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m By way of contextualizing, we begin with a summary of the cited article [1], hig-

hlighting the results related to the amplitude A(«) and the bounded potential
on the half line. The last Theorem (10.2) stands out, where the estimates of the
amplitude A(e) appear with respect to the norm of the bounded potential on
the half-line.

They start considering Schrodinger operators

d2
-—+q, (1.1
o Ha (L.1)

in L,(0,b) for 0<b<oo or b=o and real-valued locally integrable g.
They are interested in cases for b =0, that is

Case 2: gis “essentially” bounded from below in the sense that
sup(.[a”max(—q(x),o))dx <. (1.4)
a>0 \"8

Case 3: (1.4) fails but (1.1) is /imit point at © , that is, for each
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zeC, ={zeC|Im(z)>0},
—u"+qu=1zu, (1.5)

has a unique solution, up to a multiplicative constant, whichis L, at oo.

Case 4: (1.1) is Limit circle at infinity; that is, every solution of (1.5) is L, (0,)
at infinity if z e C, . We then pick a boundary condition by picking a nonzero
solution U, of (1.5) for z =i . Other functions u satisfying the associated boun-

dary condition at infinity then are supposed to satisfy

lim [ u, (X)u’(x)—ug (x)u(x)]=0. (1.6)

X—>00

1.1. The Function Weyl-Titchmarscht m(z)

m(z), is defined for zeC, as follows. Fix zeC, . Let u(x,z) be anonzero
solution of (1.5) which satisfies the boundary condition at 5. That is, in Cases 2
and 3: I:|u(z X)|2 dx <o, VR >0 and

_u'(0,,2)
m(z).=m. (1.7)

In Case 4, it satisfies (1.6). And, more generally

m(2)= u'(x,2)

u(x,2)
om

m(z,x) satisfies the Riccati equation (with m’ = o )

. (1.8)

m'(z,x)= q(x)—z—m(z,x)2 . (1.9)

m(z,x) is an analytic function of zfor zeC, , and

Case 2: For some S eR, m has an analytic continuation to (C\[,B,oo) with
mrealon (—,f).

Case 3: In general, m cannot be continued beyond C, (there exist ¢'s where
mhas a dense set of polar singularitieson R).

Case 4: m is meromorphic in C with a discrete set of poles (and zeros) on
R with limit points at both 40 and -oo.

Moreover, if zeC, then m(z,x)eC,; so m satisfies a Herglotz represen-
tation theorem,

1
1+4°

1
m(z)=c+| | ——+
RlA-z
where p isa positive measure called the spectral measure, which satisfies

j dp—@<w, (1.11)
R1+A

}dp(/l), (1.10)

dp(z):w—liwilm(m(/mg))dz. (1.12)
0 T

And it was found

c=Rem(i).
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1.2. Existence of Function Amplitude A(a)

Previous results

Theorem 1.2 ([1], Theorem 2.1). Let qe Li(O,oo). Then, there exists a func-
tion A(a) on (0,) sothat A—q iscontinuous and satisfies (1.16)

Theorem 1. There exists a function A(a) forall ae [O,b) so that
AeL(0,a), forall a<b and

m(—xz)=—K—ISA(a)e'Z”Kda+6(e_2“”), (1.15) (1)

as kK —»> o with —g+g<arg(lc)<—g<0. f=0(g) if g—0 and for all

>0, (f/g)|g|g — 0. Moreover, A—q is continuous and
K—®©

(A-a)a|< U:|q(x)|de exp(aj:|q(x)| dx). (1.16)

One of your purposes here is to prove this result if one only assumes (1.3) (Ze.
in Cases 3 and 4).

Previous results

Theorem 2. ([1], Theorem 2.1) Let qe L, (0,00). Then, there exists a function
A(a) on (0,0) so that A-q Is continuous and satisfies (1.16) such that

1
re(x)> 2lal.
m(—zcz) = —K—j: A(a)e™da. (1.17)

Theorem 1.1 in all cases follows from 7heorem 1.2 and the following result
which we will prove in Section 3.

Theorem 3. Let q,,0, be potentials defined on (0, bj) with b, >a for
j=12. Suppose that 0, =d, on [0,a]. Then, in the region
arg(/c) € (—n/2+5,—£) , |K| > K, , we have that

‘ml (—x*)=m, (—x° )‘ <C, ,exp(-2aRe(x)), (1.18)

where C,; dependsonlyon &,0, and SUpy,., (fxx+§|qj (y)| dy) , where & >0

is any number so that a+d5<b;, j=12.

1.3. The Connection between the Spectral Measure dp and the
A-Amplitude

Your basic formula says that

A(a)=-2]" 27sin(2a2)dp(2). (1.21)

P gives nonzero weight to (—0,0], they interpret

e 2c, if A=aq,
A S'n(zaﬁ):{(—ﬂ)Msinh(za«/q), if 1<0.

Consistent with the fact that A¥sin (20:\/71 ) defined on (0, oo) extends to an

entire function of 4.
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1.4. A Satisfies the Simple Differential Equation in the
Distributional Sense

oA OA a
&(a, X) = g(a, X)+ IO A(a—B,x)A(B,x)dB. (1.26)

This is prove in [1] for g€ Ll(O,a) (and some other gs) and so holds in the
generality of this paper since Theorem 1.3 implies A(a,Xx) for a+Xx<a ison-
ly a function of q(y) for ye [0, a] .

Moreover, by (1.16), they have

Iaiiro1|A(a,x)—q(a+ x)| =0, (1.27)

uniformly in x on compact subsets of the real line, so by the uniqueness theorem
for solutions of (1.26), A on [0, a] determines g on [0, a] .

1.5. The Riccati Equation and the Atkinson Method and the
Exponential Bounds for m

As explained in the introduction, the Riccati equation and a priori control on
m; allow one to obtain exponentially small estimates on m, —m, (Zheorem 1.5).
Proposition 4. (Proposition 2.1) Let m,(x),m,(X) be two absolutely conti-

nuous functions on [a,b] so that for some Qe L’(a,b),
m}(x):Q(x)—mj(x)z, i=12 xe(ab),
then [m, () ~m, ()] = [m, (6)-m, (b) Jexp( [ m; (v)+m ()] .

As an immediate corollary, they have the following (this implies 7heorem
1.3).

Theorem 5. (Theorem 2.2) Let m; (x,—rcz) be functions defined for x € |a,b]
and k€ K some region of C. Suppose that for each k in K, m; isabsolutely

continuous in x and satisties (N.B.: q is the same for m; and m,),
! 2 H
mj(x,—xz)=q(x)+/<2—mj(x,—xz) =12,
Suppose Cis such that for each xe[a,b] and keK,
‘mj(x,—K2)+K‘SC, i=12,(2.2)

then
‘ml (a,—zcz)— m, (a,—/cz )‘ <2C exp[—Z(b—a)(Re(zc)—C)] .(2.3)

They mention 7heorem 2.2 places importance on a priori bounds of the form
(2.2). Fortunately, by modifying ideas of Atkinson, we can obtain estimates of this
formas longas Im(«) is bounded away from zero.

As a final result

Theorem 6. (Theorem4.1) If qe L, (0,0) and Re(x)>1, then for all a:

() o+ [ Aa)e ] < o+ oy
-k )+x a al< _ . (4.
° " 2Re(x) o
And they get
Corollary 7. (Corollary 4.8) Fix b<w, qe Ll(O,b), and |h|<oo (let's re-
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member that: u'(b.)+hu(b )=0 (1.2), heRuU{x}, where h=co is short-
hand for the Dirichlet boundary condition U (b_ ) =0) Fix a<b. Then, there ex-
ist positive constants C and K, so that for all complex x with Re(x)> Ky,

m(—lc2 ) +x+ joa A(a)e’z”ada‘ < g 2Rel),

1.6. The Bounds for the A Amplitude for the Potential q in the
Half-Line

So far, it has been assumed that the potential qe L, (0,0) or ge L (0,a) for
all a<w and h<ow.

Now, they assume examples with constant or bounded potentials defined on
half-line (O,b) with b=, and with h=o00 is shorthand for the Dirichlet
boundary condition lim,, u(b_)=0.

See [1]: 10. Examples, I: Constant q.

Your claim

Theorem 8. (7heorem10.1) If b=c and q(x)=0q,, X>0, thenif q,>0,

%"
A(@:%Jl(zaqu), (10.1)

where J, Iis the Bessel function of order one (see, e.g. ([1], Chapter9)); if q, <0
12
—q
A(a)z%ll(%{(—qo)w), (10.2)

with 1,(.) the corresponding modified Bessel function of order one (see, e.g.
([1], Chapter9)). Since [1], p. 375

0<l,(x)<e*, x>0. (9.27)

This example is especially important because of a monotonicity property.
Theorem 9. ( Theorem 10.2) Let |q1(x)| <-2q,(x) on [0,a] with
a< min(bl,bz) then |Ai(a)| <-A (a) , on [0, a]. In particular, for any q sa-
tistying SUp,. ., q(x)| <o, they have that

|A(a)| s@ll(m), (10.5)

where

y(a)=sup (|q(x)|]/2). (10.6)

o<xsa
In particular, (9.27) implies
|A(a)|<ay(a)e™™, (10.7)
and if ¢ is bounded,
|A(a)| <a|d|, exp(2a||q||zz). (10.8) (2)

The article is divided into the following sections.
In Section 2: Background. The results obtained in [2] and [3] are mentioned,

which conclude with the existence of the Inverse Transformation Operator W,
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which transforms the solutions of an initial Sturm-Liouville equation into the
solutions of a second Sturm-Liouville equation where the potential transformed
by W is unique see [4]. Later, the Reduced Radial Schrondiger equation is
considered where, the singular Bessel potential is the sum of the regular poten-
tial and a term with a singularity of quadratic order of the RRSE and the Inverse
Transformation Operator W is applied to RRSE one obtains a Sturm-Liouville
equation where, the potential ¢, (X) obtained is only the regular potential of
the RRSE and the singular term of quadratic order does not appear, instead three
additional terms. This is the bounded potential proposed on half-line as our men-
tioned example.

In Section 3: The bounded potential q(x) on the half-line. This section is
the main one of the article, because it is proved that the three additional terms to
the potential obtained ¢, (X) are bounded on half-line: 7heorem 25. The Proof
is done through several consecutive steps: Lemmas 17, 18, 19, 21, 23, 24; in
which the bounding of each summand of the proposed potential is proven. Hig-
hlighting, the bounding achieved by the Jost function through the magnitudes of
the Eigen values and the regular potential [5].

Finally, in Section 4: Estimates for the A(«) amplitude for a bounded poten-
tial on half-line. We quote the corresponding 7heorem 10.3 of [3] and the proposed
potential is exhibited.

Other articles, where the A amplitude is mentioned as a function of the phase

o and estimates are established are: [6] [7] [8].

2. Background

Following what we name the formulation of Marchenko [2] in [3], we obtained
the following results.

Consider two problems with symmetrical boundary value problems and de-
fined by for j=1,2 through:

—y"+q;(x)y=5"y,0<x <o, (3)
y'(0)=k;y(0)=0, @

where k; e{h,h,}, h,h, are different real numbers,
Se{ﬂ(hl)’#(hZ)}'{i(m)’ﬂ(hz)}' 5)

represents the same family of eigenvalues for both problems, q;(x) are conti-
nuous real valued functions. Their uniqueness is determined through their re-
spective spectral distribution function R;. The aim of the paper is to relate both
previous problems in the following way. We will assume the uniqueness of the
first problem and determine the uniqueness of the second problem by linking:
both spectral distribution functions R;, both boundary conditions

y'(0)~k;y(0)=0, ©)

and both potential q;. The stated theorem was: [2], Section 4, pp. 481-483.
Theorem 10. (7heorem 1) Let R, be a spectral distribution function of the
boundary value problem?2 with j=1 and for
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s:=A, 1, (7)

the corresponding solution of the equation: j=1
o (A x)=ao (A, xN), o (uy)=o(uyh) ®)

respectively. We will assume the following hypothesis:

1+CIOX0)12(y,t)dt¢0 VXE[O,oo), 9)
and
Q2(X) :=Q1(X)_2K2,1(va)' (10)
h, =h —c,

R, =R —-cs(u-2),

where kernel K,,(X,X) was defined in Lemma 1. Then R, Is a spectral dis-

tribution function of the boundary value problem j =2
—y"+0,(x)y =4y, y(0)h,—y'(0)=0. (11)

On the other hand, following a series of problems proposed by V. Marchenko
4, that we will name Marchenko’s formulation, and relating it to a generalized
version of Theorem 1 given in 3. The main theorem was proved: [2].

Theorem 11. (Theorem 1) Let s consider two Sturm- Liouville equations
-yi+0q;(x)y; =4%y;, j=12, xe(a,b), b> o0, (12)
a; (x) continuous only in the interior points of (a, b) . Consider in particular,
the following pair of boundary value problems of Sturm- Liouville on the Half
Line
-y"+q,(x)y=s?y, y(0)=0, where s e {4, u}, x>0, (13)

and
—y"+0,(x)y=s’y, y(0)=0 where s € {4, u}, x> 0. (14)
Let ql(X),qz(X) are continuous on (0,00). If yl(x,,u):z y, is a fixed solu-

tion of the first equation j=1 for = andlet ¢ (1,X):=¢, an arbitrary so-
lution of j=1 for S=A4,then

—yy+ 0, (X)y, = 12y, v (0, 2) =0 and (15)
~o!+ 0, (X) ¢, = 220, ¢,(0,2)=0. (16)
Suppose
y, (X, 1) =0, Vx> 0. (17)
If

w (yl(xhu)7¢)l (’1’ X))
yl(x)(/f _/12)
is solution of j=2 for S=A1 where the wronskian

W (Y, (% 22), 01 (A X)) = vy (%) 0 (2 %) = Y (% 1) 1 (2,%) 20, (19)

@, (A, %)= HE A (18)
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= di .Then, ¢,(A,X) satisfies the equation
X

_(pg"‘qz(x)(pz :ﬂvz(pzl ?> (011):01 (20)
where
QZ(X):ﬂz_qu"'ﬁ"‘L;- (21)
) 1

According to (16), we define the corresponding Inverse Transformation Opera-

toras

=M X.:W(yl(xvﬂ),¢1(x))= )
. yl(X)(ﬂZ—/lz) We, (x): yl(X)(yz—Az) P (x).  (22)

In [3], Section 3: The Two Examples: Reducced Radial Schrédinger Equation

and Schrédinger Equation on the Half Line, pp. 492-501, we apply Inverse
Transformation Operator W previous to the Reduced Radial Schrédinger Eq-
uation (RRSE)

_%l/ﬁ (k, I’)+|:V (r)+ I(lr—zi-l):|wl (k, r) _ k2W| (k, I’), (23)

where y, (k,r) the partial wave of angular momentum /and wave number k.
(whose main characteristic is the addition a singular term of quadratic order

(named Bessel Singular Potential) to a regular potential V (x) if x:=r

I:x|\/(x)|dx<w. (24)
If
I(1+1
6=V (r)+ (rz ) (25)
finally one gets
1 =2V (x), for0<x< IIIZLll <1
W, =g, = , , (119)  (26)
yZ—ZV(x)Jr%e’”’Hﬁ, for x >1, 1 even
! (2]

we have obtained the uniqueness of the potential which is regular when X — 0
and, bounded with exponential decrease fast enough when x — o . See [3], Sec-
tion 3, Formula 119, p. 501.

We will use the following estimation to AL (0] (1) , that is:
?,

=222 [1AllA) IR )+ 2 -
2] Fi(u)

@ o if0<x<1,
@, |0(1), forx>1.

9
P,

+‘(—y)_l‘ —C, (170) - (171) (27)

(172) (28)
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See Formulas 170 - 172, p. 522, Appendix of3.

3. The Bounded Potential q(x) on the Half-Line

3.1. Preliminaries

We start with the following preliminary results
Theorem 12. Of26

q, = 4> -2 (x)Jrilifle"”X +% (29)
2

is continuous on (0, oo) , X>0, /even
Proof. According to Theorem 1 3], Section 2, pp. 485-493: (11)

-y"+0,(x)y =5y, y(0)=0, where s e {4, u}, x>0,
where 0, and @, arecontinuouson (O,oo). And (15) and (16)
—Y/+ 0 (X) Yy = #¥1, ¥, (0,4)=0 and
—p+0,(X)g, = %0, ¢,(0,4)=0.
If we define to ¢, (4,x) as (18)

W (Y (%, 1), 0, (2, %))

)= )

THEA,

then one got 20
@) +0, (X)("z = }“25021 ®, (01/1) =0.

Now, according to the proof of Theorem 1 after laborious calculus we get the
successive equations: (49), (50) and (51), see pp. 491-492 of [3].

~0; (4, x) =9, (4.X) {2’2 _[_ql _ﬁ"‘ﬁ"'%j}' (49)
Y1 @, 1
that is
. I _ 2
o7 (A, X)+| =g, — 2+ L+ 2L g, (2,X) = 129, (4,%), (50)
i @ Y
then if (21)
. A A
0,(X)=—0 ——+—+—= (51)
2() ' Vi @ ylz

must be continuous by hypothesis: see Theorem 1 [3], Section 2, pp. 485-493, we
got (20)

_(Dg"'qz(x)(pz :ﬂ*z(pz’ P (0,/1):0. (30)
In the case of Reduced Radial Schrédinger Equation (RRSE) agree to (25)

I(1+1)

q =V (r)+ = then the uniqueness and continuity of (, is obtained (26)
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@ =2V (x), for0<x< IIIZLll <1

W, =0q, = : (1)

- (x)+%e"”X + 2 for x>1, 1 even
! 2

The Potential q Is “Essentially” Bounded
Definition 13.

L' (a,0):= {q :(a,0) > C:qis Lebesgue measurable

(32)
and I:|q(x)|dx < oo}.
If qel’(a,%) named q integrated.
Definition 14
L” (a,0) = {q :(a,0) > C:qis Lebesgue measurable 3
and IM > 0 with [q ()| < M}.
If qeL”(a,0) named q essentially bounded.
Definition 15. The potential q is “essentially” bounded if
suop(J:Hl max(—q(x),o))dx <o, (1.4) (34)
See [1], Introduction, Case 2, Formula 1.4 and we get the
Lemma 16.
”q"Ll(l,oo) = ||q||L°°(l,oo) (35)

Proof. Let a>1, using (34) let qe L (1,%), since

+1 0
[ a(fdx < ["a(x)]dx = lallsg., and [a(x)]x i
3SUP,.y q<§(a))| < "q"B(Loo) »and | f (X)| <sup,,,

SUP,.1 | (Cf(a))| = ||q||Lw(1’w) and therefore
gel” (l,oo) . -

a+l

q(§(a))| then
a(¢(a))|, xe(aw) then

3.2. Existence of a Bounded Potential Defined on Half-Line

The existence and uniqueness of the potential ¢, (X) (31) was established through
the Inverse Transformation Operator W. See [3], Section 3, Formula 119, p.
501.

The main result of the article: the bounded potential ¢, (x) (31) obtained as

the image of the Inverse Transformation Operator
Wo, =g, € L” (0,0),
which is composed of three fundamental addends
(2]
The fundamental result consists of the uniform bounded of three addends

1) 4’ -2V (x),2) i%e"”* and 3)
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separately
1) 2 =2V (x), (36)
2) i%e““*, (37)
) 4, (38)
?,

and conclude that the potential obtained @,(x) given in (31) is such that
q, (X) el” (O,oo).
Let’s observe that initial potential ¢, of named Problem 1 of Theorem 1: ([3],
Section 3, Formula 54, p. 492) is
I(1+1)

g =V (x)+ 2

for the Reduced Radial Schrodinger Equation (RRSE) see (25) where V (X) sa-
tisfy (24): [ XV (x)|dx < implies

J':|V(x)|dxsj:x|v(x)|dx<oo, for1< x, | even (39)
then
V(x)eL'(1,),forl<x, | even. (40)

We start the first addend of (38).

3.3. The First Addend 1) z* -2V (x)e L”(0,)

I(1+1)

X2

Lemma 17. Let X>1, for each fixed ueC, let V (x)e L' (1,%)

(39), /even and (31)

I(1+1
q, =V (x)+g e L' (L) (41)
X
then
1) q,=p’-2V(x)el”(Lo). (42)
Proof. For ueC fixed and (26):
Wa, =g, (43)
For the uniquenessof ¢, < (}fﬁ)
I(1+1
W71q2 :ql:V(X)+ (Xz ), (44)
and in this case it is fulfilled: —y;+q, (X)y, = gy, (15) then
w1 =20, (x) = —%— 0, (x), by (31) implies
1
! [(1+1
-2y (x) = -y (-1 ()
Y X
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that is
’ A I(1+1)
|,u —2V(x)|s—+|V(x)|+ —. (46)
Y1 X
We have demonstrated the boundedness of each of the above addends
Y/ [(1+1)
=,V ,—, 47
A o) 1L @
of each of the previous summands of the hypothesis
V (X) e Ll(l,oo) .
I(1+1) )
The summands: |V (x)| and >— are actually integrable, namely
X
J'1w|\/ (x)|dx < o0
since J'lw |V (x)| < Lw X|V (x)| <o by (39). And
ol (1+1
[ %dx:l(lﬂ)«n (48)
Then
0, (g ) (49)
X
Therefore, from (34)
I(1+1
V(x), (x2 ) L” (1,0) (50)
" n I I 1
Now, let’s estimate term: N since A= 0 (X)—p® =V (X)-p’ + ( er )
Y1 1 X
(15), (25) then
L{’ <l | (I +1) 2 51
gV (==l (51)
then
I(1+1
V ()| + (1) (100, (52)
X
and (50) then
I(1+1
V0o D e 1), -
Then by (51)
A e 1 (1,0). (54)
Y1
Therefore, from (45), (46), (50) and (54), we conclude
1) q,=p°-2V(x)el”(1,). ]
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Lemma 18. Let x such that 0 < x < l\/% <1, leven, fixed yeC, of(24)
J':x|v(x)|dx<oo,
and of (44)
1) q,(x)=g"-2V(x),
then
1) q,(x)=p*-2V(x)eL”(0,1). (55)

Proof. According to (26), the term: x* -2V (x), for 0<x< ”llel <1, and

by (44) implies
i I(1+1
Wq1=q2=:“2_2\/( ):_yl_v(x)_ ( 2 )' (56)
Yi X
then —ﬁ—V(x)—w < L+|V(X)|+w. Since L:ql—,u2 is con-
Y1 X Y1 X Y1

tinuous on (O,oo), (15), let € >0, in particular is continuous on (O,l] R

1

©

since (O,l]cU {l,l}, for ¢/2, there exists neN such that 5/2>1. In
n n

n=1
. § . . . 1] . v/ .
partlcular, — is continuous, since |—,1| is compact then |24 is
yl []/n,l] n yl
bounded on [1,1}, that is, there exists M (n) >0 such that L(x) <M (n)
n Y1
1
forall xe [—,l} . Then
n
L(x) e L”[1/n,1]. (57)

Y1

"
So, then it is possible that the function ﬁ(X) is discontinuous only on the in-
1

terval (0,5/2), but its Lebesgue measure: /1(0, 6‘/2)28/2<8 , We conclude

that L(X) is bounded except, in the interval (0,£/2) that has zero Lebesgue
Y1
measure. Therefore
A (x)el” (0], (58)
Y1
I(1+1)

Now, let’s estimate the term: V (X)+ and consider the multiplication:

2
X|:V(X)+I(I);l)}:XV(X)+I(|;1),for Xe(O,l],since(24) -[:X|V(X)|dx<oo

then
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XV (x)eL” (0,1]. (59)
I(1+1) ) 1
Andlet ¢£>0 the term is continuous on | —,1| and therefore boun-
X n
" I(1+1 I(1+1
ded on [1,1} and, similarly to L(X) then 10+ el” [ll} and 1(+1)
n A X n X
is bounded except in the interval (0,6/ 2) which has zero Lebesgue measure.
Then
I(1+1
( ) el” (0,1]. (60)
X

From (58), (59) and (60), we conclude that
q, € L”(0,2].
Therefore, of (42) and (55), we conclude
g, € L”(0,0). (61)

3.4. Second Addend 2) %e'i"x e L”(0,)
[

Lemma 19. For each fixed < C f the term

K gmim | (0,). (62)

HES!
|

s
il

—ipux| _

e

Proof. ‘ie-‘ﬂx |u| forall x>0.

il-1
|

M
il—l

’
Now, one obtains the following estimates: the term ﬁ, be independent of
?,

the x-coordinate.

3.5. Third Addend 3) 2L ¢ 1~ (0,)
?,

/I +1
Remark 20. Two cases. First case. X >1 and Second case. 0 < X <) 7 <1.

Lemma 21. First case: let A, ucC, ke{A,u} and

Imk|>Cq* |V (x)|dx, (63)
then
AGRI
L” (1, ). (64)
(2 (ﬂ" X) © ( )

Proof. According to the Estimate (27)
w22 (1A= |IR (2] + 2 - 27
X

2(-u)| IFi (w)

!

P
?,

< |

]
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for /even and X >1. Which is given in terms of the Jost functions F (1),
K (,u) and the pair of eigenvalues g, A . Since [5], Formula 1.4.5, p. 12.

F (k):1+j:e‘k’v(r)go(k,r)dr, (65)
then
945 2o 6
&
| (k)| <1+C5 |V|k| )| (67)
&
R (k)| =1-Cf )i/“((rz' dx. (68)
Now, for k e C, wehavefor C>0, x>0, V(x)|
L2k c1x+|v|k(|i)| _ cx||kv| >((X)| _ C|\|/k(|x)| . clllz1 (kx|)|,

_CX|V(X)| . C|V(x)| >_C|V(x)|

x =W mk] ()
entonces
CxV (k) k) ]
J‘Oﬁ IO| |k| |d >— j ||Imk|| |I klj |V |dx,thatls
<XV (K)| C
—C|, L dxz—“mk'jo V (K)|dx,
=
XV
~C T |j V (k)| dx, (70)
then (68) and (70) implies
C (=
|F (k)| Zl_WL’ V (x)|dx. (71)
Now, using the hypothesis (63)
© C (=
[Imk|>C| |V(x)|dxc>1—Wj0 V (x)|dx >0,
=
L L , if [Imk| = C[ "V (x)[dx. (72)
Fi () 1_|Ck|j;°|v(x)|dx ;
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Since (67):
(%)
[k|> [imk|= |F (k)| <1+C 1|l/|k| | x<1+C[’ %dx
Cc Cc
l+mfo |V (x) |dxs1+WI0 |V (x) |dx
<1+1=2
That is
R (k)| <2, if Imk|>C[ "V (x)|dx (73)
Now, coming back to 27
ﬂ,<|ﬂz_ﬂz||g|x |/1| (—/1)’I +2|,u /12| ‘ ‘
2| 2|(-p)" |F
e -2ja (1A (-4)"|IF (ﬂ)|+ 2]ust =27 +|(~)||Fi (1)
2|(~u)" IFi (1) |

using (72) and (73)

o] et =22 | VA IR ()] 2 22 ) i)
ol 2|~y 1_|‘|z| [V () dx
= 22|12] | 12)(-2)" |2+ 2| =27 | (-ua) |2
< T X C
2|(-n) ‘ l—mjo V (x)|dx
-2 AIJ-2) [+ = 27+ (=)
‘(_ﬂ)il‘ 1—|Cl<|I;°|V (x)| dx
(0| e =21 14|~ \ | = 22| | (-m)|
I%uxﬂ (-x)"| |jw x|
moreover, since for ze€C, ‘ ‘:| ‘ ‘ ‘ 1 1 , then
E
(pl'(ﬂ,,x) S|,uz—lz||ﬂ||,u|l y ,1|' |,u |y||

@, (4,%)

W;KW“WX
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Al +]* = 27| | + 12

=|u = 22| Al c

-l o =22 o =
42 v ol
ol | =2 b 1

(12 (o

=[ua* = 27|

| 2 /12“&'

. ||ﬂ| luf -+ = 22||2] | +2]
|’1| 1—|(:ﬂ|j:|\/(x)|dx
|
1
:|ﬂ2_12|%(|ﬂ|'+|y2-/12||z|'|#|'+|z|')x :
A 1_|Cﬂ| [V (x)]ax

| |
=V“%4[W[vw+w“%ﬂuﬁm'WL+|VW'J

A A v

:|y2 —ﬂ,z|[w+|y2 —ﬂ,z||l|2|,u|2| +|ﬂ,|2|,u|l}<

1
1-2 C »
Al 1=l (0l

=2 = 22 (e (A [ = 22 ™ A | )X

v (x)]dx

I#I

= | = AP (i VA = 27 ) )

s vo de

= | = A7 (o VAL o = 2% )

1
il =C V()] e
|

|4

=y W (x)ax |

= | = 22| (L™ 1AL | = 2% e )
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That is
¢£(ﬁ’lx) < 2 2 2 21 -l 2 2 21 | |,u|
——— <\ =AY A AT ] )% — .
So, G is bounded uniformely respect to the x-coordinate on the in-
P> (ﬂ"x)
terval (l,oo).
Then

And we get (64)
o (Ax) -
(%) e L”(L o) when [Im gf,]Im 2] > C[ "IV (x)|dx. .
Remark 22. Since. 1—LJ’°°|V(x)|dx>0<:>1>L_|'°°|V(x)|dx
|Imk]| * |Imk| ’
|Imk| , fork e {4, u}.
IV oo
Therefore
0<C< [imk| , when|lmk|>CI:|\/(x)|dx. (74)

Jo M (o)l

1+1
Lemma 23. Second case: 0 <x< % <1, /even, fixed ueC then

@/ (4,x) .
(2} (ﬂ"x)

Proof. For /even, fixed A€ C, according to (28)

o4 X) =cx?* forO<x< I/I+l <1,

@, (4, X) 2l
(91’(/1:)() N
?> (ﬂ"x)

And we conclude with the following

L”(0,1). (75)

then eL”(0,1). n

Lemma 24, Let A,ucC, ke{/l,y}, Xx>1, ||mk|>C_[:|V(X)|dX,

O0<x< |/|2LI1<1 then

el” (O,oo). (76)
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Finally, summarizing the conclusions of the previous /lemmas: 17, 18, 19, 21, 23

and 24, we obtain the main theorem.

Theorem 25. Let A, ucC, ke{A,u},leven, O<X£'/|2LI1<1 and

|Imk|> C_[:|V ()|x.
Then

Wq, =q, e L (O,oo), (77)
where the potential (|, 1isgiven by (31).

We finish by displaying the bounds for the amplitude A, in terms of the po-
tential ¢, established in [1].

4. Estimates for Amplitude A(a) ofa Bounded Potential on
Half-Line

We begin by citing the alluded theorem of [1], see Introduction: the bounds for
the A amplitude for the potential g on half-line.

Theorem 26. (Theorem 10.3) Let h=w and qel,(0,0)). Suppose
K? >||q2||w. Then

m(—lc2 ) =—K- _[: A(a)e**da,

with a converget integral and no error term.

el

[A(@) <o (). + o o O, €

The example on the half-line displayed is above (31)

w2 =2V (x), for0<x< I/IZLll <1,

1 —2V(X)+

Wo,:=0q, =

’
%e"”x +ﬁ, for x> 1, 1 even.
! ?,

And
q, (x) e L7 (0,0),
according to (61), (62) and (64).
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