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Abstract 
We present a first-order finite difference scheme for approximating solutions 
of a mathematical model of cervical cancer induced by the human papilloma-
virus (HPV), which consists of four nonlinear partial differential equations 
and a nonlinear first-order ordinary differential equation. The scheme is ana-
lyzed and used to provide an existence-uniqueness result. Numerical simula-
tions are performed in order to demonstrate the first-order rate of conver-
gence. A sensitivity analysis was done in order to compare the effects of two 
drug types, those that increase the death rate of HPV-infected cells, and those 
that increase the death rate of the precancerous cell population. The model 
predicts that treatments that affect the precancerous cell population by di-
rectly increasing the corresponding death rate are far more effective than 
those that increase the death rate of HPV-infected cells.  
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1. Introduction 

Human pappilomavirus (HPV) is one of the most widespread sexually transmit-
ted diseases worldwide. New infections in the United States alone are estimated 
to be between 1 and 5.5 million per year [1]. Over 200 types have been geneti-
cally distinguished. 

In females, the virus targets basal epithelial cells in the cervix. With prolonged 
exposure, these infections can lead to the development of precancerous cells and, 
without treatment, cancerous cells [2]. Of the over 200 distinguished gentotypes, 
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HPV types 16, 18, 31, and 45 are considered to be high-risk for inducing cervical 
cancer after prolonged infection. 

Mathematical modeling techniques have been used to investigate the dynam-
ics of cervical cancer, both from epidemiological [3] [4] [5] [6] and cellular [2] 
[7] [8] [9] [10] viewpoints. Our work here is in the latter context. The initial stu-
dies of within-host HPV infection leading to cervical cancer described the dy-
namics with systems of ordinary differential equations [2] [8] [10]. The models 
included the dynamics of the susceptible epithelial cells, infected cells, precan-
cerous cells, cancerous cells, and viral particles. In [7], the authors modified the 
previous models to incorporate the age of each of the cell types previously men-
tioned. This results in a more extensive description of the biological processes, 
with the added cost of a more complicated model. Taking the age of cells into 
account yields a model of a system of four first-order, nonlinear, partial diffe-
rential equations and an ordinary differential equation. More recently, Sari et al. 
[9] proposed a modification of the model in [7] that eliminates the ordinary dif-
ferential equation describing the viral population. 

Systems of first-order partial differential equations have been applied to a 
wide range of biological processes, including algal growth, amphibian popula-
tion growth, erythropoiesis, and fungal propagation [11] [12] [13] [14] [15]. The 
mathematical approaches to analyzing those systems have been just as varied. In 
some cases, such as in [7] [9], stability analysis can be successfully applied to in-
vestigate the long-term behavior of solutions. If more knowledge of transient 
solution behavior or sensitivity analysis is desired, then numerical methods pro-
vide a useful tool. 

Finite element methods, integrating along characteristics, upper-lower solu-
tion techniques, and finite difference schemes have all been successfully applied 
to various systems of first-order partial differential equations [11] [14] [16] [17] 
[18]. In this work, we follow the ideas presented in [18], which were successfully 
applied to the nonlinear size-structured population model in [16]. The approach 
yields a simple first-order finite difference scheme that can first be used to pro-
vide existence-uniqueness results, and then can be implemented to approximate 
solutions of the model. 

The paper is organized as follows. In Section 2, we define the various compo-
nents of the model and the paraments that affect their behavior. In Section 3, we 
define weak solutions of the model and provide conditions on parameters that 
are required for the results that are presented in later sections. We also define 
the finite difference scheme in detail and the notation that will be used throughout 
the paper. In Section 4, we will provide the results necessary to establish an exis-
tence-uniqueness result. In Section 5, we present the main theoretical results 
of this work. Namely, the construction of sequences of functions that con-
verge to the unique weak solution of the model. To our knowledge, this is the 
first well-posedness result for the model. In Section 6, we numerically analyze 
the finite difference scheme itself and show that it indeed provides first-order 
accuracy. In Section 7, we explore the model’s sensitivity to certain parameters 
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that are associated with currently available drug treatments. Finally, in Section 8 
we will make some concluding remarks. 

2. The Model 

The model that is the focus of this work was developed in [7] and takes the form 
of a system of four first-order partial differential equations and an ordinary dif-
ferential equation. The model describes the population densities of the suscepti-
ble cell ( ( ),S a t ), infected cell ( ( ),I a t ), precancerous cell ( ( ),P a t ), and can-
cerous cell ( ( ),C a t ) populations, as well as the number of HPV viral particles 
( ( )V t ), at time t and age a. The total populations of the susceptible, infected, 
precancerous, and cancerous cell types at time t are denoted by  

( ) ( )
0

, dda
SN t S a t a= ∫ , ( ) ( )

0
, dda

IN t I a t a= ∫ , ( ) ( )
0

, dda
PN t P a t a= ∫ , and  

( ) ( )
0

, dda
CN t C a t a= ∫ , respectively, where da  is the maximum lifespan of the 

cells. We denote their respective death rates by , ,s i pd d d , and cd . The infection 
of healthy cells by free virus particles is modeled by the mass action term 

( ) ( ),V t S a tα . Infected cells are partially moved into the precancerous cell pop-
ulation, modeled by the term ( )I tδ . The rate at which precancerous cells move 
into the cancerous cell population is modeled dynamically with the bounded  

function ( ) ( )
( )1

P
P

P

N t
N

N t
θ

µ
κ

=
+

, although the theoretical results we provide in  

this work are valid for any continuously differentiable function µ  with 
0 1µ< ≤ . The viral population is modeled by means of an ordinary differential 
equation. It is assumed that there is a constant production of viral particles, at a 
rate of Λ . There is a density-dependent death rate ( )vd V . Since the total pop-
ulation of infected cells dies at a rate of ( )i Id N t , it is assumed that viral par-
ticles are produced at a rate proportional to this rate, with a constant of propor-
tionality n. Non-cancerous cells are assumed to have a reproductive age range of 

,r qa a   , while that of cancerous cells is [ ],c la a . The reproductive age range of 
cancer cells is shifted relative to that of the noncancerous cells [7], and so it is 
assumed that c ra a<  and l qa a< . Noncancerous cells are assumed to have a 
birth rate of 0β , while cancerous cells have a birth rate of cβ . Finally, the ini-
tial cell densities are given by ( ) ( )0,0S a S a= , ( ) ( )0,0I a I a= , ( ) ( )0,0P a P a= , 
and ( ) ( )0,0C a C a= , and the initial viral load is ( ) 00V V= . 

These definitions and assumptions lead to the following model:  

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, ,
, , 0 , 0 ,

, ,
, , , 0 , 0 ,

, ,
, , , , 0 , 0 ,

, ,
, , , 0 , 0 ,

d
d

s d

i d

p p d

c p d

v

S a t S a t
d V t S a t t T a a

t a
I a t I a t

d I a t V t S a t t T a a
t a

P a t P a t
d P a t I a t N P a t t T a a

t a
C a t C a t

d C a t N P a t t T a a
t a

V t
d V V t nd

t

α

δ α

δ µ

µ

∂ ∂
+ = − + < < < <

∂ ∂
∂ ∂

+ = − + + < < < <
∂ ∂

∂ ∂
+ = − + − < < < <

∂ ∂
∂ ∂

+ = − + < < < <
∂ ∂

= Λ − + ( )
0

, d , 0 ,da
i I a t a t T< <∫
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0, , d , 0 ,

0, , d , 0 ,

0, , d , 0 ,

0, , d , 0 ,

q

r

q

r

q

r

l

c

a

a

a

a

a

a

a
c a

S t S a t a t T

I t I a t a t T

P t P a t a t T

C t C a t a t T

β

β

β

β

= < <

= < <

= < <

= < <

∫

∫

∫

∫

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )

0

0

0

0

0

,0 , 0 ,
,0 , 0 ,
,0 , 0 ,
,0 , 0 ,

0

d

d

d

d

S a S a a a
I a I a a a
P a P a a a
C a C a a a
V V

= < <
= < <
= < <
= < <

=

                  (2.1) 

An uncommon aspect of this model is that the integrals in the boundary con-
ditions are not over the entire interval [ ]0, da . This presents difficulties in both 
the implementation of the finite difference scheme and the proofs that will fol-
low in later sections.  

Remark 2.1 While the work in [9] proposes a modified model that eliminates 
the ordinary differential equation in (2.1), the ideas of the forthcoming numeri-
cal scheme can be adapted for such a case. Hence, we preform the analysis on the 
model proposed in [7].  

3. A Finite Difference Scheme 

Let c be a sufficiently large positive constant. Throughout the discussion we im-
pose the following regularity conditions on our model parameters in (2.1).  

1) The function [ ) [ ): 0, 0,vd ∞ → ∞  is continuous. 
2) The function [ ) [ ): 0, 0,µ ∞ → ∞  is continuous and satisfies ( )0 1xµ< ≤  

for all x in [ )0,∞  . 
3) The parameters 0 0, , , , , , , , , , , ,s i p l c r q cV d d d n a a a aα δ β β  are nonnegative 

constants. 
4) The initial conditions ( ) ( ) ( ) ( )0 0 0 0, , ,S a I a P a C a  are nonnegative with  

( ) ( ) ( ) ( )
0

0 0 00, 0, 0,0,
, , ,

d d ddBV a BV a BV aBV a
S I P C c≤  

Now we give the definition of a weak solution to problem (2.1) as follows: A 
5-tuple 
( ) ( ) ( )( )( ( ) ( )( ) ( ) ( )( ), , , , 0, 0, , 0, 0, , 0, 0, ,d d dS I P C V BV a T BV a T BV a T∈ × × ×

( ) ( )( ) [ ])0, 0, , 0,dBV a T C T×  is called a weak solution to the problem (2.1) if it 
satisfies:  

( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

10

0 1 10 0

0 10

1 1
0 0

10 0

, , d

,0 d , , d

, d 0, d

, , , d d

, , d d ,

d

d

q

r

d

d

a

a t
d d

t a

a

t a

t a
s

S t t

S S a a

S a a

S

d V S

ν ζ ν ν

ν ζ ν ν τ ζ τ τ

β τ ζ τ τ

ζ ζ
ν τ ν τ ν τ ν τ

τ ν

α τ ν τ ζ ν τ ν τ

−= −

+

∂ ∂ + + ∂ ∂ 

− +

∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫
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( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

20

0 2 20 0

0 20

2 2
0 0

20 0

, , d

,0 d , , d

, d 0, d

, , , d d

, , , d d ,

d

d

q

r

d

d

a

a t
d d

t a

a

t a

t a
i

I t t

I I a a

I a a

I

d I V t S

ν ζ ν ν

ν ζ ν ν τ ζ τ τ

β τ ζ τ τ

ζ ζ
ν τ ν τ ν τ ν τ

τ ν

δ ν τ α ν τ ζ ν τ ν τ

−= −

+

∂ ∂ + + ∂ ∂ 

+ − + +

∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

30

0 3 30 0

0 30

3 3
0 0

30 0

, , d

,0 d , , d

, d 0, d

, , , d d

, , , , d d ,

d

d

q

r

d

d

a

a t
d d

t a

a

t a

t a
p p

P t t

P P a a

P a a

P

d P I N P

ν ζ ν ν

ν ζ ν ν τ ζ τ τ

β τ ζ τ τ

ζ ζ
ν τ ν τ ν τ ν τ

τ ν

ν τ δ ν τ µ ν τ ζ ν τ ν τ

−= −

+

∂ ∂ + + ∂ ∂ 

+ − + −

∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )

40

0 4 40 0

40

4 4
0 0

40 0

, , d

,0 d , , d

, d 0, d

, , , d d

, , , d d ,

d

d

q

r

d

d

a

a t
d d

t a
c a

t a

t a
c p

C t t

C C a a

C a a

C

d C N P

ν ζ ν ν

ν ζ ν ν τ ζ τ τ

β τ ζ τ τ

ζ ζ
ν τ ν τ ν τ ν τ

τ ν

ν τ µ ν τ ζ ν τ ν τ

−= −

+

∂ ∂ + + ∂ ∂ 

+ − +

∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

( ) ( ) ( ) ( )( )0 0 0
, d d ,dt a

v iV t V d V V nd I a aτ τ τ= + Λ − +∫ ∫  

for each ( )0,t T∈ , every test function [ ] [ ]( )1 0, 0, , 1, 2,3, 4i dC a T iζ ∈ × = . Here, 

( ) ( ), lim ,
dd aS a Sντ ν τ−

→= , ( ) ( ), lim ,
dd aI a Iντ ν τ−

→= ,  

( ) ( ), lim ,
dd aP a Pντ ν τ−

→= , and ( ) ( ), lim ,
dd aC a Cντ ν τ−

→= . First, we divide the 
intervals [ ]0, da  and [ ]0,T  into m and K subintervals, respectively, and use 
the following notation throughout the paper: da a m∆ = , and t T K∆ =  de-
note the age and time mesh sizes, respectively. The mesh points are given by: 

ja j a= ∆ , 0,1, ,j m=   and kt k t= ∆ , 0,1, ,k K=  . We denote by k
jS , k

jI , 
k
jP , and k

jC , the finite difference approximations of ( ),j kS a t , ( ),j kI a t ,  

( ),j kP a t , and ( ),j kC a t , respectively. Further, we denote ( )kV t  by kV ,  
( )( )P kN tµ  by k

Pµ , and ( )k
vd V  by k

vd . We approximate the total cell popu-
lations with  

1
,

m
k k
X l

l
N X a

=

= ∆∑  

where , , ,X S I P C= . Since the parameters , ,r q ca a a  and la  will not generally 
coincide with our mesh points, we define the following:  
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{ } { }
{ } { }

min | , max | ,

min | , max | .

r j r q j q

c j c l j l

j j a a j j a a

j j a a j j a a

+ −

+ −

= > = <

= > = <
 

The total variation, 1l  norm, and l∞  norm are defined as  

( )
1

1
0

,
m

k k k
j j

j
TV u u u

−

+
=

= −∑  

1 01
, max ,

m
k k k k

j jj mj
u u u u

∞ ≤ ≤=

= =∑  

respectively. The first-order scheme that will be considered here is given by:  

( )

( )

1
1 1

1
1 1 1

1
1 1 1 1

1
1

, 1 , 0 1

, 1 , 0 1

, 1 , 0 1

k k k k
j j j j k k

s j

k k k k
j j j j k k k

i j j

k k k k
j j j j k k k k

p j j P j

k k k k
j j j j k

c j

S S S S
d V S j m k K

t a
I I I I

d I V S j m k K
t a

P P P P
d P I P j m k K

t a
C C C C

d C
t a

α

δ α

δ µ

+
− +

+
− + +

+
− + + +

+
− +

− −
+ = − + ≤ ≤ ≤ ≤ −

∆ ∆
− −

+ = − + + ≤ ≤ ≤ ≤ −
∆ ∆
− −

+ = − + − ≤ ≤ ≤ ≤ −
∆ ∆
− −

+ = −
∆ ∆

1 1

1
1

, 1 , 0 1

, 0 1.

k k
P j

k k
k k k
v i I

P j m k K

V V d V nd N k K
t

µ +

+
+

+ ≤ ≤ ≤ ≤ −

−
= Λ − + ≤ ≤ −

∆

 (3.1) 

The boundary conditions are computed as follows:  

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

( )( )

1
0 0 1 1 1

1
0 0 1 1 1

1
0 0 1

, , , , 0 1

, , , , 0 1

, ,

q

r r q q
r

q

r r q q
r

q

r r
r

j
k

k r j k k qj j j j
j j

j
k

k r j k k qj j j j
j j

j
k

k r j kj j
j j

S S a t a a S a t a S a t a a k K

I I a t a a I a t a I a t a a k K

P P a t a a P a t

β

β

β

−

+ + − −
+

−

+ + − −
+

−

+ +
+

+
+ + +

=

+
+ + +

=

+
+ +

=

 
 = − + ∆ + − ≤ ≤ −
 
 
 
 = − + ∆ + − ≤ ≤ −
 
 

= − +

∑

∑

∑ ( ) ( )( )
( )( ) ( ) ( )( )

1 1

1
0 1 1 1

, , 0 1

, , , , 0 1.

q q

l

c c l l
c

k qj j

j
k

c k c j k k lj j j j
j j

a P a t a a k K

C C a t a a C a t a C a t a a k Kβ

− −

−

+ + − −
+

+

+
+ + +

=

 
 ∆ + − ≤ ≤ −
 
 
 

= − + ∆ + − ≤ ≤ −  
 

∑

  (3.2) 

The initial conditions for p and m are computed as follows:  

( ) ( ) ( ) ( )0 0 0 0 0 0 0 0, , , , 0, ,i j i j i j i jS S a I I a P P a C C a j m= = = = =   

Equation (3.1) is more conveniently used in the following form:  

( )

( )

( )

1
1

1
1

1

1
1

1

1
, 1 , 0 1

1

1
, 1 , 0 1

1

1
, 1 , 0 1

1

k k
j j

k
j k

s

k k k k
j j j

k
j

i

k k k
j j j

k
j k

p P

t tS S
a aS j m k K

t d V

t tI I t V S
a aI j m k K

t d
t tP P t I
a aP j m k K

t d

α

α

δ

δ

µ

−
+

+
−

+

+
−

+

∆ ∆ − + ∆ ∆ = ≤ ≤ ≤ ≤ −
+ ∆ +

∆ ∆ − + + ∆ ∆ ∆ = ≤ ≤ ≤ ≤ −
+ ∆ +

∆ ∆ − + + ∆ ∆ ∆ = ≤ ≤ ≤ ≤ −
+ ∆ +
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( )

1
1

1

1

1
, 1 , 0 1

1

, 0 1
1

k k k k
j j P j

k
j

c
k k

i Ik
k
v

t tC C t P
a aC j m k K

td
V t nd N

V k K
td

µ +
−

+

+

∆ ∆ − + + ∆ ∆ ∆ = ≤ ≤ ≤ ≤ −
+ ∆

+ ∆ Λ +
= ≤ ≤ −

+ ∆

 (3.3) 

It is clear from the assumptions on the initial conditions and Equation (3.3) 

that the numerical solutions will remain nonnegative as long as 1t
a
∆

<
∆

.  

4. Estimates for the Finite Difference Approximations 

The lemma below shows that the numerical approximations are bounded in the 
1l  norm.  

Lemma 4.1 There exists a positive constant 1M , independent of a∆  and 
t∆ , such that  

11 1 1 1
,k k k k kS I P C V M+ + + + ≤  

for 0,1, ,k K=  .  
Proof. Multiply the first four equations of (3.1) on both sides by t∆  and 
a∆  and sum over 1,2, ,j m=    

( )
( )

1 1
01 1 1

1 1 1
01 1 1 1

1 1 1 1
01 1 1 1 1

1 1 1
01 1 1 1

,

,

,

k k k k k k
m s

k k k k k k k
m i

k k k k k k k k
m p p

k k k k k k k
m c p

S S S t S t d V S t

I I I t I t d I t V S t

P P P t P t d P t I t P t

C C C t C t d C t P t

α

δ α

δ µ

µ

+ +

+ + +

+ + + +

+ + +

− + ∆ − ∆ = − + ∆

− + ∆ − ∆ = − + ∆ + ∆

− + ∆ − ∆ = − ∆ + ∆ − ∆

− + ∆ − ∆ = − ∆ + ∆

 (4.1) 

Multiply the fifth equation of (3.1) on both sides by t∆   
1 1

1

k k k k k
v iV V t d V t nd I t+ +− = Λ∆ − ∆ + ∆                 (4.2) 

Adding up the five equations in (4.1) and (4.2) we have  

( ) ( ) ( )
( ) ( )

( )

( ) ( )

1 1 1

1 1 1

1 1

1

1 1 1 1

0 0 0 0

1 1 1

1 1

1

k k k
s i p

k k k
c v

k k k k k
i

k k k k k k k k
m m m m

d t S d t I d t P

d t C d t V

S nd t I P C V

S I P C t S I P C t

+ + +

+ +

+ ∆ + + ∆ + + ∆

+ + ∆ + + ∆

= + + ∆ + + +

+ + + + + Λ ∆ − + + + ∆

 

From the boundary condition, we have  

0 0 0 0 0 0 01 1 1 1
, , ,k k k k k k k k

cS S I I P P C Cβ β β β≤ ≤ ≤ ≤  

Therefore,  

( ) ( ) ( )
( ) ( )
( )( ) ( )

( )

1 1 1

1 1 1

1 1

1

0 1 1 1

0 1

1 1 1

1 1

1 1

1

k k k
s i p

k k k
c v

k k k
c

k k
i

d t S d t I d t P

d t C d t V

t S P t C

t nd t I V t

β β

β

+ + +

+ +

+ ∆ + + ∆ + + ∆

+ + ∆ + + ∆

≤ + ∆ + + + ∆

+ + ∆ + ∆ + + Λ∆
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Let { }0max ,i cC ndβ β= + . Then  

( )( )
1 1 1 1 1

1 1 1 1

1 1 1 1
1 ,

k k k k k

k k k k k

S I P C V

C t S I P C V t

+ + + + ++ + + +

≤ + ∆ + + + + + Λ∆

 

which implies the result.  
Next we establish a bound on the infinity norm of the numerical approxima-

tions.  
Lemma 4.2 There exists a positive constant 2M , independent of a∆  and 
t∆ , such that  

2 ,k k k kS I P C M
∞ ∞ ∞ ∞
+ + + ≤  

for 0,1, ,k K=  .  
Proof. If 1 1

0
k kS S+ +

∞
= , then  

1 1
0 0 11

.k kS S Mβ β+ +

∞
≤ ≤  

If 1kS +

∞
 is not obtained on the boundary, then there exists a 0j  with 

01 j m≤ ≤  such that 1 1
0

k k
jS S+ +

∞
= . 

From the first equation of (3.1)  

( ) ( )0 0 0 0 0

1 1
1 ,k k k k k k

j j j j s j
tS S S S d V S t
a

α+ +
−

∆
= − − − + ∆

∆
 

That is,  

( )0 0 0

1
11 1 .k k k k

j s j j
t tS d V t S S
a a

α+
−

∆ ∆  + + ∆ = − +   ∆ ∆ 
 

Thus,  
1 .k kS S+

∞ ∞
≤  

This implies that 1kS +

∞
 is bounded since 0S

∞
 is bounded. Similarly, if 

1 1
0

k kI I+ +

∞
= , then  

1 1
0 0 11

.k kI I Mβ β+ +

∞
≤ ≤  

If 1kI +

∞
 is not obtained on the boundary, then there exists a 0j  with  

01 j m≤ ≤  such that 1 1
0

k k
jI I+ +

∞
= . 

From the second equation of (3.1)  

( ) ( )
0 0 0 0 0 0

1 1 1
1 .k k k k k k k

j j j j i j j
tI I I I d I t V S t
a

δ α+ + +
−

∆
= − − − + ∆ + ∆

∆
 

Therefore,  

( )( ) 1 11 .k k k k
id t I I V S tδ α+ +

∞ ∞ ∞
+ + ∆ ≤ + ∆  

1 1
1 .k k kI I M S tα+ +

∞ ∞ ∞
≤ + ∆  

Similarly, if 1 1
0

k kP P+ +

∞
= , then  

1 1
0 0 11

.k kP P Mβ β+ +

∞
≤ ≤  

If 1kP +

∞
 is not obtained on the boundary, then there exists a 0j  with  
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01 j m≤ ≤  such that 
0

1 1k k
jP P+ +

∞
= . 

From the third equation of (3.1)  

( )( )0 0 0 0

1 1
11 1 .k k k k k

j p P j j j
t tP t d P P I t
a a

µ δ+ +
−

∆ ∆ + ∆ + = − + + ∆ ∆ ∆ 
 

Therefore,  
1 1 .k k kP P I tδ+ +

∞ ∞ ∞
≤ + ∆  

Similarly, if 1 1
0

k kC C+ +

∞
= , then  

1 1
11
.k k

c cC C Mβ β+ +

∞
≤ ≤  

If 1kC +

∞
 is not obtained on the boundary, then there exists a 0j  with 

01 j m≤ ≤  such that 
0

1 1k k
jC C+ +

∞
= . 

From the third equation of (3.1)  

( )
0 0 0 0

1 1
11 1 .k k k k k

j c j j p j
t tC d t C C P t
a a

µ+ +
−

∆ ∆ + ∆ = − + + ∆ ∆ ∆ 
 

Therefore,  
1 1 1 .k k k k k k

pC C P t C P tµ+ + +

∞ ∞ ∞ ∞ ∞
≤ + ∆ ≤ + ∆  

In the next lemma we show that the difference approximations are of bounded 
total variation.  

Lemma 4.3 There exists a positive constant 3M , independent of a∆  and 
t∆ , such that  

( ) ( ) ( ) ( ) 3
k k k kTV S TV I TV P TV C M+ + + ≤  

for 0,1, ,k K=  .  
Proof. From the first equation of (3.2) we have  

( )
( )( )

1
1

1
1

1

1

1 1

k k
j j

k
j k

s

k k k k
j s j j

t tS S
a aS

t d V

t tS t d V S S
a a

α

α

−
+

+
−

∆ ∆ − + ∆ ∆ =
+ ∆ +

∆ ∆ + ∆ + = − + ∆ ∆ 

 

Thus,  

( )( )1
1 11 1k k k k

j s j j
t tS t d V S S
a a

α+
+ +

∆ ∆ + ∆ + = − + ∆ ∆ 
 

Subtracting the above two equations and summing over 1,2, , 1j m= − :  

( ) ( )( )

( ) ( )

1
1 1
1

1

1 1

1 1
1 1

1

1

m
k k k
j j s

j

m m
k k k k
j j j j

j j

S S t d V

t tS S S S
a a

α
−

+ +
+

=

− −

+ −
= =

− + ∆ +

∆ ∆ = − − + − ∆ ∆ 

∑

∑ ∑
 

By the first equation of (3.2):  

( )( )1
1 1 01 1k k k k

s
t tS t d V S S
a a

α+ ∆ ∆ + ∆ + = − + ∆ ∆ 
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Combining:  

( ) ( )( )
( )( )

1

1
1 1 1 1

1 0 1
1

1

1

k k
s

m
k k k k k

j j s
j

TV S t d V

S S S S t d V

α

α

+

−
+ + + +

+
=

+ ∆ +

 
= − + − + ∆ + 
 

∑
 

Here,  

( )( )
( )( )

( ) ( )

( ) ( ) ( )

1 1
1 0

1
1 0 0

1 1
0 1 1 0 0

1 1
1 0 0 0 0

1

1 1

1

k k k
s

k k k k
s

k k k k k k
s

k k k k k k
s

S S t d V

t tS S S t d V
a a

t S S S S S t d V
a

t S S S S S t d V
a

α

α

α

α

+ +

+

+ +

+ +

− + ∆ +

∆ ∆ = − + − + ∆ + ∆ ∆ 
∆

= − + − − ∆ +
∆

∆ = − − − − − ∆ + ∆ 

 

From the boundary condition,  

( )( ) ( )( )

( )( ) ( )( )

( ) ( )( )( ) ( )

( )

1
0 0

1
0 1 1

1
0 1

1

, ,

, ,

, ,

( , ( ,

q

r r q q
r

q

r r q q
r

q

r r r
r

q q

k k

j
k

k r j k qj j j j
j j

j
k

k r j k qj j j j
j j

j
k k

k k r j jj j j
j j

k kj j

S S

S a t a a S a S a t a a

S a t a a S a S a t a a

S a t S a t a a S S a

S a t S a t a

β

β

−

+ + − −
+

−

+ + − −
+

−

+ + +
+

− −

+

+
+ +

=

=

+
+

=

+

−

 
 = − + ∆ + −
 
 

 
 − − + ∆ + −
 
 

= − − + − ∆

+ −

∑

∑

∑

( )q
q j

a −−

 

( ) ( ) ( )

( ) ( ) ( )

1
0 1

1

1
0

1

, ,

, ,

q

r r r
r

q q q

j
k k

k k r j jj j j
j j

k k qj j j

m
k k
j j

j

S a t S a t a a S S a

S a t S a t a a

S S a

β

β

−

+ + +
+

− − −

+
+

=

+

+

=


≤ − − + − ∆



+ − − 


≤ − ∆

∑

∑

 

From the first equation in (3.1),  

( ) ( ) ( )1 1
1

k k k k k k
j j j j s jS S a S S t d V S t aα+ +

−− ∆ = − − ∆ − + ∆ ∆  

Thus,  

( )

( ) ( )

1 1
0 0 0

1

1
0 1 0

1 1

1
0 0 2 1

m
k k k k

j j
j

m m
k k k k
j j s j

j j

k k
s

S S S S a

S S t d V S t a

TV S t d M S t

β

β β α

β β α

+ +

=

+
−

= =

+

− ≤ − ∆

≤ − ∆ + + ∆ ∆

≤ ∆ + + ∆

∑

∑ ∑  
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Therefore,  

( ) ( ) ( )( )

( )( )

( ) ( )

( )

1 1

1
1 1 1 1

1 0 1
=1

1
0

1
0 0

1

1

1

k k k
s

m
k k k k k

j j s
j

k k k
s

k k k

TV S TV S t d V

S S S S t d V

t TV S S t d V
a

tS S TV S
a

α

α

α

+ +

−
+ + + +

+

+

+

≤ + ∆ +

 
= − + − + ∆ + 
 

∆ ≤ − + ∆ + ∆ 

∆
+ − +

∆

∑
 

        

( ) ( ) ( )
( )

( ) ( ) ( )(
( ) )

1
0 2 01

1
0 2 1

1
0 0 21

1
0 2 1

1

k k k
s

k
s

k k
s

k
s

TV S S t d M TV S t

d M S t

t TV S S d M

d M S t

β α β

β α

β β α

β α

+

+

+

+

≤ + ∆ + + ∆

+ + ∆

= + ∆ + +

+ + ∆

 

Similarly,  

( ) ( )( )

( ) ( ) ( )

1
1 1
1

1

1 1 1
1 1

1 1 1
1 1 1

1

1

m
k k
j j i

j

m m m
k k k k k k k
j j j j j j

j j j

I I t d

t tI I I I t V S S
a a

δ

α

−
+ +
+

=

− − −
+ +

+ − +
= = =

− + ∆ +

∆ ∆ = − − + − + ∆ − ∆ ∆ 

∑

∑ ∑ ∑
 

( )( )1 1
1 0

1 1
1 0 0 0 1

1 1
1 0 0 1

1

1

1

1

k k
i

k k k k k k

m
k k k k k k

j j
j

I I t d

t I I I I t V S
a

t I I I I a t V S
a

δ

α

β α

+ +

+ +

+ +

=

− + ∆ +

∆ ≤ − − + − + ∆ ∆ 

∆ ≤ − − + − ∆ + ∆ ∆ 
∑

 

( )

( ) ( )( )

1
1 0 0 1

1 1

1 1
1

1

1 1
1 0 0 1 1

1
1

1

1

m m
k k k k k

j j i j
j j

m
k k k k

j
j

k k k k k k
i

k k

t I I I I t d I a t
a

V S a t t V S

t I I TV I t d I t V S t
a

t V S

β δ

α α

β δ α

α

+
−

= =

+ +

=

+ +

+

∆ ≤ − − + − ∆ + + ∆ ∆ ∆  


+ ∆ ∆ + ∆



∆ ≤ − − + ∆ + + ∆ + ∆ ∆ 

+ ∆

∑ ∑

∑  

Therefore,  

( ) ( ) ( )( )

( )( )

( ) ( ) ( ) ( )(
)

1 1

1
1 1 1 1

1 0 1
1

1 1
0 0 1

1 1

1

1

1

1

k k
i

m
k k k k

j j i
j

k k k k
i

k k k k

TV I TV I t d

I I I I t d

t TV I t V TV S d I

V S V S

δ

δ

β α β δ

α α

+ +

−
+ + + +

+
=

+ +

+ +

∞

≤ + ∆ +

 
= − + − + ∆ + 
 

≤ + ∆ + ∆ + +

+ +

∑
 

Similarly, by the third equation of (3.1) and (3.3),  
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( )( )
1

1 1
1

1

1 1 1
1 1

1 1 1
1 1 1

1

1

m
k k k
j j p p

j

m m m
k k k k k k
j j j j j j

j j j

P P t d

t tP P P P t I I
a a

µ

δ

−
+ +
+

=

− − −
+ +

+ − +
= = =

− + ∆ +

∆ ∆ ≤ − − + − + ∆ − ∆ ∆ 

∑

∑ ∑ ∑
 

and 

( )( )

( ) ( ) ( )

( )

( ) ( )( )
( )

1 1
1 0

1 1
1 0 0 0 0

1 1
1 0 0 0

1

1 1
1 0 0 1 1

1
0

1

1

1

1

k k k
p p

k k k k k k
p p

m
k k k k k k

j j p p
j

k k k k k k
p p

k k
p p

P P t d

t P P P P P t d
a

t P P P P a P t d
a

t P P t TV P d P I
a

P t d

µ

µ

β µ

β µ δ

µ

+ +

+ +

+ +

=

+ +

+

− + ∆ +

∆ = − − − − − ∆ + ∆ 

∆ ≤ − − + − ∆ + ∆ + ∆ 

∆ ≤ − − + ∆ + + + ∆ 

+ ∆ +

∑  

Therefore,  

( ) ( ) ( )( )
( )( ) ( )( )

( ) ( ) ( ) ( )(
( ) )

1 1

1
1 1

1 1 0
1

1 1
0

1 1
0 01 1

1

1 1

1

k k k
p p

m
k k k k k k
j j p p p p

j

k k k k
p p

k k k
p p

TV P TV P t d

P P t d P P t d

t TV P t TV I P d

d P I

µ

µ µ

β δ µ

β µ β δ

+ +

−
+ +

+
=

+ +

∞

+ +

≤ + ∆ +

= − + ∆ + + − + ∆ +

≤ + ∆ + ∆ + +

+ + +

∑
 

Similarly, by the fourth equation of (3.1) and (3.3),  

( )
1

1 1
1

1

1 1 1
1 1

1 1 1
1 1 1

1

1

m
k k
j j c

j

m m m
k k k k k k k
j j j j p j j

j j j

C C td

t tC C C C t P P
a a

µ

−
+ +
+

=

− − −
+ +

+ − +
= = =

− + ∆

∆ ∆ ≤ − − + − + ∆ − ∆ ∆ 

∑

∑ ∑ ∑
 

and 

( )

( ) ( )

( )

( )

1 1
1 0

1 1 1
1 0 0 0 0 1

1 1 1
1 0 0 0

1 1 1
1 0

1

1 0

1

1

1

1

1

k k
c

k k k k k k k
c p

k k k k k k k
c p

m
k k k k k k k

c j j c p
i

k k
c

C C td

t C C C C C td t P
a

t C C C C t d C P
a

t C C C C a t d C P
a

t C C t
a

µ

µ

β µ

β

+ +

+ + +

+ + +

∞ ∞

+ + +

∞ ∞
=

− + ∆

∆ = − − − − − ∆ + ∆ ∆ 

∆ ≤ − − + − + ∆ + ∆ 

∆ ≤ − − + − ∆ + ∆ + ∆ 

∆ ≤ − − + ∆ ∆ 

∑

( )( )
( )

1 1

1 1

1 1

k k k k
c p

k k k
c p

TV C d C P

t d C P

µ

µ

+ +

+ +

∞ ∞

+ +

+ ∆ +

 

Therefore,  
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( ) ( )( )

( ) ( )

( ) ( ) ( )( ( )(
) )

1 1

1
1 1

1 1 0
1

1

1 1 1 1

1 1

1

1 1

1

k k
c

m
k k k k
j j c c

j

k k k k
c p c

k k k k k k
c p c p

TV C TV C td

C C td C C td

t TV C t TV P TV C

d C P d C P

β µ β

µ µ

+ +

−
+ +

+
=

+

+ + + +

∞ ∞

≤ + ∆

= − + ∆ + − + ∆

≤ + ∆ + ∆ +

+ + + +

∑
 

The next lemma shows the numerical approximations satisfy an 1
  Lipschitz- 

type condition in t.  
Lemma 4.4 There exists 4 0M > , independent of a∆  and t∆ , such that for 

any integers 2 1 0N N> ≥ , the following estimates hold:  

( )

( )

( )

( )

2 1

2 1

2 1

2 1

4 2 1
1

4 2 1
1

4 2 1
1

4 2 1
1

,

,

,

,

N Nm
j j

j

N Nm
j j

j

N Nm
j j

j

N Nm
j j

j

S S
a M N N

t

I I
a M N N

t

P P
a M N N

t

C C
a M N N

t

=

=

=

=

−
∆ ≤ −

∆

−
∆ ≤ −

∆

−
∆ ≤ −

∆

−
∆ ≤ −

∆

∑

∑

∑

∑

 

Proof. From the first equation of (3.1),  

( ) ( )
1

1
111

k km
j j k k k

s
j

S S
a TV S d V S M

t
α

+
+

=

−
∆ ≤ + + ≤

∆∑  

for some positive constant 1M . Hence,  

( )
2 1 2

1

11

1 2 1
1 1

N N k kNm m
j j j j

j k N j

S S S S
a a M N N

t t

+−

= = =

− −
∆ ≤ ∆ ≤ −

∆ ∆∑ ∑∑  

Similarly, there exist positive integers 2 3 4, ,M M M  such that  

( ) ( )( )( )
( )

2 1 2

1

11

1 1

1 1
2 11 1

2 2 1 ,

N N k kNm m
j j j j

j k N j

k k k k
i

I I I I
a a

t t

TV I d I V S N N

M N N

δ α

+−

= = =

+ +

− −
∆ ≤ ∆

∆ ∆

≤ + + + −

≤ −

∑ ∑ ∑

 

( ) ( )( )( )
( )

2 1 2

1

11

1 1

1 1
2 11 1

3 2 1 ,

N N k kNm m
j j j j

j k N j

k k k k
p p

P P P P
a a

t t

TV P d P I N N

M N N

µ δ

+−

= = =

+ +

− −
∆ ≤ ∆

∆ ∆

≤ + + + −

≤ −

∑ ∑ ∑

 

and  

( )( )( )
( )

2 1 2

1

11

1 1

1 1
2 11 1

4 2 1 .

N N k kNm m
j j j j

j k N j

k k k k
c p

C C C C
a a

t t

TV C d C P N N

M N N

µ

+−

= = =

+ +

− −
∆ ≤ ∆

∆ ∆

≤ + + −

≤ −

∑ ∑ ∑
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Set { }4 1,2,3,4maxi iM M==  and the results follow.  

5. Convergence of the Difference Scheme and Existence of a  
Unique Weak Solution 

Following similar notation as in [18] [19], we define a family of functions  

( ){ }1 ,a t∆ ∆ , ( ){ }2 ,a t∆ ∆ , ( ){ }3 ,a t∆ ∆ , and ( ){ }4 ,a t∆ ∆  by  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2, ,

3 4, ,

, , , ,

, , , ,

k k
i ja t a t

k k
j ja t a t

a t S a t I

a t P a t C
∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

= =

= =

 

 
 

and ( ) ( )
1

1
1

k k
k

t k
V Vt V t t

t

−
−

∆ −
−

= + −
∆

 , for )1,j ja a a−∈  , [ )1,k kt t t−∈ ,  

1, ,j m=  , 1, ,k K=  . Then by Lemmas 4.1 - 4.4, the each of the functions 

( ){ }1 ,a t∆ ∆ , ( ){ }2 ,a t∆ ∆ , ( ){ }3 ,a t∆ ∆ , ( ){ }4 ,a t∆ ∆  is compact in the topology of  

( ) ( )( )1 0, 0,da T× . Also, { }t∆  is compact in the topology of [ ]0,C T . 
Theorem 5.1 There exists a subsequence of functions ( ){ } ( ){ }1 1, ,r ra t a t∆ ∆ ∆ ∆⊂  , 

( ){ } ( ){ }2 2, ,r ra t a t∆ ∆ ∆ ∆⊂  , ( ){ } ( ){ }3 3, ,r ra t a t∆ ∆ ∆ ∆⊂  , ( ){ } ( ){ }4 4, ,r ra t a t∆ ∆ ∆ ∆⊂  , 

and { } { }
rt t∆ ∆⊂  , which converge to functions  

( ) ( ) ( ) ( ) [ ] [ ]( ), , , , , , , 0, 0,dS a t I a t P a t C a t BV a T∈ × , and ( ) [ ]0,V t C T∈ , re-

spectively, in the sense that for all 0t >   

( ) ( ) ( )1 ,0
, , d 0,d

r r

a

a t a t S a t a∆ ∆ − →∫   

( ) ( ) ( )2 ,0
, , d 0d

r r

a

a t a t I a t a∆ ∆ − →∫   

( ) ( ) ( )3 ,0
, , d 0,d

r r

a

a t a t P a t a∆ ∆ − →∫   

( ) ( ) ( )4 ,0
, , d 0,d

r r

a

a t a t C a t a∆ ∆ − →∫   

( ) ( ) ( )1 ,0 0
, , d d 0,d

r r

T a

a t a t S a t a t∆ ∆ − →∫ ∫   

( ) ( ) ( )2 ,0 0
, , d d 0,d

r r

T a

a t a t I a t a t∆ ∆ − →∫ ∫   

( ) ( ) ( )3 ,0 0
, , d d 0,d

r r

T a

a t a t P a t a t∆ ∆ − →∫ ∫   

( ) ( ) ( )4 ,0 0
, , d d 0,d

r r

T a

a t a t C a t a t∆ ∆ − →∫ ∫   

[ ]
( ) ( )

0,
max 0,trt T

t V t∆∈
− →  

as r →∞  (i.e., , 0r ra t∆ ∆ → ). Furthermore, there exist constants 5M  (de-

pending on [ ]0 0, dBV aS , [ ]0 0, dBV aI , [ ]0 0, dBV aP , and [ ]0 0, dBV aC ) such that the 

limit function satisfy [ ] [ ]( ) 50, 0,dBV a TS M
×

≤ , [ ] [ ]( ) 50, 0,dBV a TV M
×

≤ ,  

[ ] [ ]( ) 50, 0,dBV a TP M
×

≤ , [ ] [ ]( ) 50, 0,dBV a TC M
×

≤ , and [ ] 50,C TV M≤ .  

Proof. The results for ( ),S a t , ( ),I a t , ( ),P a t , and ( ),C a t  follow from 
the proof of Lemma 16.7 on P. 276 in [18]. The results for ( )V t  follows from 
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Theorem I.28 (Ascoli’s Theorem) in [20].  
We show in the next theorem that the set of limit functions  
( ) ( ) ( ) ( ) ( ){ }, , , , , , , ,S a t I a t P a t C a t V t  constructed by the finite difference scheme 

is a weak solution to problem (2.1).  
Theorem 5.2 The set of limit functions ( ) ( ) ( ) ( ) ( ){ }, , , , , , , ,S a t I a t P a t C a t V t  

defined in Theorem 5.1 is a weak solution of problem (2.1) and satisfies  

( ) ( ) ( ) ( ) ( ) 11 1 1 1
, , , , ,S t I t P t C t V t M⋅ + ⋅ + ⋅ + ⋅ + ≤  

and  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ]0, 0, 0, 0, 0, 0, 0, 0, 0,

1 2 .
d d d dL a T L a T L a T L a T c TS I P C V

M M

∞ ∞ ∞ ∞× × × ×
+ + + +

≤ +
 

Proof. Let [ ] [ ]( )1 0, 0,i dC a Tζ ∈ ×  for 1, 2,3, 4i = . Denote the finite differ-
ence approximations ( ),i j ktζ ν  by ( )k

i j
ζ . Multiplying the first equation of the 

finite difference scheme (3.1) by ( ) 1
1

k
jζ +  and rearranging some of the terms, we 

obtain 

( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

11
1 1

1 1 1
1 1 1 1 11

1 1 11
1 1 1 11

k kk k
j jj j

k k k kk k k
j j jj j j j

k k kk k k
j s jj j j

S S

tS S S
a

t S d V S t
a

ζ ζ

ζ ζ ζ ζ

ζ ζ α ζ

++

+ + +
−−

+ + ++
− −

−

∆
= − − −

∆
∆

+ − − + ∆
∆

 

Multiplying the above equation by a∆ , summing over 1,2, ,j m=  ,  
0,1, , 1k K= − , and using the boundary condition we have 

( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( )
( ) ( )( )

00
1 1

1

1 11 1 11
1 1 1 1

0 1 0

1 1
1 00

0

1 1 1
1 1 1 1

0 1

, ,

,

q

r r q q
r

m KK
j jj j

j

K m Kk k k kk k k k
j s j mj j j m

k j k

jK k k
k r j k qj j j j

k j j

K m k kk
j j j

k j

S S a

S a d V S a t S t

S a t a a S a S a t a a t

S t

ζ ζ

ζ ζ α ζ ζ

ζ β

ζ ζ

−

+ + − −
+

=

− −
+ + ++

= = =

−
+

= =

−
+ +

− −
= =

− ∆

= − ∆ − + ∆ ∆ − ∆

 
 + − + ∆ + − ∆
 
 

+ − ∆

∑

∑∑ ∑

∑ ∑

∑∑

 (5.1) 

Similarly, 

( ) ( )( )

( ) ( )( ) ( ) ( )( )( ) ( )

( ) ( )( ) ( )( )
( )( )( )

00
2 2

1

1 11 1 1 1
2 2 1 2 2 21

0 1 0

1 1
2 00

0

1
1 1

2
0 1

, ,
q

r r q q
r

m KK
j jj j

j

K m Kk k k k kk k k
j j mj j j j m

k j k

jK k k
k r j k qj j j j

k j j

K m
k k k

i j j j
k j

I I a

I a I t I t

I a t a a I a I a t a a t

d I V S

ζ ζ

ζ ζ ζ ζ ζ

ζ β

δ α ζ

−

+ + − −
+

=

− −
+ + + +

− −
= = =

−
+

= =

−
+ +

= =

− ∆

= − ∆ + − ∆ − ∆

 
 + − + ∆ + − ∆
 
 

+ − + +

∑

∑∑ ∑

∑ ∑

∑∑ 1 ,k a t+ ∆ ∆

 (5.2) 
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( ) ( )( )
( ) ( )( ) ( ) ( )( )( ) ( )

( ) ( )( ) ( )( )

00
3 3

1
1 11 1 1 1

3 3 1 3 3 31
0 1 0

1 1
3 00

0

1
1 1

0 1

, ,
q

r r q q
r

m KK
j jj j

j
K m Kk k k k kk k k

j j mj j j j m
k j k

jK k k
k r j k qj j j j

k j j

K m
k k k k

p j j P j
k j

P P a

P a P t P t

P a t a a P a P a t a a t

d P I P

ζ ζ

ζ ζ ζ ζ ζ

ζ β

δ µ

−

+ + − −
+

=

− −
+ + + +

− −
= = =

−
+

= =

−
+ +

= =

− ∆

= − ∆ + − ∆ − ∆

 
 + − + ∆ + − ∆
 
 

+ − + −

∑

∑∑ ∑

∑ ∑

∑∑( )( ) 11
3 ,k

j
a tζ ++ ∆ ∆

 (5.3) 

and 

( ) ( )( )
( ) ( )( ) ( ) ( )( )( ) ( )

( ) ( )( ) ( )( )
( )( )

00
4 4

1
1 11 1 1 1

4 4 1 4 4 41
0 1 0

1 1
4 0

0

1
1 1

4
0 1

, ,
q

r r q q
r

m KK
j jj j

j
K m Kk k k k kk k k

j j mj j j j m
k j k

jK k k
c k r j k qj j j j

k j j

K m kk k k
c j P j j

k j

C C a

C a C t C t

C a t a a C a C a t a a t

d C P

ζ ζ

ζ ζ ζ ζ ζ

ζ β

µ ζ

−

+ + − −
+

=

− −
+ + + +

− −
= = =

−
+

= =

−
++ +

= =

− ∆

= − ∆ + − ∆ − ∆

 
 + − + ∆ + − ∆
 
 

+ − +

∑

∑∑ ∑

∑ ∑

∑∑ 1 .a t∆ ∆

 (5.4) 

Using the above fact and following a similar argument to that used in the 
proof of Lemma 16.9 on page 280 of [18], it can be shown that the limit of the 
difference approximations in Theorem 5.1 is a weak solution to the problem (2.1) 
by letting ,m K →∞ . The bounds are obtained by taking the limit in the 
bounds of the difference approximations in Lemmas 4.1 and 4.2.  

Remark 1 Uniqueness of the weak solution to the model (2.1) follows from 
similar arguments to those used in [13]. Thus, from Theorems 5.1 and 5.2 and 
the uniqueness of the weak solution, we have that the finite difference approxi-
mation (3.1) converges to the unique weak solution of system (2.1) in the sense 
given in Theorem 5.1.  

6. Numerical Results 

In order to check our code and confirm first order convergence, we chose a set 
of functions as an exact solution set and then added terms in order to ensure 
that they did indeed form a solution. To be more precise, we chose the solution 
set (6.1) and substituted it into (6.2) and then solved for the forcing functions 

if , 1,2, ,5i =  . 

( ) ( ) ( )
( ) ( )

2

2

, e , , e , , e
, e , e

a t a t a t

a t t

S a t I a t P a t
C a t V t

+ − −

− −

= = =
= =

          (6.1) 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1

2

3

, ,
, , , 0 , 0 ,

, ,
, , , , 0 , 0 ,

, ,
, , , , , 0 , 0 ,

s d

i d

p p d

S a t S a t
d V t S a t f a t t T a a

t a
I a t I a t

d I a t V t S a t f a t t T a a
t a

P a t P a t
d P a t I a t N P a t f a t t T a a

t a

α

δ α

δ µ

∂ ∂
+ = − + + < < < <

∂ ∂
∂ ∂

+ = − + + + < < < <
∂ ∂

∂ ∂
+ = − + − + < < < <

∂ ∂
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

4

50

, ,
, , , , 0 , 0 ,

d
, , , 0 ,

d
d

c p d

a
v i

C a t C a t
d C a t N P a t f a t t T a a

t a
V t

d V V t nd I a t da f a t t T
t

µ
∂ ∂

+ = − + + < < < <
∂ ∂

= Λ − + + < <∫
 (6.2) 

It is easily verified that this results in 

( ) ( )
( ) ( )
( ) ( )( )
( ) ( ) ( )( )
( ) ( )( )( ) ( )

2

2

1

2

3

2
4

5

, e 2 e

, e e

, e 1 2 e

, e 1 e

, e 1 ,

a t a
s

a t a
i

a t a t
p p

a t a t
c p

t
v i i

f a t d

f a t d

f a t t d N t

f a t d N t

f a t d V t nd N t

α

δ α

µ δ

µ

+

−

− −

− −

−

= + +

= + −

 = − + + − 

= + −

= − −Λ −

          (6.3) 

where 

( ) ( )
2 2

0
, d e ed d

a a t t
pN t P a t a − −= = −∫  

and 

( ) ( )
0

, d e e .d d
a a t t

iN t I a t a − −= = −∫  

Upon inspecting the boundary conditions, we see that once , ,r q ca a a , and la  
are chosen, the parameters 0β  and cβ  must satisfy 

0 2 2

1 2and .
e ee eq l cr

ca a aa
β β= =

−−
               (6.4) 

The parameter values, except for 0β  and cβ , were taken from [7] and are 
given in Table 1. The values of 0β  and cβ  that are implied by (6.4) are also 
provided there. 

We ran five simulations, with the step sizes t∆  and a∆  being halved each 
time. Once simulations were done, we calculated the following error  

( ) ( )
0
max ,t t

s s s j sj m
N N N t N j∆ ∆

∞ ≤ ≤
− = −  

where ( )t
sN j∆  is the numerical approximation of sN  at jt  with step size 

t∆ . This error was also calculated for the other components of the model, i.e., 

iN , pN , cN , and V. Finally, we calculated log2 of the ratios of consecutive er-
rors in order to determine the order of accuracy. The results in Table 2 and Ta-
ble 3 demonstrate that the method is achieving first-order accuracy. 

7. Simulations of Treatment 

In this section we present numerical simulations of treatment with specific drugs. 
We follow the approach taken in [2], but present more details. As we are inter-
ested in arresting the further development of unchecked levels of cancerous and 
precancerous cells, we chose the parameter values for case (iv) in [7]. Since the 
precancerous and cancerous cell populations grow without bound in this case, 
the model’s behavior corresponds to dysplasia and the onset of metastasis. The 
base parameters are given in Table 4. 
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Table 1. Parameter values for error simulations. 

Parameter Value Parameter Value Parameter Value Parameter Value 

ra  0.25 da  1.0 θ  0.02 Λ  0.001 

qa  0.9 sd  0.1 α  0.1 0d  0.1 

ca  0.1 id  0.11 δ  0.15 pd  0.3 

la  0.4 cd  0.05 n 0.01 κ  0.2 

( )vd V  0 1 5d V+  ( )pNµ  
1

p

p

N
N

θ
κ+

 0β  0.8506 cβ  1.9918 

 
Table 2. Convergence of the first-order method. 

t∆  a∆  
sN  iN  pN  

∞
⋅  error order ∞

⋅  error order ∞
⋅  error order 

0.01 0.1 1.0904  0.0908  0.1168  

0.005 0.05 0.5740 0.9257 0.0467 0.9587 0.0603 0.9553 

0.0025 0.025 0.2936 0.9671 0.0238 0.9744 0.0306 0.9798 

0.00125 0.0125 0.1485 0.9832 0.0120 0.9836 0.0154 0.9895 

0.000625 0.00625 0.0747 0.9915 0.0061 0.9901 0.0077 0.9946 

 
Table 3. Convergence of the first-order method. 

t∆  a∆  
cN  V 

∞
⋅  error order ∞

⋅  error order 

0.01 0.1 0.3803  0.0019  

0.005 0.05 0.1926 0.9814 0.000958 1.0082 

0.0025 0.025 0.0973 0.9845 0.000478 1.0039 

0.00125 0.0125 0.0490 0.9898 0.000238 1.0020 

0.000625 0.00625 0.0246 0.9941 0.000119 1.0010 

 
Table 4. Parameter values for error simulations. 

Parameter Value Parameter Value Parameter Value Parameter Value 

ra  0.25 da  1.0 θ  0.02 Λ  0.001 

qa  0.9 sd  0.1 α  0.1 0d  0.1 

ca  0.1 id  0.11 δ  0.15 pd  0.11 

la  0.4 cd  0.05 n 0.01 κ  0.5 

( )vd V  0 1 5d V+  ( )pNµ  
1

p

p

N
N

θ
κ+

 0β  1.68 cβ  2 
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The initial conditions used were ( )0 2exp aS a −= , 0 0V = ,  
( ) ( ) ( )0 0 0 0I a P a C a= = = . 
One approach to treatment would be to increase the death rate ( id ) of HPV- 

infected cells, thereby indirectly reducing the potential precancerous cell popula-
tion. There are antiviral treatments such as Cidovofir that could facilitate this 
outcome, as noted in [2] [21] [22]. In order to numerically experiment with this 
scenario, we performed a simulation with the parameters given in Table 4, and 
then compared it to simulations in which this parameter is increase by 10%, 25%, 
and 50%. The results of these simulations are presented in Figure 1. 

For this parameter set, the model is not particularly sensitive to the parameter 

id . Indeed, an increase in the parameter id  by 50% does not reduce the pre-
cancerous and cancerous cell counts by 50%. 

Another approach to treatment would be to increase the death rate of precan-
cerous cells ( pd ). It was noted in [2] that the drugs 5-fluorouracil and bleomy-
cin have shown success in this respect [23]. After experimenting with the para-
meter pd , we found that the model was quite sensitive to this parameter. Small 
percent changes cause large changes in model input. We settled on presenting 
the output resulting from the increasing pd  by 3%, 5%, and 10%. The results 
are shown in Figure 2. 

According to the model, this approach is vastly more efficient than the one of 
increasing the death rate of HPV-infected cells. Treatments of this type appear to 
have the ability to reduce unbounded precancerous and cancerous cell popula-
tions to stable ones that are more easily controlled. 

There are, of course, other parameters in the model with which one can expe-
riment. Here we have decided to focus on the two that can be affected by drugs 
which are currently available. 
 

 
Figure 1. Model sensitivity to the parameter id . 
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Figure 2. Model sensitivity to the parameter pd . 

8. Conclusions 

In this work, we have expanded on previous mathematical analyses of HPV- 
induced cervical cancer [2] [7] [8] [9]. We present a more general model in the 
sense that the transition rate µ  of precancerous cells to cancerous cells can be 
any continuously differentiable function that satisfies 0 1µ< ≤ . We also allow 
for any initial conditions that are of bounded variation on the domain [0, ]da . 

After presenting a first-order finite difference scheme for approximating solu-
tions, we use said schemed to provide an existence-uniqueness result for the ge-
neralized model. Further, we provide numerical evidence that our numerical 
scheme is indeed of first-order. 

Once the numerical scheme was implemented, we utilized it along with ideas 
from [2] [7] in order to examine treatment strategies that can be implemented 
with existing medications. More specifically, we examined the model’s sensitivity 
to increasing the death rates of HPV-infected cells ( id ) and precancerous cells 
( pd ). Of those two approaches, the model predicts that using drugs that increase 
the death rate of precancerous cells is the far more efficient treatment. 

Further work on this subject may include applying our numerical scheme to 
the recently developed model in [9]. 
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