f + − += + +∑   

  ηε  

Indeed, this ( ) ( )( )1 1+ = +  ε  is such that 

( ) ( )( ) ( ) ( ) ( )( )1 2, , 1

222 2
2

in
1 4 1 .dj L

R f + − +

−−+ = + ∑   



  ηηη η ε  

Thus, 

( ) ( )( )
2

22 2
in

d d 1 , dd d dj j j jh v a v f R a v
−

≤ ∇ + +∑ ∑ ∑∫ ∫ ∫  
 ηφ ε φ ε φ  

and the corollary is proved. 

6. Moser’s Iteration 

A ε-Poincare, The solution jf  of (1.1) its estimate because inequality like the 
one obtained in Corollary 5.6 when valid, see [19]. 

In Proposition 5.3 and Corollary 5.6 we have proved that the ε-Poincaré in-
equality holds if ( )( )10, , d

jf L T L∞ +∈   for ( )1 d> − + . In view of Lemma 
3.1 solutions to (1.1) belong to ( )1 dL +   with ( )1 d> − +  if the initial data  

belong to the same ( )1 dL +   space and, most importantly, if 
( )2dd

d
+ −

≤
+ −


 

.  
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This last inequality holds true for ( )( *2 2 , 2− ∈ − −   , with ( )*2−  the 
unique solution to 

( )2
.

dd
d

+ −
=

+ −


 
 

Observe that for 2 0d− < <  the function ( )( )2 2 2d d− + − +   is 
strictly decreasing, while ( )( ) ( )2 2d− + − −    is strictly increasing. At  

2 d− = −  they are equal to 
2
d  and 0, respectively and at 0=  they are equal  

to 1 and +∞ , respectively. It follows there is exactly one ( ) ( )*2 , 2d− ∈ − −  
where they agree. Alternatively, after solving the respective quadratic equation 
one can see that ( )*2−  is given by the formula 

( ) 2
*

3 12 1 5 4 4.
2 2

d d d− = − − + − +  

So, if ( ) ( )( *2 2 , 2− ∈ − −   , it should be no surprise that the L∞  estimate 
for jf  follows. As mentioned earlier, there are several ways how to show that. 
We will follow the Moser’s approach introduced in [19], with consists on esti-
mating the norms 

( )
1

12 1
0

d d ,d j j
T

a f f v t ++  ∑∫ ∫
ρ  

For rising powers of ( )1+   and different cutoff functions ρ . Although the 
reasons are identical to [20], we describe their derivation here. This proves 
Theorem 1.1. 

After obtaining an energy identity, we will utilize the-Poincaré inequality to 
restrict the most troublesome component (the integral involving a 1

j jh f f +  
  

term) and get an energy inequality. The 1L +  norms will be periodically limited 
as →∞ . By this energy inequality and the space-time weighted inequality 
(5.2). Here’s (see [21]). 

Proposition 6.1. Let 0>  and let ( ) ( )21 d
c∈ + ρ , then 

( )
( )( )

( ) ( )
( ) ( )( )

22 1 1 2

2 2 1
1

2 1

1 2 1 2
2

d 4d d
d 1

1 Δ d

Δ d

1 , d

d d

d

d

d

j j j

j j

j j

j j j

f v a f f v
t

c a f f v

a f f v

c a f f f v

+ +

+

+

+ +

 = − ∇ +

 + + ∇ −  

 + −  

 − + ∇ ∇ 

∑ ∑∫ ∫

∑∫
∑∫

∑∫

 







 



 










ρ ρ

ρ ρ

ρ

ρ ρ



 

where ( ) ( )
2 2

1 2
1 11 4 , 1 4

1 1
c c

   + + +
+ = + =   + +   

  
 

 
. 

Proof. For simplicity we shall write a instead of ja f   . From the equation 
and integration by parts, we have 

( )

( ) ( )( )

2 1 2

2

d d 1 d
d

1 , d .

d d

d

j j t j

j j j

f v f f v
t

f a f f a v

+ = + ∂

= − + ∇ ∇ − ∇

∑ ∑∫ ∫

∑∫

 



 







ρ ρ

ρ
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The integral on the right is equal to the sum of four terms, which we denote 
(I), (II), (III), and (IV), and which we now analyze one by one. 

First, note that ( ) ( ) ( ) ( )( )
1

2 21 2, 4 1j j j j jf f f f f
+

−∇ ∇ = ∇ = + ∇∑∑ ∑


    , 

therefore 

( ) ( )
( )

21
2 2 2

2

4I , d d .
1

d dj j jf a f v a f v
+

= ∇ ∇ = ∇
+

∑ ∑∫ ∫ 


 


ρ ρ  

Next, we rewrite each of the other three terms using integration by parts, as 
follows 

( ) ( ) ( )

( )( )

2 2 1

1 2 1 2

II , d , d
1

, Δ d ,
1

d d

d

j j j

j j

f a f v a f v

f a f a v

+

+ +

= ∇ ∇ = ∇ ∇
+

= − ∇ ∇ +
+

∑ ∑∫ ∫

∑∫

 



 

 







ρ ρ

ρ ρ
 

( ) ( ) ( )

( )( )

2 2 1

2 1 1 2

III , d , d
1

Δ , d ,
1

d d

d

j j j

j j

f f a v f a v

f a f a v

+

+ +

= ∇ − ∇ = ∇ −∇
+

= + ∇ ∇
+

∑∫ ∫

∑∫

 



 

 







ρ ρ

ρ ρ
 

( ) ( ) ( )
( )

2 1 2

1 2 1 2 2 1 2

IV , d , d

2 , d Δ d .

d d

d d

j j j

j j j

f f a v f a v

af f v af v

+

+ + +

= ∇ − ∇ = − ∇ ∇

= ∇ ∇ +

∑ ∑∫ ∫
∑ ∑∫ ∫

 

 

 

  

ρ ρ

ρ ρ
 

Adding these identities up, we have 

( ) ( )
( ) ( ) ( ) ( )

2 1

22 1 2 2 1

2 1 1 2 1 2 2

d d
d

4
d Δ d

1
Δ d 2 1 , d .

d

d d

d d

j

j j

j j j

f v
t

a f v af v

a f v af f v

+

+ +

+ + +

= − ∇ −
+

+ − − + ∇ ∇

∑∫

∑ ∑∫ ∫

∑ ∑∫ ∫



 

 



 

  




 

ρ

ρ ρ

ρ ρ

 

We use the elementary identity ( )1 2 1 2 1 2
j j jf f f+ + +∇ = ∇ − ∇∑ ∑ ∑  ρ ρ ρ  

and rewrite further, 

( )
( )( )

22 22 1 2 1 2 1

1 2 1 2

d d d

2 , d

d j j j

j j

a f v a f v f a v

f a f v

+ + +

+ +

∇ = ∇ + ∇

− ∇ ∇

∑ ∑ ∑∫ ∫ ∫
∑∫


  

 

ρ ρ ρ

ρ ρ
 

( ) ( )( )1 2 1 2 2 1 2 1 2

21

, d 2 , d

2 d .

d d

d

j j j j

j

af f v a f f v

af v

+ + + +

+

∇ ∇ = ∇ ∇

− ∇

∑ ∑∫ ∫
∑∫

 



   



ρ ρ ρ

ρ
 

In conclusion, 

( )

( ) ( )

( )( )

22 1 1 2

2
2 2 1

2 1

2
1 2 1 2

d 4d d
d 1

14 Δ d
1

Δ d

14 , d .
1

d d

d

d

d

j j

j

j

j

f v a f v
t

af v

a f v

af f v

+ +

+

+

+ +

= − ∇
+

  + +
+ ∇ −   +  
+ −

 +
− ∇ ∇ + 

∑ ∑∫ ∫

∑∫

∑∫

∑∫

 







 





 




 







ρ ρ

ρ ρ

ρ

ρ ρ
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Since for Theorem 1.1 we only consider ( )1+  ’s with ( )1 d> − + , we will 
always assume that with ( )1 d> − + , is true for the rest of this section. Since 
we are now bounded away from ( )1+   (we have 0< ), this also makes some 
of the constants easier to understand (see [8]). 

Proposition 6.2. Let ( ) ( )21 Rc B∈ + ρ . Given any three times 1 2 3T T T< <  in 
[ ]0,T  the quantity 

( )
( )

22 3

3 22 1 1 2

,
sup d d d

1d dj j jTT T

T
f v a f f v t+ ++ ∇

+
  ∑ ∑∫ ∫ ∫ 

 


ρ ρ  

is not greater than 

( ) ( )( )3

1

2 1
1

2 1

1 1 d d 1 , 2
T

jT
f v t d

T T
+ 

+ + + + − − 
∑∫ ∫   ρ  

( )3

1

22 1 21 Δ d d ,d

T
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where ( ) ( ) ( ) ( )( )1 1 in
1 1 , , 1jf R+ = + +   . 

Proof. Take the identity in Proposition 6.1 Per Young’s inequality, for every 
0>ε  we have 

( )( ) ( ) 2 21 2 1 2 1 2 1 12 , .j j j jaf f a f af+ + + − +∇ ∇ ≤ ∇ + ∇∑∑ ∑   ρ ρ ε ρ ε ρ  

For 0=ε  in particular, it follows that 
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By combining we get: 
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where ( )
22 2

2 1 1 11 4
1 1

   + + + +
+ = +   + +   

   


  
. Since ( )1 2d

d
+ ≥ >

+



, it is 

elementary that 

( )( )1 1 , 2 .d≤ + −   
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Now we apply Corollary 5.6 with ( )1min , 1
1
 =  
+ 

ε η . This yields 
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Integrate now in ( )1 2,t t t∈  and obtain the sup and average with regard to 
( )2 3,T T , respectively. Hence, 
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All that remains of the proof of Theorem 1.1 is covered by the following lem-
ma. This lemma  

The following lemma takes care of the rest of the proof of Theorem 1.1. This 
theorem can be thought of as an estimate of the form 1L L+ ∞→  in the spirit of 
the De Giorgi-Nash-Moser theory, using Moser’s method. In what comes next,  

keep in mind that the exponent 2 22 1 2 1
d d

   + = +   
   

 was defined in (5.1), and 

that ( )1 d> − +  was shown to be true (see [8]) 

Lemma 6.3. Let 1R ≥  and 0T > , then for any Rv B∈  and ( )2,t T T∈  
we have 
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Now, for each n ≥ 0, let En denote the quantity, 

( )( )( )
1

1 11 2: d d .n n
d

n
n n jT

T
jE a f f v t+ ++  =  ∑∫ ∫
 ρ  

We will develop a recursive relation for nE , as is customary for divergence 
elliptic equations. First, keep in mind that 1nE +  may also be expressed as, 
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Thanks to the space-time inequality (5.2) we have 
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Then, the energy inequality from Proposition 6.2 says that  
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Keep in mind that the first sum can’t be bigger than 
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Next, again thanks to 1n ≡ρ  in the support of 1n+ρ , and in particular 
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we conclude that 
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Observe that 
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Now, since 2nT T≤  and 1n ≥η  in RB  for all n, it follows that 
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Considering that 0a >  everywhere, it follows that 
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( )( )2,
limsup .

R
n j L B T Tn

E f ∞ ×→∞
≥ ∑  

Theorem 1.1, the proof of the lemma and with (6.3).  

7. Conclusion 

We compute an L∞  approximation for the isotropic counterpart of the homo-
geneous Landau equation in this publication. This is carried out for interaction 
exponent values in (some of) the extremely soft potentials range. Our major in-
sight is that certain PL  norms of solutions propagate from the traditional 
weighted Hardy inequality. Certain weighted Sobolev inequalities and De Gior-
gi-Nash-Moser theory provide a logical foundation for the L∞  estimate.  
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