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Abstract

We present a first-order finite difference scheme for approximating solutions
of a mathematical model of cervical cancer induced by the human papilloma-
virus (HPV), which consists of four nonlinear partial differential equations
and a nonlinear first-order ordinary differential equation. The scheme is ana-
lyzed and used to provide an existence-uniqueness result. Numerical simula-
tions are performed in order to demonstrate the first-order rate of conver-
gence. A sensitivity analysis was done in order to compare the effects of two
drug types, those that increase the death rate of HPV-infected cells, and those
that increase the death rate of the precancerous cell population. The model
predicts that treatments that affect the precancerous cell population by di-
rectly increasing the corresponding death rate are far more effective than
those that increase the death rate of HPV-infected cells.

Keywords
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1. Introduction

Human pappilomavirus (HPV) is one of the most widespread sexually transmit-
ted diseases worldwide. New infections in the United States alone are estimated
to be between 1 and 5.5 million per year [1]. Over 200 types have been geneti-
cally distinguished.

In females, the virus targets basal epithelial cells in the cervix. With prolonged

exposure, these infections can lead to the development of precancerous cells and,

without treatment, cancerous cells [2]. Of the over 200 distinguished gentotypes,
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HPYV types 16, 18, 31, and 45 are considered to be high-risk for inducing cervical
cancer after prolonged infection.

Mathematical modeling techniques have been used to investigate the dynam-
ics of cervical cancer, both from epidemiological [3] [4] [5] [6] and cellular [2]
[7] [8] [9] [10] viewpoints. Our work here is in the latter context. The initial stu-
dies of within-host HPV infection leading to cervical cancer described the dy-
namics with systems of ordinary differential equations [2] [8] [10]. The models
included the dynamics of the susceptible epithelial cells, infected cells, precan-
cerous cells, cancerous cells, and viral particles. In [7], the authors modified the
previous models to incorporate the age of each of the cell types previously men-
tioned. This results in a more extensive description of the biological processes,
with the added cost of a more complicated model. Taking the age of cells into
account yields a model of a system of four first-order, nonlinear, partial diffe-
rential equations and an ordinary differential equation. More recently, Sari ef al.
[9] proposed a modification of the model in [7] that eliminates the ordinary dif-
ferential equation describing the viral population.

Systems of first-order partial differential equations have been applied to a
wide range of biological processes, including algal growth, amphibian popula-
tion growth, erythropoiesis, and fungal propagation [11] [12] [13] [14] [15]. The
mathematical approaches to analyzing those systems have been just as varied. In
some cases, such as in [7] [9], stability analysis can be successfully applied to in-
vestigate the long-term behavior of solutions. If more knowledge of transient
solution behavior or sensitivity analysis is desired, then numerical methods pro-
vide a useful tool.

Finite element methods, integrating along characteristics, upper-lower solu-
tion techniques, and finite difference schemes have all been successfully applied
to various systems of first-order partial differential equations [11] [14] [16] [17]
[18]. In this work, we follow the ideas presented in [18], which were successfully
applied to the nonlinear size-structured population model in [16]. The approach
yields a simple first-order finite difference scheme that can first be used to pro-
vide existence-uniqueness results, and then can be implemented to approximate
solutions of the model.

The paper is organized as follows. In Section 2, we define the various compo-
nents of the model and the paraments that affect their behavior. In Section 3, we
define weak solutions of the model and provide conditions on parameters that
are required for the results that are presented in later sections. We also define
the finite difference scheme in detail and the notation that will be used throughout
the paper. In Section 4, we will provide the results necessary to establish an exis-
tence-uniqueness result. In Section 5, we present the main theoretical results
of this work. Namely, the construction of sequences of functions that con-
verge to the unique weak solution of the model. To our knowledge, this is the
first well-posedness result for the model. In Section 6, we numerically analyze
the finite difference scheme itself and show that it indeed provides first-order

accuracy. In Section 7, we explore the model’s sensitivity to certain parameters
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that are associated with currently available drug treatments. Finally, in Section 8

we will make some concluding remarks.

2. The Model

The model that is the focus of this work was developed in [7] and takes the form
of a system of four first-order partial differential equations and an ordinary dif-
ferential equation. The model describes the population densities of the suscepti-
ble cell (S(a,t)), infected cell (I(a,t)), precancerous cell (P(a,t)), and can-
cerous cell (C(a,t)) populations, as well as the number of HPV viral particles
(V(t)), at time ¢ and age a. The total populations of the susceptible, infected,
precancerous, and cancerous cell types at time fare denoted by

Ng (t)=["S(at)da, N,(t)=["1(at)da, N,(t)=["P(at)da,and

Nc (t)= J.;d C(a,t)da, respectively, where @, is the maximum lifespan of the
cells. We denote their respective death rates by d,d;,d ,and d,. The infection
of healthy cells by free virus particles is modeled by the mass action term
aV (t)S(a,t) . Infected cells are partially moved into the precancerous cell pop-
ulation, modeled by the term &1 (t) . The rate at which precancerous cells move
into the cancerous cell population is modeled dynamically with the bounded
oN, (1)

function (N, )= 1+ N, (1)
P

, although the theoretical results we provide in

this work are valid for any continuously differentiable function x with
0 < u £1. The viral population is modeled by means of an ordinary differential
equation. It is assumed that there is a constant production of viral particles, at a
rate of A . There is a density-dependent death rate d, (V). Since the total pop-
ulation of infected cells dies at a rate of d;N, (t), it is assumed that viral par-
ticles are produced at a rate proportional to this rate, with a constant of propor-
tionality n. Non-cancerous cells are assumed to have a reproductive age range of
[ar , aq} , while that of cancerous cells is [a,,a, |. The reproductive age range of
cancer cells is shifted relative to that of the noncancerous cells [7], and so it is
assumed that &, <&, and @& <a,. Noncancerous cells are assumed to have a
birth rate of /3, while cancerous cells have a birth rate of £, . Finally, the ini-
tial cell densities are given by S(a,0)=S,(a), 1(a,0)=1,(a), P(a,0)=PR(a),
and C(a,0)=C,(a), and the initial viral load is V (0)=V, .
These definitions and assumptions lead to the following model:
oS (a,t) s oS (a,t)

- — :—(ds+av(t))8(a,t), O0<t<T, O<ax<a,,
a (;[1,t)+6l g:t):—(di+5)I(a,t)+aV(t)S(a,t), 0<t<T, O<a<ay,
oP(a,t) oP(a,t

ét )+ ga )=_dpP(a,t)+§I(a,t)—y(Np)P(a,t), 0<t<T, O<a<ay,
acéf’t)JraC(;:’t)=—ch(a,t)+y(Np)P(a,t), 0<t<T, O<ax<ay,
dvd—t(t)zA—dv(V)V(t)+ndijoad I (a,t)da, 0O<t<T,
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0
)=PR(a), O<a<ay, (2.1)

An uncommon aspect of this model is that the integrals in the boundary con-
ditions are not over the entire interval [0,a,]. This presents difficulties in both
the implementation of the finite difference scheme and the proofs that will fol-
low in later sections.

Remark 2.1 While the work in [9] proposes a modified model that eliminates
the ordinary differential equation in (2.1), the ideas of the forthcoming numeri-
cal scheme can be adapted for such a case. Hence, we preform the analysis on the

model proposed in [7].

3. A Finite Difference Scheme

Let cbe a sufficiently large positive constant. Throughout the discussion we im-
pose the following regularity conditions on our model parameters in (2.1).

1) The function d, :[0,00) —[0,0) is continuous.

2) The function 4 :[0,00) —[0,%0) is continuous and satisfies 0< s(x)<1
for all xin [0,c0) .

3) The parameters V,d,,d;,d,,@,0,n,a,a,,a,,a,,/, B, are nonnegative
constants.

4) The initial conditions S, (a),1,(a),R,(a),C,(a) are nonnegative with

"S "BV (0.ag) "I 0"5\,(0'%) ’”PO"BV(O,ad) ’"CO"BV(O,ad) s¢

Now we give the definition of a weak solution to problem (2.1) as follows: A

5-tuple

(S.1,P.CV)e(BV((0,a,)x(0,T)), BV ((0,a,)x(0,T)), BV ((0,a,)x(0,T)),

BV ((0, a, )x(O,T)),C [O,T]) is called a weak solution to the problem (2.1) if it
satisfies:

.[adS v,t)¢ (v.t)dy

_J' S 4:1 VO dv - Is(adv )é’l(ad’ )
+ﬂ0_|.0(_[:rq$ a,r da)é’l(O,z’)dz’
+J: j;d (%(V,T)+%(v,r)]8(v,r)dvdr
—IJ +aV(r (v,r)é’l(v,f)dVdT,
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[ (V,t);z (v,t)dv
= [ 1,(1) & (v.0)dv =1 (ay.7) &, (3. 7)dr
+ﬂoj(j I (a, r)da)g’z(o r)dr
N (% ag“z( )jl(v,r)dvdz-
[ ((d +8) 1 (vir)+aV (1)S (v,7))&, (v, 7)dvdr,
[ P(vt)& (v.t)dv
= [* R (v) & (n.0)dv [ P(a;,7)¢; (8, 7)dr
+ﬂ0j0(jar P(a,7)da)¢, (0,7)dr
aNs (%(% Rt = T))P(v 7)dvdz
+I;.[Oad(—dpp(v,r)+5l(v,r)—,u(Np)P(v,r))§3(v,f)dvdr,
[c( v,t)g’4(v,t)dv
= [ ()& (v 0)dv=[C(as.7) ¢ (3. )de
+ﬂcf(j c(a da)g4(o r)dr
L1 (554 ﬁai:(,/ T)jC(V,r)dvdz-
[ (~d.C(vir)+ (N, )P (v.7)) ¢4 (vir)dvdr,
V0=V, + [j{A=d, (V)V (2)+nd, [ 1 (a7)da)de,

for each te(0,T), every test function ¢; e Cl([O, a, ]x[O,T]),i =1,2,3,4. Here,
S(ag,7)=lim, ,, S(v.7), 1(az.7)=lim,_, 1(v.7),

P(a;,z') =lim,,, P(v,7), and C(a;,r) =lim,,, C(v,7). First, we divide the
intervals [0,a,] and [0,T] into m and K subintervals, respectively, and use
the following notation throughout the paper: Aa=a,;/m, and At=T/K de-
note the age and time mesh sizes, respectively. The mesh points are given by:

=jAa, j=0,1---,m and t, =kAt, k=0,1---,K. We denote by S;‘ , 1f
k k . . . .

Pj ,and Cj , the finite difference approximations of S (aj b ) , | (aj ,tk) ,
P(aj,tk),and C(aj,tk),respectively. Further, we denote V (t,) by V¥,
#(Np (t,)) by us,and d, (Vk) by df. We approximate the total cell popu-

lations with
m
=>"XAa,
=1

where X =S5,1,P,C. Since the parameters a,8,,8, and a will not generally

coincide with our mesh points, we define the following:
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jo=min{jla;>a}, j, =max{j|a; <a,},
jo=min{jla;>a}, jr=max{j|a; <a}.

The total variation, |, norm,and |, norm are defined as

m-1 K K
ZZ|UJ+1_“1|'
=0

respectively. The first-order scheme that will be considered here is given by:

o, = ] [, =

0<j<m

gkt_gk  gk_gk
i iy 1*1:_(d +aVk)Sl-<+1, 1<j<m,0<k<K-1
At Aa : ’
e N D)
n Ly JAaH: (d,+8) 15 +av¥si™,  1<j<m, 0<k<K-1
P_k+l _ P-k P_k _ P_k
i n i, JAaj_lz_dijk+1+5|:'<+l_ﬂ;ij+l’ 1<j<m0<k<K-1 (3.1)
ckt_ck ck-ck
JAt iy JA "1:—dCC}”1+,uEPJ-k+l, 1<j<m,0<k<K-1
a
k+l _y\sk
%:A—d\ka“+ndiNr, 0<k<K-1,

The boundary conditions are computed as follows:

S5% =) S, a2, —a )+ ZS( k+1)Aa+s( tkﬂ)(aq—aj)], O<k<K-1

i=if

(3.2)

Jg
et P(aj:,tm)(aj:—a,)JrZP(a k+1)Aa+P(_ k+1)(aq—ajq)} 0<k<K-1

et cla tule, -2+ S clasmec(a, auffa-a, )| oskeks

i=id

The initial conditions for p and m are computed as follows:
s’ =5%(a;), 17 =1°(a;), R°=P°(a;), C? =C°(a;), j=0,---,m

Equation (3.1) is more conveniently used in the following form:

At

(- 5a ) aats

S;H-l: 1gjgm, 0<k<K-1
1+At(d +aVk)

|J(1_§IJ+AH + AtV *$

ke a , 1<j<m, 0<k<K-1
1+At(d.+§)

ij (1_?) At At§|k+l

pk+ a , 1<j<m, 0<k<K-1

1+At(dp +y§)
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o (1—?}?0;_1 + At P
cit= a a , 1<j<m, 0<k<K-1
1+ Atd, (3.3)
oy VErAt(A+ndNy)
(VAR YT 0<k<K-1

It is clear from the assumptions on the initial conditions and Equation (3.3)

At
that the numerical solutions will remain nonnegative as long as a <1.
a

4. Estimates for the Finite Difference Approximations

The lemma below shows that the numerical approximations are bounded in the

I* norm.
Lemma 4.1 There exists a positive constant M,, independent of Aa and

At, such that
[+ B+ 1Pl + e+ < may

for k=0,1,---,K.

Proof. Multiply the first four equations of (3.1) on both sides by At and

Aa and sumover j=12,---,m

S~ 8], + Suat—ssat=—(d, +av*)|s*| At
| =, + At —1gat=—(d, + )1 At+av* s | at, )
[P = [[P¥[, + Prat—Riat=—d, [P At+s||i | at— g [P At
[c* ] -|lc¥|, + chat-ciat=—d, [t At u [P At
Multiply the fifth equation of (3.1) on both sides by At
Vi vk = AAt—dfV <At +nd, ||| K ||1 At (4.2)
Adding up the five equations in (4.1) and (4.2) we have
(L+dAt)[s | +(2+dat)[1r?| +(2+d,at) [P
+(1+ cht)|CIHl ) +(1+ dv"At)Vk+1

=¥, + (e st + P, e+
+(S(‘,‘ +1 P +CY +A)At—(8nk1 +15+ Pk +C,§)At
From the boundary condition, we have
S <Afs | 0 <m | R < AP o<
Therefore,

(1+d,At)

¢,

| k+1

Sk+l Pk+l

| +(1+dAt)

1+(1+dpAt)

1

+(1+d,at)|ct v
< n)5°] <[P L) o A0

+(L+ At nd At 1]+ V¥[+ Aat

) +(l+ deAt)
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Let C= max{f, +nd;, B} . Then
Sk+l Pk+1

I k+1 Ck+l Vk+l

+

+
1

*|
1

+

1 i§

< (e Can)(Js* |+l [P, + e+ ') - aa

which implies the result.

Next we establish a bound on the infinity norm of the numerical approxima-
tions.

Lemma 4.2 There exists a positive constant M, , independent of Aa and
At, such that

[+, +1P*L +le*]. < m.
00 o0 0 o0

for k=0,1,---,K.
Proof. If ||Sk+1|| =S¢, then
||Sk+l||OO Sﬂo Sk+l 1SﬂoMl.
If |S**!|| is not obtained on the boundary, then there exists a j, with
1< jo<m suchthat S| =Si*.
From the first equation of (3.1)
k1 ok Atk k k\ okl
s _sjo—E(sjo—sjofl)—(dsmv )Skat,
That is,
k+1 k _ ok At At
sk [1+(ds+aV )At]_sjo (1_Ej+sjo-1£'
Thus,
5 <]

This implies that "Sk*l"m is bounded since ||S°|L0 is bounded. Similarly, if

K+l K+l
"= =1,7, then
00

| k+1 Ik+l

<
<h

1 SﬂO'vlfl'
If |k+l
1< j, £m such that

From the second equation of (3.1)

is not obtained on the boundary, then there existsa j, with
| k+1

_Ik+l
=1

At
k+1 _ gk k k k+1 k o k+1
I _|10—A—a(| — 1% )= (d +8) 1 At + aV*SEAL,

Io

Therefore,

Ik+l

Skl At

o

(1+(d; +5)At)

s|||k|| +aV*
o0 o0

P <], +emyjs, at.
Similarly, if | P! =P, then
|Pk+l Sﬂo Pk+l ) SﬁoMl-
If ||P*!| isnot obtained on the boundary, then there existsa j, with
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1< j, £m such that "F’k+l = Pﬁ”.
From the third equation of (3.1)

Pj|;+1(1+At(dp+y§)) (1——jpk A; P +01MAL.

Therefore,

[P <[PH|, + o), ac
Similarly, if ”Ck+l o= Cs*™, then

||Ck+l Sﬂc Ck+1 Sﬂch

If "Ck+1 is not obtained on the boundary, then there exists a j, with
1< j, £m such that "Ck+l = Ck;l.
From the third equation of (3.1)

k+ k k kK pk+
Cit(1+d.At) = (1—-]0 Cj071+,uijo 'At.

Therefore,

||Ck+l
0

<[c], + [P

atsfe] +p

At.

In the next lemma we show that the difference approximations are of bounded
total variation.
Lemma 4.3 There exists a positive constant M, independent of Aa and
At, such that
TV (S¥)+TV (1) +TV (P*)+TV (C*) < M,

for k=0,1,---,K
Proof. From the first equation of (3.2) we have

sjk(l—Aj Alge,
gk = Aa) Aa

: 1+At(ds+aV")

Si(1+at(d, +av"))= s} (1 %}—sfl

Thus,
k+1 k k At At K
Sy (1+At(d, +av*)) = sﬁl( Aaj+Esj
Subtracting the above two equations and summing over j=1,2,---,m—1:

JZ‘{(Sk+1 S}‘”)(1+At(ds +aVk))

j+l

At) 2 At
(st - a2 J (st -sha) o
By the first equation of (3.2):

S (1+ At(d, +av*)) = ¢ (1-%}%55

m-1

j=1
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Combining:

TV (84)(1+ At(d, +av*))

Z

k+1 k+1
Us — s

k+1 k+1
skt sk

j+1

j(1+At(ds +av*))

Here,

k+1 k+1
[

(1+ At(dS +aV* ))

= s (1—%} %55—85*1(1+At(d5+avk))

= %(sg — S} )+ S — Syt —SEAL(d, +aV*)

:[ 2;)(5k Sy )—(Ss™ S5 )-S5 At (d, +aV*)

From the boundary condition,

k+1 k
557 - 4]

R I R R (S

i=if

_[S(aﬁ,tk)(ajr o)+ 3 sjsars(s, )(aq_aja )J

_,30

i=if

+

S(a,,,tkﬂ)—s(a_,,tk)
Jq g

<B i|5k+i—3k|Aa
= 0,‘:1 i i

(aq ~4; ))

From the first equation in (3.1),

(i —sk)ra=—(s} —s} )At—(d, +av*)s|" AtAa
Thus,

|85 -5 < ﬂoi|sjk+1 -S§|Aa
<

< ﬂoi|sjk -y, [at +ﬂoi(ds +aV*)si™AtAa
i= i=

< BTV (S*)At+ By (d, +aM, )|+ At

DOI: 10.4236/am.2023.143009

160 Applied Mathematics


https://doi.org/10.4236/am.2023.143009

B. L. Ma, J. J. Thibodeaux

Therefore,

TV (s¥)<TV (sk+1)(1+ At(d, +aVk))
Usk gkl ](1+At(ds+avk))

< (1—%}TV (S*)+ssat(d, +av*)

Sk l_sk+1

j+1

Z

)At
Aa
| At(d, +aM, )+ BTV (S*)At

|5 —sg|+Tv (s
<TV(S¥)+ 4,

+ 5, (d, +aM,)

= (L+ BAt)TV (S*)+ (,30

Sk+l

S k+1 At

Sk+l

(d +aM,)

By (d, +aM,)[54)at
Similarly,
mzl(hkjll 1) (1+ At(d, +5))
j=1
S ALY At LD
:jz_;(ljkﬂ—l,*)(l—E}E%(l?—|§_1)+Atavk;(sjﬁf s

Ik+1_|k+1

(1+At(d; +05))

{2
- 2iiag

(1——j||k I|+ﬂ0£2|lk I |At+2(di+5)|jk”AaAt
j=1

+1f o |+AtaV Sk

|k+l ¥ |Aa+AtaV Sk

+ ZaV kS;‘”AaAt] +AtaV s

j=1

Ik+1

Sk+1

(1——j||k 15|+ 5 (TV (14) At+ (g, + 6) At

+AtaV S

lAt+aVk

Therefore,

TV (1) <TV (1) (1+ At(d, +5))

Ik+1_|k+1 Ik+l_|k+l

:(l ¢ +F:Zj K- ](1+At(di+§))
<(L+ ATV (1) + AtV TV (847) + 4, (d, +6)

)

Similarly, by the third equation of (3.1) and (3.3),

| k+1

+avk Sk+1 k Sk+l

+aV
1
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2|ij+;1 - ij*1|(1+ At(d, + ))

é(l—%) > [Pl - P +— |F>k P"1|+At52|l“ 1|
and
|Plk“—P0k*1|(l+At(d +y';))
(1—A—)(P" R )- (P =P ) - R At (d, + )
(1—-} Rf B[+ /302|P“ Pf|Aa+ B At (d, + uf )
( jpk P+ ATV (PH) (¢, + )P, + o1, )
+ P At(d, + 1)
Therefore,

TV (Pt)<TV (Pk*l)(1+ At(d, +y;))
-1

1

]

Ply = PY|(1 At(d, + )+ R = B2 (2+ At (d, + 1))
< (11+ BAOTV (PE)+at(6TV (14) <[P (d, + 1)
o (dp + )P+ o)
Similarly, by the fourth equation of (3.1) and (3.3),
mz_l|cjk:f ~Ci7|(1+ A, )
(1__j o, —c +§_;"§1|cjk _c,.k_1|+mﬂ;"§l|pik+;l |

and

cft -y (1+ Atd, )

(1—A ](Ck Ck) (Ckl Ck) C(‘)‘*lAtdcﬁLAty;Plk*l

[1__]|ck ot +[ott ~ctf at(d Jo*| + ut [P, )

( J|ck ci|+ ﬁZ|c“ Cf|aa+at(d,

4P, )

( j|ck Cs |+ ﬂCAt TV (C*)+d,

cf+ [P

+At( e+ a1, )

Therefore,
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TV (C**) < TV (C**)(1+Atd,)

_Z|c,+l f|(1+ Atd, ) +[C —Ci | (1+ A, )

<(1+B,AH)TV (C )+At(y';)'|'v (Pk+1)+ﬂc (TV (Ck)
+d [c 1)+dc ||Ck+1 w)

The next lemma shows the numerical approximations satisfy an /* Lipschitz-

k|| pk+1
1+,up||P

+ﬂg ||Pk+1
o0

type condition in £
Lemma 4.4 There exists M, >0, independent of Aa and At, such that for
any integers N, > N, >0, the following estimates hold:

m SJNz_sJ!\h
Z;A—tAaSM“(NZ_Nl)’
J:

m |!\‘2_ Ny

S {pa s ML (N, =N,
j=

n [p2 —pM

S |aa ML (N, -,
J:

m C_’“z_c!\h

Z; A<M (N, -,
j=

Proof. From the first equation of (3.1),

m Sk+1
D

Si HAa<TV (S*)+(d, +av¥)[s|

<M,

for some positive constant M Hence,
S Ny _ S 1
At

m k+l k

D v

=1

Np-1m

ra<3 3

k=N; j=1

Llaa<M,(N,-N;,)

Similarly, there exist positive integers MZ, M,,M, such that

mNz N

D ven

j=1

No—1 m
Aa< Y |+—21
k=N; j=1
s(TV(I")+(di+5)|
<M, (N, -N,),
ij+1_ij

At

k+1_|

Ik+l

| +av* ||sk+1

1)(Nz - Nl)

plo _pM
J J

At

No-1 m

Aa< )

=N; j=1

k
s(Tv( V(dy + a2 )P,
<M,;(N,-N,),

2

j=1

Aa

Ik+l

+5|

(N, -N)

and

1)(Nz - Nl)
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Set M, =max,_,,5,{M;} and the results follow.

5. Convergence of the Difference Scheme and Existence of a
Unique Weak Solution

Following similar notation as in [18] [19], we define a family of functions
{Ul(Aa,At)} > {UZ(Aa,AI)} > {US(Aa,At)} »and {U4(Aa,At)} by

Uypany (&) =S5 Uypaag (&) = 17,
Usaaa (at)= ij v Usaaay (at)= Cjk’

VLERVLS!
At
j=1--,m, k=1---,K. Then by Lemmas 4.1 - 4.4, the each of the functions

and V, (t)=V"*'+ (t-t,,), for ae[aH,aj), teft t),

{Ul(Aa‘At)} , {UZ(A&M)} , {US(Aa’M)} , {U4(Aa,At)} is compact in the topology of
£((0,a,)x(0,T)). Also, {V,} is compact in the topology of C[0,T].
Theorem 5.1 There exists a subsequence of functions {Ul( As,., At,)} c {Ul( na, At)} s

{UZ(Aa,,At,)} = {UZ(Aa,At)} ’ {Us(Aa,,At,)} - {US(Aa,At)} ’ {U4(Aar,Atr)} < {U4(Aa,At)} ’

and {Vm, } < {Vy}, which converge to functions

S(at),I(at),P(at),C(at)eBV ([O,ad]x[O,T]) , and V(t)eC[0,T], re-
spectively, in the sense that for all t>0

I
3" |Usgaay ) (2:) =1 (a1)|da -0
7 Vst (@) =P (a
I
[l
L 1o,

.[ J ‘U3(Aar Aty) t) P(a, )‘dadt—>0,

[,

Ul(Aar,Atr) (avt)_ S (a,t)‘da — 0,

)‘da—>0,

Uz, ) (@1)=C at)‘da—>0,

(a,

(
wom ) (A1) =S (&, t)‘dadt 0,
staa o (81) = 1 (a,1)] dadt 0,
(
(

4(Aa; Aty )

(a.t)-C(at)|dadt >0,

vy, (t)-V (1) >0,

te[OT
as r—>ow (Le, Aa,,At, - 0). Furthermore, there exist constants My (de-
pending on "SOHBV[O,ad]’ "IO"BV[O,ad]’ ||F}J||BV[O’ad] ,and ||C, ||BV 00,)) Such that the
limit function satisfy "S"B\/([O,ad por)) < Ms> "V”BV([O,ad Jor) < Ms>
<M, [Cllyonyiory <M and [V oy, <M

Proof. The results for S(a,t), I(a¢t), P(at), and C(a,t) follow from
the proof of Lemma 16.7 on P. 276 in [18]. The results for V (t) follows from

” P"BV ([0.39 ]x[0.T])
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Theorem 1.28 (Ascoli’s Theorem) in [20].

We show in the next theorem that the set of limit functions
{S (at),I(at),P(at),C(at),V (t)} constructed by the finite difference scheme
is a weak solution to problem (2.1).

Theorem 5.2 The set of limit functions {S (at),I(at),P(at).C(at)V (t)}
defined in Theorem 5.1 is a weak solution of problem (2.1) and satisfies

[S GO+ GOl + [P O, +[C Gl + v (D] < My,
and

81 0ag0m 1M oagiory 1Pl sy iory HIChe o 0y + IV o
<M, +M,.

Proof. Let ¢ eC’ ([O,ad]x[O,T]) for i=1,2,3,4. Denote the finite differ-

ence approximations ¢; (v i ,tk) by (¢ )'j . Multiplying the first equation of the
finite difference scheme (3.1) by (¢; 1)';“ and rearranging some of the terms, we

obtain
i (6 -8 (4]
((@)k” () -6 85 =(a) st
P (6 ()~ (e av ) s ()

Multiplying the above equation by Aa, summingover j=1,2,---,m

k=0,1,---,K -1, and using the boundary condition we have

i(SJK (51) ~S] (51) )Aa

Kz:i( ((é,l)kﬂ (é,l) )Aa ( Yy )Skﬂ(é'l)k”AaAt) :Z:Sr;;(é,l)m

X

i (5.1)
N (g“l)k”ﬂo[s(a,-;’tk)(ajp )ZSA&HS( )(aq—a_)]m

i=ir

=
I
o

+:::Jznj;5 1(( )k+1 (fl)kj)
Similarly,
Y (INENEHE I
o (CS A EA LT ES R E e EE o HENASE
k=0 j=1 k:O
(5.2)
+k_0(§2)2+1ﬂ0[|(aj;:tk)(ajr—a) th |kAa+I( )(aq—ajq)JAt
+K71i( (d +5) k+l+(lV Sk+1)(é,2)k+1AaAtl
k=0 j=1

DOI: 10.4236/am.2023.143009 165 Applied Mathematics


https://doi.org/10.4236/am.2023.143009

B. L. Ma, J. J. Thibodeaux

5Py ()] o6 2

B :Z:%(Pik ((6)" = () Jaa+PLs (6} —(Q)ﬁj))m - :Z_::Pn‘f (&) At
S A pla oo £ toacple 1 )fuca, 9
S

2(C5 (6); -ep () aa

- ZZ(C (€)™ = (€ Jaasera (&) - (61 at- zc (€)™ At

(5.4)

~

+ _1(4,“4 )E+1 /J’C{C(ajr+ ,tk)(ajr+ —ar)+ i C}‘Aa+C(aja,tk)(aq -a, )]At

i=if

=~
o

~
-

(-d.CY ™+ g PI) (&) naat,

+ ;
J

T[M-

=
o

i

Using the above fact and following a similar argument to that used in the
proof of Lemma 16.9 on page 280 of [18], it can be shown that the limit of the
difference approximations in Theorem 5.1 is a weak solution to the problem (2.1)
by letting m,K — 0. The bounds are obtained by taking the limit in the
bounds of the difference approximations in Lemmas 4.1 and 4.2.

Remark 1 Uniqueness of the weak solution to the model (2.1) follows from
similar arguments to those used in [13]. Thus, from Theorems 5.1 and 5.2 and
the uniqueness of the weak solution, we have that the finite difference approxi-
mation (3.1) converges to the unique weak solution of system (2.1) in the sense

given in Theorem 5.1.

6. Numerical Results

In order to check our code and confirm first order convergence, we chose a set
of functions as an exact solution set and then added terms in order to ensure
that they did indeed form a solution. To be more precise, we chose the solution
set (6.1) and substituted it into (6.2) and then solved for the forcing functions

f,, i=125.
_La+t _ a-t _ qat?
(a,t)_ezjt I(at _,? , P(at)=e 6.1)
t)=e"", V(t)=e

oS(a,t) oS(at
(8t ) éa ):—(ds+aV(t))S(a,t)+fl(a,t), 0<t<T, O<a<ay,
alg't)+al(g:t)=—(di+5)I(a,t)+aV(t)S(a,t)+fz(a,t), 0<t<T, O<a<a,
ap(a?’t)JraPé:t):—dpP(a,t)+5I(a,t)—,u(Np)P(a,t)+f3(a,t), 0<t<T, O<a<ay,
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aC(a,t)+6C(a,t)

=-d,C(at)+u(N,)P(at)+f,(at), 0<t<T, O<a<a,,

ot oa (6.2)
dv (t) '
T:A—dv(V) +ndJ' (a,t)da+ f,(at), 0<t<T,

It is easily verified that this results in
f.(at)=e*"(2+d, )+oze"l
(at)=e*"'(d, +5)-a
fy(at)=e""[1-2t+d +y( ()] -0 (6.3)
f,(at)=e*" (1+d,)-u(N, (t))e*™"
fS(a’t) e ( ( ())_1)_A_ndiNi(t)1
where
:j:” P(at)da=e¥ —e*
and

N, ()=["1(at)da=e""-e".

Upon inspecting the boundary conditions, we see that once a,,8,,8;,and &,

are chosen, the parameters f, and [, must satisfy
1 2
By =——— and B, = (6.4)

g™ —e¥ e® — g%

The parameter values, except for S, and f,, were taken from [7] and are
given in Table 1. The values of f; and f, that are implied by (6.4) are also
provided there.

We ran five simulations, with the step sizes At and Aa being halved each

time. Once simulations were done, we calculated the following error

where N;*(j) is the numerical approximation of N, at t

= max

o 0<j<m

; with step size
At . This error was also calculated for the other components of the model, ‘e,
Ni, N,

rors in order to determine the order of accuracy. The results in Table 2 and Ta-

N,, and V. Finally, we calculated log, of the ratios of consecutive er-

ble 3 demonstrate that the method is achieving first-order accuracy.

7. Simulations of Treatment

In this section we present numerical simulations of treatment with specific drugs.
We follow the approach taken in [2], but present more details. As we are inter-
ested in arresting the further development of unchecked levels of cancerous and
precancerous cells, we chose the parameter values for case (iv) in [7]. Since the
precancerous and cancerous cell populations grow without bound in this case,
the model’s behavior corresponds to dysplasia and the onset of metastasis. The

base parameters are given in Table 4.
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Table 1. Parameter values for error simulations.

Parameter  Value Parameter Value Parameter Value Parameter Value

a, 0.25 a, 1.0 0 0.02 A 0.001
a, 0.9 d, 0.1 a 0.1 d, 0.1
a, 0.1 d, 0.11 ) 0.15 d, 0.3
a, 0.4 d, 0.05 n 0.01 K 0.2
ON
d,(V) d+5v u(N,) o K"llp By 0.8506 B 1.9918

Table 2. Convergence of the first-order method.

N, N, N,
Aa
||||w error order ||||?n error order ||||w error  order
0.01 0.1 1.0904 0.0908 0.1168
0.005 0.05 0.5740 0.9257 0.0467 0.9587 0.0603 0.9553

0.0025 0.025 0.2936 0.9671 0.0238 0.9744 0.0306 0.9798
0.00125  0.0125 0.1485 0.9832 0.0120 0.9836 0.0154 0.9895

0.000625 0.00625 0.0747 0.9915 0.0061 0.9901 0.0077 0.9946

Table 3. Convergence of the first-order method.

N, v
At Aa
||||w error order |||Lc error order
0.01 0.1 0.3803 0.0019
0.005 0.05 0.1926 0.9814 0.000958 1.0082
0.0025 0.025 0.0973 0.9845 0.000478 1.0039
0.00125 0.0125 0.0490 0.9898 0.000238 1.0020
0.000625 0.00625 0.0246 0.9941 0.000119 1.0010

Table 4. Parameter values for error simulations.

Parameter  Value Parameter Value Parameter Value Parameter Value

a, 0.25 a, 1.0 0 0.02 A 0.001
a, 0.9 d, 0.1 a 0.1 d, 0.1
a, 0.1 d, 0.11 S 0.15 d, 0.11
a, 0.4 d, 0.05 n 0.01 K 0.5
6N,
d,(V) d1+5v  u(N,) B, 1.68 B, 2
1+ K‘Np
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The initial conditions used were S;(a)=2exp™®, V, =0,

lo(a)=Py(a)=C,(a)=0.

One approach to treatment would be to increase the death rate (d;) of HPV-
infected cells, thereby indirectly reducing the potential precancerous cell popula-
tion. There are antiviral treatments such as Cidovofir that could facilitate this
outcome, as noted in [2] [21] [22]. In order to numerically experiment with this
scenario, we performed a simulation with the parameters given in Table 4, and
then compared it to simulations in which this parameter is increase by 10%, 25%,
and 50%. The results of these simulations are presented in Figure 1.

For this parameter set, the model is not particularly sensitive to the parameter
d;. Indeed, an increase in the parameter d; by 50% does not reduce the pre-
cancerous and cancerous cell counts by 50%.

Another approach to treatment would be to increase the death rate of precan-
cerous cells ( dp ). It was noted in [2] that the drugs 5-fluorouracil and bleomy-
cin have shown success in this respect [23]. After experimenting with the para-
meter d »» we found that the model was quite sensitive to this parameter. Small
percent changes cause large changes in model input. We settled on presenting
the output resulting from the increasing d, by 3%, 5%, and 10%. The results
are shown in Figure 2.

According to the model, this approach is vastly more efficient than the one of
increasing the death rate of HPV-infected cells. Treatments of this type appear to
have the ability to reduce unbounded precancerous and cancerous cell popula-
tions to stable ones that are more easily controlled.

There are, of course, other parameters in the model with which one can expe-
riment. Here we have decided to focus on the two that can be affected by drugs

which are currently available.

«10% Effect on Precancerous Cell Population
T T T

e
o

No Treatment |
w10 percent increase in d;

25percentincreaseind,| A -

_____ 50 percent increase in d, Pt

Precancerous cells
(9]
T

0 L I |
0 100 200 300 400 500 600 700 800 900 1000
time (days)
Effect on Cancer Cell Population
4000 ! ‘ No Treatment
.......... 10 percent increase in d.
£ 3000 |- ) o o
3 25 percent increase in d, §
2000 - 50 percent increase in d, gl
2
& 1000 - .
0 1 I 1 | | | | |
0 100 200 300 400 500 600 700 800 900 1000

time (days)

Figure 1. Model sensitivity to the parameter d;.
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Effect on Precancerous Cell Population
T T T T T

x10*

—_
o

Precancerous cells
(6]
I

No Treatment
-------- 3 percent increase in d b

5 percent increase in dp

—-—-10 percent increase in dp —

0 ,
0 100 200 300 400 500 600 700 800 900 1000
time (days)
Effect on Cancer Cell Population
4000 T T T
—No Treatment
» 3000~ e 3 percent InCcrease In dp |
E 5 percent increase in dp
© 2000 —-—=-10 percent increase in dp =
S
©
O 1000 [ .
0 L L —TT e _._________‘_--_-_-4--_-_ ................... e
0 100 200 300 400 500 600 700 800 900 1000
time (days)

Figure 2. Model sensitivity to the parameter d .

8. Conclusions

In this work, we have expanded on previous mathematical analyses of HPV-
induced cervical cancer [2] [7] [8] [9]. We present a more general model in the
sense that the transition rate gz of precancerous cells to cancerous cells can be
any continuously differentiable function that satisfies 0< x<1. We also allow
for any initial conditions that are of bounded variation on the domain [0,a,].

After presenting a first-order finite difference scheme for approximating solu-
tions, we use said schemed to provide an existence-uniqueness result for the ge-
neralized model. Further, we provide numerical evidence that our numerical
scheme is indeed of first-order.

Once the numerical scheme was implemented, we utilized it along with ideas
from [2] [7] in order to examine treatment strategies that can be implemented
with existing medications. More specifically, we examined the model’s sensitivity
to increasing the death rates of HPV-infected cells (d;) and precancerous cells
(d,). Of those two approaches, the model predicts that using drugs that increase
the death rate of precancerous cells is the far more efficient treatment.

Further work on this subject may include applying our numerical scheme to
the recently developed model in [9].
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