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Abstract 
A deconvolution data processing is developed for obtaining a Functionalized 
Data Operator (FDO) model that is trained to approximate past and present, 
input-output data relations. The FDO model is designed to predict future 
output features for deviated input vectors from any expected, feared of con-
ceivable, future input for optimum control, forecast, or early-warning hazard 
evaluation. The linearized FDO provides fast analytical, input-output solution 
in matrix equation form. If the FDO is invertible, the necessary input for a 
desired output may be explicitly evaluated. A numerical example is presented 
for FDO model identification and hazard evaluation for methane inflow into 
the working face in an underground mine: First, a Physics-Based Operator 
(PBO) model to match monitored data. Second, FDO models are identified 
for matching the observed, short-term variations with time in the measured 
data of methane inflow, varying model parameters and simplifications fol-
lowing the parsimony concept of Occam’s Razor. The numerical coefficients 
of the PBO and FDO models are found to differ by two to three orders of 
magnitude for methane release as a function of short-time barometric pres-
sure variations. As being data-driven, the significantly different results from 
an FDO versus PBO model is either an indication of methane release 
processes poorly understood and modeled in PBO, missing some physics for 
the pressure spikes; or of problems in the monitored data fluctuations, erro-
neously sampled with time; or of false correlation. Either way, the FDO mod-
el is originated from the functionalized form of the monitored data, and its 
result is considered experimentally significant within the specified RMS error 
of model matching.  
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1. Introduction 

The scope of the application is modeling time-dependent gas concentration and 
temperature variations in airways in buildings and subsurface openings based on 
data. A vast literature deals with processor systems model identification from 
data using classic methods. Reference to the basic work is in order to recognize 
the contribution of deFigueiredo, Dwyer, Eykhoff, Kalman, Volterra, Weiner 
and Zadek, among many others, in non-linear system identification [1] [2]. Ma-
chine Learning (ML) with Neural Network (NN) and other method applications 
are fast evolving for patterns and features evaluation from data, reviewed in [3]. 
Deep Learning (DL) can efficiently uncover targeted signal patterns using mul-
ti-layer, representation-learning methods composed of simple, non-linear mod-
ules, each transforming the representation from one level into a higher, more 
abstract level, whereas the features attributes are also recognized from the input 
data. Deep, convolutional neural networks (ConvNet) are showing promising 
results in muti-dimensional tasks, such as image processing and speech recogni-
tion. A common feature of ConvNet is the use of a kernel function at each re-
presentation layer as integrator of the data evaluation reviewed in [4] for pattern 
recognition in image analysis.  

The kernel function may be viewed as a fundamental key to integrate the ob-
served output at each network layer for object function evaluation. The kernel 
function is also related to using fundamental, indicial solution for predicting the 
outcome of a system with relatively simple response behavior but under the 
perturbation of complex boundary input influences. DL of such system is shown 
in [5], searching for a combination of indicial solutions and effectively realizing 
deep understanding of the observed phenomenon. The lesson learned from [5] 
and similar other applications such as [6] leads to distinguish DL from Deep 
Understanding (DU) methods. Specifically, the DL process only reaches an ac-
curate but constructed mapping of the data to match an expected outcome; 
whereas the DU process interprets the outcome by the identification of the fun-
damental, indicial system response function or functions, related to a physical 
process model.  

Kernel functions in convolutional process and system models have been long 
used before the bonanza of ML. The convolutional integral with a kernel func-
tion as an indicial solution is evolved from Duhamel’s superposition integral [7] 
for time-dependent heat and mass transport processes in three dimensional do-
mains. Furthermore, a treatise of solutions of partial differential equations for a 
variety of variable, initial and boundary conditions is provided for heat conduc-
tion problems in [7].  

Input data for ML may be provided by measurements or from numerical 
model simulations. Dynamic process models are available for computing the 
advective, convective, and diffusive mass, as well as energy and momentum 
transport problems. Numerical simulation solutions in discretized form are 
available from CFD models [8], porous media codes [9], and network solvers 

https://doi.org/10.4236/am.2022.1312062


G. Danko 
 

 

DOI: 10.4236/am.2022.1312062 990 Applied Mathematics 
 

[10] [11]. CFD models are often used for generating ‘synthetic data’ for ML me-
thod tests, e.g., in [6].  

A ML method for identifying kernel functions from simulated data from por-
ous media code is shown in [12] for the specific goal of representing the com-
plex, linear, or non-linear numerical solution with a convolutional, functional 
operator or a Volterra series of operators. The method called Numerical Trans-
port Code Functionalization (NTCF), has been used in many numerical applica-
tions for its computational efficiency, allowing to import the solution of a nu-
merical simulation into analytical-type matrix-vector equations.  

The function-function called functional in matrix (tensor) operator form is 
suitable for model building from time-series data analysis. The convolution 
integral form of Duhamel’s superposition theorem provides the basis for the de-
velopment of the operator linearized for an applicable domain. A deconvolution 
procedure is sought for the identification of the functional operator from moni-
tored, uncontrolled data streams for both system input and response output 
vectors obtained over past time intervals.  

The inspiration for mathematically “inverse-engineering” and extracting pre-
dictive, functional models of the measured system from monitored data comes 
from the success of the NTCF procedure. In the current study, the input data is 
assumed to be measured as an un-controlled time series, different from the tasks 
described in [12], where controlled, input signals are used for generating system 
responses for NTCF system identification.  

The goal of the study is to extract the indicial, kernel functions solutions to 
the time-honored governing equations of transport processes employed in [9] 
[10] [11]. Mathematical models for the simulation of time-dependent output 
process parameters such as gas concentration and temperature are described in 
[13] for a given geometry, site properties, initial conditions, and the input varia-
tion of boundary conditions. The governing mathematical models have rather 
simple forms in partial differential equations. Furthermore, similarity exists be-
tween the governing equations and their solutions in the time-dependent heat 
and mass transport processes, that is, in the partial differential equation known 
as Fourier’s and Fick’s second laws, written for solids in the form as follows: 

f D f
t

∂
= ⋅∆

∂
                          (1) 

where f may be temperature or species concentration; and t, D and ∆ are time, 
diffusivity and the Laplace operator, respectively. For moving fluids, the partial 
derivative on the left side of (1) is replaced by the substantial derivative as  

d
d
f f f
t t

∂
= + ⋅
∂

v ∇ , 

where v  and ∇  are the advective velocity vector and the del (nabla) operator, 
respectively: 

f f D f
t

∂
= − ⋅ + ⋅∆

∂
v ∇                       (2) 
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The challenge is to find algorithms for extracting the indicial solutions to expected 
transport models with governing equations of type (1) and (2) with unknown prop-
erties from data outputs in response to the inputs, both time-dependent, obtained 
from real-time measurements. The abstracted, output operator model and its 
kernel function(s) from the NTCF processor in [12] characterizes the hidden, 
indicial solutions of the partial differential equations of the governing, transport 
process equations. By analogy, it is expected that model building by an NTCF-like 
processor from monitored input and output data will characterize the response of 
the physical, measured system in the present study.  

The heart of the solution, therefore, is to find the input-output model rela-
tions in the form of indicial kernel function(s) in the convolution integral, that 
may be expressed in a closed, matrix-vector equation form. The desired form of 
the FDO model for a linearized, interval-averaged time domain may be a single, 
matrix operator equation, the focus of the present study. Generalization of the 
FDO for strongly nonlinear systems may follow the method of Volterra series 
expansion [12] leading to a set of FDO equations, a task left for future work.  

2. A Relativistic, Input-Output Model  

The convolution integral expresses a “relativistic” relationship between a 
time-variable input function, ( )x t , and a system-response output function, 
( )y t , in which values at time t can only be a function of past values of input 
( )x τ , tτ < , as follows: 

( ) ( ) ( ) ( )
0

d 0
t

y t x A t y
tτ

τ τ τ
=

∂
= − +

∂∫                 (3) 

Equation (3) expresses Duhamel’s superposition theorem in an integral equa-
tion form. It assumes linearization within the model domain, where ( )A t  is the 
unknown, indicial kernel function with a physical meaning of being a sys-
tem-response output function to a unit step-change input function to a statio-
nary transport system. The goal is to construct a system model from (3) between 
a known, given input function, ( )x t , and a sampled output response function, 
( )ŷ t , in such a way that ( )y t  is a best approximation of ( )ŷ t  in a Least 

Square (LSQ) sense. The initial, constant output value may be assumed zero for 
simplicity in notations, ( )0 0y = . 

Note that most NN model’s training processes are un-realivistic, as all input 
samples for a closed training time window are commonly used to correlate with 
all output samples, allowing to use all input information at ( )x τ  [ ]0 tτ≤ ≤  
with response outcome ( )y τ  [ ]0 tτ≤ ≤  for evaluating model constants. Such 
evaluation would result in a functional operator model represented by a full ma-
trix, such as used in [13]. In contrast, the present goal is to find a relativistic, 
physically sound model in the form of a lower-triangular matrix operator, simi-
larly to the model obtained from the NTCF processor [12].  

The goal is to determine ( )A t  of the unknown transport system from the 
known, ( )x t , and ( )ŷ t  functions, sampled over a sufficiently long time pe-
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riod. Once ( )A t  is known, often regarded as the “essential solution” to the 
system in the process identification literature, the solution for any input boun-
dary condition function, ( )x t , may be obtained from the integral in (3).  

Input and output vectors in (3) are defined for the representation of ( )x t  
and ( )x t  by sampled values taken at representative time divisions  

1 2 , , ,, ,i Nt t t t  , not necessarily agreeing with the measurement time periods. 
The temporal discretization of t and the selection of N samples defines an 
N-dimensional space in which the Nx R∈  and Ny R∈  vectors may be related 
by an operator model, N NM R R∈ × . Sampling with unequal time periods of an 
evenly spaced time series data is advantageous for data compression. Quantum 
vector representation of sampled, monitored data with a refining time discreti-
zation from past to present from an even-sampled, real-time data flow is de-
scribed in [13], in which old, history data are sparsely represented, 1t t∆  , 
while the most recent reading reaches the finest sampling time interval, ∆t, as 

1N Nt t t−∆ = − . With quantum (Q) vector representation, the number of data 
samples are compressed and reduced. However, even unaveraged, unfiltered da-
ta in vectorized form taken at it  time intervals is advantageous as the vector 
representation of the values of ( )ix t  and ( )iy t  taken at 1, , Nt t  instants al-
lows for parallel processing in which each element is best fit between model and 
observation. For simplicity of notations, the vector-processed form of the sam-
pled, monitored data with a refining time discretization from past to present 
from an even-sampled, real-time data flow is referred to as a data Q-vector. 

For simplicity of presentation of operator model development between vecto-
rized input and output variables, the quantum or unfiltered data Q-vector com-
ponents are assumed to be determined from the measured data at time  

1 2, ,, , , ,i Nt t t t    instants of the continuous time at irregular but monoto-
nously variable sampling time intervals within the sliding time window between 

1t  and Nt . Furthermore, it is stipulated that the 1 2 , , ,, ,i Nt t t t   time base is 
unchanged during resampling of the measured data for a sliding window with 

1N Nt t t−∆ = −  as the finest sampling interval.  
It is advantageous to interpolate x(t) and y(t) with piecewise-continuous func-

tion between base points with constant im x t= ∂ ∂  in each [ ]1,i ix x x −∈  in-
terval, where: 

1

1

i i
i

i i

x x
m

t t
−

−

−
=

−
                          (4) 

Applying the integral in (3) for ( )( )1, ,iy t i N=   as the sum of the cumula-
tive time interval components; factoring out ( )1, ,im i N=   from each com-
ponent; and applying a variable transformation itλ τ= −  yields:  

( ) ( )1

0
1 1 d

t

t
y t m A λ λ= ∫                       (5a) 

( ) ( ) ( )2 2 1

2 1 02 1 2d d
t t t

t t
y t m A m Aλ λ λ λ

−

−
= +∫ ∫              (5b) 

( ) ( ) ( ) ( )1 1

1 2 01 2d d di i i i

i i

t t t t t
i it t t

y t m A m A m Aλ λ λ λ λ λ−

−

− −

−
= + + +∫ ∫ ∫

    (5c) 
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( ) ( ) ( ) ( )1

1 1
1 0

d d dN N i N N

N N i

t t t t t
N i Nt t t t

y t m A m A m Aλ λ λ λ λ λ−

−

− −

− −
= + + + +∫ ∫ ∫ 

 (5d) 

Substituting im  from (4) in (5a) and (5b) and rearranging gives: 

( ) ( )1
1 1 0

1 0

1 d
t

y t x A
t t

λ λ=
− ∫                    (6a) 

( ) ( ) ( ) ( )2 2 1 2 1

2 1
2 1 20 0

1 0 2 1 2 1

1 1 1d d d
t t t t t

t t
y t x A A x A

t t t t t t
λ λ λ λ λ λ

− −

−

 
= − + − − − 

∫ ∫ ∫ (6b) 

Since the integral mean values of A(t) appear in (6a) and (6b), a new notation 
is in order to simplify the equations. With the introduction of row index i and 
column index j for matrix notations, an integral mean value expression is recog-
nized from observing (6a) and (6b): 

( )1
,

1

1 di j

i j

t tA
i j t t

j j

M A
t t

λ λ−−

−
−

=
− ∫                    (7) 

According to (7), the averaging time intervals in the ,
A
i jM  integral mean val-

ues does not coincide with the time division intervals, unless the time division is 
equidistant. The simplified notation of (7) yields the simplified forms of the fol-
lowing convolutional model equations: 

( )1 1 1,1
Ay t x M=                          (8a) 

( )2 1 2,1 2,2 2 2,2
A A Ay t x M M x M = − +                   (8b) 

( ) 1 ,1 ,2 2 ,2 ,3 ,
A A A A A

i i i i i i i iy t x M M x M M x M     = − + − + +              (8c) 

( ) 1 ,1 ,2 1 , 1 , ,
A A A A A

N N N j N j N j N N Ny t x M M x M M x M− −     = − +…+ − + +        (8d) 

Equations (8a)-(8d) may be written in matrix-vector form: 

1 1

2 2

N N

y x
y x

M

y x

   
   
   =
   
   
   

 

,                       (9) 

where: 

1,1

2,1 2,2 2,2

,1 ,2 ,2 ,3 ,

0 0
0

A

A A A

A A A A A
N N N N N N

M
M M M

M

M M M M M

 
 

− =  
 

− −  





  



.          (10) 

The M matrix operator defined in (10) is a function of the time division vector 
only, [ ]1 2, , , Nx x x , and the A(t) indicial function. Matrix M has zeros above 
the main diagonal, assuring that only earlier input may influence a later output. 
Therefore, the model satisfies common sense and consistent with the theory of 
relativity, helpful for matching data from a physical system with a mathematical 
model.  

The relationship between M and A(t) is shown in the structure of (10) as M 
can be uniquely obtained using (7) with a given A(t) indicial function using, for 
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example, a piecewise linear interpolation in x(t), for a given time division vector. 
For any given A(t) indicial function, matrix M can be computed from (7), to be 
used in (9) for obtaining an output vector ( )iy t    as the system’s response to 
an arbitrary input vector ( )ix t   .  

The A(t) indicial function may be obtained analytically for simple geometry 
and linear system’s governing equations such as in (1) and (2). However, for 
complex, anisotropic geometry, inhomogeneous and nonlinear systems, only 
computational, discretized, numerical models may be used for obtaining an es-
sential, step-change response solution for approximating a locally linearized A(t) 
indicial function for constructing a fast-predicting, analytical-type matrix model 
for repeated use. Such a transformational, NTCF procedure [12] requires con-
trolled boundary conditions specifications for the numerical transport code runs 
to obtain a matrix functional. Such controlled, boundary conditions are not 
possible to specify from a stream of real time, monitored data. To find A(t) and 
M from monitored data, a deconvolution procedure is needed.  

3. Deconvolution Functionalization of Data for a Relativistic,  
Input-Output Model 

For deconvolution of data for the unknown A(t) and M, consider first the inver-
tibility problem for A(t) from a given M extracted from the measured values of 
x(t), and y(t). It is straightforward to find N number of A(t) directly from (9) 
and the definition of A(t) as a system response solution for a unit step change in 
x: 

( )
( )

( )

1

2

1
1

1N

A t
A t

M

A t

   
   
   =   
   
    

 

                       (11) 

However, far more sampled values of A are needed to evaluate its integral 
mean values in (7) for the components of the M matrix in (10). Therefore, while 
it is assuring to know that there exists an A(t) behind M, an explicit expression 
or representation of A(t) is not practical nor necessary. A system model may be 
more convenient in a matrix operator form, as M is directly usable as a linear 
operator for analytical, algebraic solutions. Therefore, the desired form of the 
relativistic, input-output model is given in (9) with components defined in (7) 
and (10). The deconvolution procedure in the inverse solution of the convolu-
tion integral may be considered completed by finding the M matrix. 

3.1. Determination of M from Observed, Sampled Values of x̂   
and ŷ  

The ,i jM  elements of matrix M are to be determined from (9). It is convenient 
to evaluate each row of M separately. The solvability of M from N input samples 
relates to the size of the x and y. Rearrangement of (9) for elements ny  in each 
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row, [ ]1,n N∈ , yields: 

[ ]

,1

,2
1 2

,

n

n
n n

n n

M
M

y x x x

M

 
 
 =
 
 
  



                    (11) 

Since n number of ,n iM , [ ]1,i n∈  are unknown in (11), then a minimum of 
n equations are needed to solve for ,n iM . Therefore, repeated acquisition is 
needed for each [ ]1,n N∈  element of the Q-vector values of y, taken at shifted 
time intervals by step δ , ( ){ }10 1, , , n

n n ny y y δδ δ −
 . Likewise, repeated n element 

Q-vectors need to be processed, taken at shifted time intervals by step δ , such 
as [ ] [ ] [ ]( ){ }0 1 1

1 2 1 2 1 2, , , n
n n nx x x x x x x x xδ δ δ−

 
.  

The shifted time intervals in the sliding windows are conveniently processed 
using the finest 1N Nt t t−∆ = −  time steps. Considering noisy data, there exist a 
large-enough number of k samples ( k n≥ ) to be sufficient for the solution of 
the set of equations:  

,1

,2

,

n

nk k
n n

n n

M
M

Y X

M

 
 
 =
 
 
  



                      (12) 

where 

( )

0

1

1

n

nk
n

k
n

y
y

Y

y

δ

δ

δ−

 
 
 =  
 
  



 and 

[ ]
[ ]

[ ]( )

0
1 2

1
1 2

1
1 2

n

k n
n

k
n

x x x

x x x
X

x x x

δ

δ

δ−

 
 
 

=  
 
 
  









           (13) 

The predicted vector k
nY  on the left side of (12) must be matched with the 

corresponding, measured Q data vector, ( ){ }10 1ˆ ˆ ˆ ˆ, , , kk
n n n nY y y y δδ δ −=  , for the 

measured values where n k≤ , in an LSQ fit sense: 

( )1 2

0
ˆ mini i

n ni
k y yδ δ−

=
− =∑                    (14) 

It is straightforward to use measured input data vectors also for predicting 
output vector from the operator model, substituting Q-vectors as the elements of 

ˆ k
nX  in the right side of (12) as  

[ ] [ ] [ ]( ){ }0 1 1
1 2 1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , n

n n nx x x x x x x x xδ δ δ−
 

. It can be shown that 
substitution of (13) into (14), using the measured input data and taking the par-
tial derivatives of the equation with respect to ,n iM , 1, ,i n=  , leads to a ma-
trix equation as follows: 

( ) ( )
,1

TT ,2

,

ˆˆ ˆ

n

nk k k k
n n n n

n n

M
M

X XX Y

M

 
 
 =
 
 
  



,                (15) 
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where ( )Tˆ k
nX  denotes the transpose of matrix ˆ k

nX  containing measured val-
ues. The unknown elements of ,n jM , j n<  and 1 n N≤ ≤  is expressed from 
(15) explicitly by formally left-multiplying it with the inverse of ( )Tˆ ˆk k

n nX X  i.e.,  

( )
1Tˆ ˆk k

n nX X
−

 
  

: 

( ) ( )
,1

1T T,2

,

ˆˆ ˆ ˆ ˆ

n

n k k k k k
n n n n n

n n

X X

M
M

Y

M

X X
−

 
 

   =     
 
  



               (16) 

If ( )
1Tˆ ˆk k

n nX X
−

 
  

 ( )1 n N≤ ≤  is computable, matrix elements ,n iM ,  

( )1 i n≤ ≤  can be evaluated for each row independently for a pre-selected N 
quantum vector and model size. The solvability of (16) depends on the condition 
of ( )Tˆ ˆk k

n nX X , related to the quality and the size of the input data vector as well 
as to the selected time base vector and the construction of the quantum vector of 

k
nX  from sampled measurement data. If matrix ( )Tˆ ˆk k

n nX X  is singular, (16) 
does not provide a solution; if ( )Tˆ ˆk k

n nX X  is rank-deficient or badly condi-
tioned, the solution will not satisfy (14). The rank of a matrix is the number of 
linearly independent rows and columns, computed as the number of singular 
values that are larger than a tolerance. The tolerance for matrix A calculated as 
the max[size(A)] * eps[norm(A)], where eps for double precision calculation is 
2−52. 

Increasing the number of data samples, k, relative to the size of the model, N 
is one remedy for reaching a meaningful solution to (16). However, for a given 
input data set, the solvability of (16) is an issue, affecting the existence of the op-
erator model. 

3.2. Definition of the Condition of Solvability of M from the Input  
Data 

Let matrix ˆ k
NX  be formed from consecutively sampled data Q-vectors by 

equal-distance steps iδ , [ ]0, 1i k∈ −  arranged backward over a sliding time 
window of k∆t, where ( )1ˆ k

Nx δ−  is the last sampled, most recent Q-vector data 
element, ( )ˆ Nx t ; and 0

1̂x δ  is the earliest Q-vector element in the first sampled 
sliding window:  

[ ]
[ ]

[ ]( )

0
1 2

1
1 2

1
1 2

ˆ ˆ ˆ

ˆ ˆ ˆˆ

ˆ ˆ ˆ

N

k N
N

k
N

x x x

x x x
X

x x x

δ

δ

δ−

 
 
 

=  
 
 
  









                 (17) 

The condition of solvability for M is defined by the existence of the inverse 

matrix, ( )
1Tˆ ˆk k

n nX XiX
−

 
  

= . If matrix iX is well conditioned with all real values  

under and in the main diagonal (and zeros in the upper triangular), the model 
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identification task for M is well conditioned and solvable.  

3.3. Occam’s Razor 

The solvability of (16) depends on the condition of matrix ( )
1Tˆ ˆk k

n nX X
−

 
  

. The  

maximum value of N may be limited, depending on the maximum number of 
available sample points, k, of ˆ k

NX  and ˆ k
NY . The maximum value of N and 

oversampling number k may be determined by trial-and-error, calculating the  

rank of ( )
1Tˆ ˆk k

n nX X
−

 
  

 before model fitting, that is, the number of linearly  

independent rows or columns in the input data and keeping it sufficiently high 
for a given error of computation. The maximum number of oversamples, k, is 
limited by the number of measurements on ( )ˆ ix t  and ( )ˆ iy t  taken over time 
for establishing their quantum vectors for each sliding time window of 1 , ,k k

Nt t . 
The smaller the model size N, the fewer the necessary oversamples, k, for reach-
ing a unique solution to Equation (16). 

Reducing size N of the matrix operator in an AI-based model relates to its 
complexity for grasping the underlying processes which control the outputs for 
given inputs. The concept of Occam’s Razor [14] is the principle of parsimony 
with the minimization of N, a virtue worth considering for improving the mod-
el’s quality and providing solvability. The subjectivity of such a decision may 
hereby be replaced by the condition of solvability of (16) with a maximum value 
of N for the maximum number of oversamples k, available or desirable for mod-
el identification. 

Reducing the complexity of the model without reducing N for gaining better 
predicting power also calls for Occam’s Razor. The model’s size, N, affects the 
grasp of the history effects and the delay mechanism of substance transport be-
tween cause and response. Once the FDO model is identified, simplification may 
be done by eliminating the history effect not from the model, but from the input 
data, equating the past variations with the he most recent, measured value. This 
means a step-change input (as if the same input has persisted from time zero) 
for finding the response function from the FDO model at every fine time steps. 
Such a model simplification is executed by replacing M with a diagonal matrix, 

DM  as follows: 

( ) ( ) [ ] [ ]1 , , 1, , 1, .
,

0
D

j
i M j i j N i j

M j j
i j

=
 ∈ ∈= 

≠

∑             (18) 

3.4. Hypothesis for the Learnability of an Operator Model of a  
Physical Process from Uncontrolled Input-Output Data  
Streams  

For given sets of sampled Q-vector input  

[ ] [ ] [ ]{ }0 1
1 2 1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , k

N N Nx x x x x x x x xδ δ δ
 

 and Q-vector output  
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[ ] [ ] [ ]{ }0 1
1 2 1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , k

N N Ny y y y y y y y yδ δ δ
 

 obtained from a data  

streams over a monitored time interval T with available maximum number of 
sampled values of nT T t= ∆ , there exists a best combination of N nT<  and 
k nT<  which provides an M with a minimum error of fit in an LSQ metric for 
modeling the physical process for the output data.  

The hypothesis in 3.4 is intuitive, supported by experimentation with real 
word data, FDO model identification, model fit tests to input data, and model 
prediction power measured from resilience against input variations in different 
shapes from those used in model training.  

The hypothesis supports incentives to experimentations with Occam’s Razor 
to cut the size of M to the smallest but still powerful for predictions and low in 
RMS fitting error. 

4. Application Example of FDO Model for Methane Inflow  
and Concentration Variation under Barometric Pressure  
Changes  

4.1. Physics-Based Model Test for Pressure-Driven Methane  
Inflow Prediction 

Monitored data for atmospheric conditions from operating mine for 327 days 
under normal operating conditions are taken from a previous study [13] for the 
subject DU learning analysis. The monitored parameters are air flow rate in the 
face drift (Qa), incoming methane (CH4) gas concentration at the main gate 
(cMG), exiting Methane concentration at the tail gate (cTG), and barometric pres-
sure Pb, all sampled at 5-minute time intervals.  

The nature of the methane mass influx due to pressure-driven, diffusive Dar-
cy’s flow with time was studied using the NTCF model technique [12] in a pre-
vious report, to be published separately from the current work. For phys-
ics-based, methane flux calculation, the following matrix equation is used:  

( )st 0
ˆ

M MQ M A P P Q⋅ −⋅= + ,                    (19) 

where st, , ,M M AQ M P P− , and 0Qq  are respectively the methane mass flux 
Q-vector, [kg/s]; the admittance matrix, [kg/s/m2/Pa]; the surface area, [m2]; the 
pressure driving force Q-vector [Pa] from monitored barometric pressure data 
at the working face; and the initial methane emission mass flux Q-vector, 0Q  
[kg/s], assumed to be kept at zero. The MM A⋅  term may be considered a cali-
brated, but an a priori PBO in (19).  

The Q-vectors in (19) may be formed from a time-series string of data ac-
cording to the concept introduced in [13]. For simplicity in presentation, these 
are all assumed to be simple, re-sampled quantities taken at monotonously vari-
able, uneven time intervals, iτ , [ ]1,i N∈  of the time-variable values (either 
measured or calculated) over a sliding time window in N steps, introduced in 
[13]. For example, a Q-vector sampling curve is shown in Figure 1 (left side) for 

35N =  for a full time span of 327 days sampled monotonously, refining from  
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Figure 1. Q-vectors τ time divisions for 327 days with N = 35 (left); and for 10 days with N = 10 (right).  
 
coarse to the finest, with the last step of ( )1 1N Nt τ τ −∆ = − = . Figure 1 (right 
side) shows a sampling curve for a reduced model size and sampling number of 

10N = , and also a reduced time span of 10 days for the sweeping, sliding time 
window, with the finest time step kept at 1t∆ = . 

In the 35N =  example, each step is 5 minute (300 s) long, progressing over 
the real time scale between the beginning of day 1 to day 327 in 5 minute inter-
vals, giving 94,176 steps for the calculation time domain, irrespective of the 
model and Q-vector size, N. While the time steps are equal, the Q-vectors in (19) 
are sampled elements, carrying the full history from coarse to fine steps for the 
full time period of 327 days if desired.  

The MM methane transport admittance matrix for the mine’s working face is 
calculated from an analytical-computational model, based on the indicial admit-
tance function and its structure shown in (7)-(10). The resulting, lower-diagonal 
MM matrix is plotted in Figure 2 in two views for the positive and negative do-
mains. As shown, the close-to diagonal elements under the main diagonal do-
minate over the far off-diagonal elements. 

For an assumed 5
st 4 10P = ×  [Pa] strata gas pressure and the measured ba-

rometric pressure, P̂ , the methane-driving pressure difference variation is giv-
en in Figure 3 for all time steps (left); and for an enlarged range (right). The 
methane flux Q-vector, MQ  in [kg/s], is calculated from (19) using a calibrated, 
methane transferring surface area, A, in [m2], which provides an optimum 
match for the observed ˆ

MQ , in [kg/s] from monitored concentration data over 
the entire 327 days:  

( ) ( )( )2

st
ˆ( , , minnT N

M Mj i A M P P i j Q i j − −⋅ ⋅ =∑ ∑         (20) 

In (20), the observed methane flux Q-vector, ˆ
MQ , is calculated from moni-

tored data as follows: 

( )ˆ ˆ ˆ ˆTG MG
MQ Qa c c= ⋅ − ,                      (21) 
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Figure 2. MM matrix for pressure-driven methane transport in the positive domain (left) and negative domain (right). 
 

   

Figure 3. The methane-driving pressure variation stP P−  over 327 days (94,176 steps of 5-min length, left); and zoom-in (right). 

 
where Q̂a , ˆTGc , and ˆMGc  are the monitored air flow rate, [kg/s]; monitored 
concentration at the tail gate [kg/kg]; and monitored concentration at the main 
gate [kg/kg], all repeatedly sampled into Q-vector forms in size of N nT× . 

The last (newest) elements of observed methane flux Q-vector, ( )ˆ ,MQ N j , 
[ ]1,j nT∈  are plotted in Figure 4, together with the last element of the pre-

dicted ( ),MQ N j  values from (19) for comparison. As shown, the calibrated, 
analytical model can approximate well the measured ˆ

MQ  trend only in an av-
eraged sense over 327 days, but poorly on the fine time scale, being insensitive in 
ˆ

MQ  to the fine, low-amplitude pressure variations with time.  

4.2. FDO Model Test for Pressure-Driven Methane Inflow  
Prediction 

As the physics-based, methane flux model cannot explain the measured inflow 
fluctuations with time, the FDO model identification method is used for directly  
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Figure 4. Measured and modeled methane flux Q-vectors: measured, ( )35
ˆ 35,Q j ; and ca-

librated, analytical PBO model, ( )35 35,Q j . 

 
obtaining matrix operator MAM  from observed data to satisfy observation:  

( )max
ˆˆ ˆ

M MA P PQ M= −⋅ ,                   (22) 

where ˆ
MQ , MAM , and max

ˆ ˆP P− , and 0Qq  are respectively the methane mass 
flux Q-vector, [kg/s]; the admittance matrix, [kg/s/Pa]; and the pressure driving 
force Q-vector [Pa] from the fine-scale pressure variation in the air flow at the 
face.  

Note that the large pressure difference between the hydrostatic pressure of the 
strata and the air, st

ˆP P− , in (19) is greatly reduced to the scale of the fine vari-
ations withing the atmospheric pressure, assuming as the short time driving 
force for methane release. The pressure driving force used in (22) is processed 
from the difference between the minimum, observed barometric pressure read-
ings over the 327 days, minus the time-variable, monitored and sampled pres-
sure values, P̂ . Figure 5 shows the last, most recent elements of the Q-vectors, 

max
ˆ ˆP P−  over all time steps (left); and in an enlarged range of 4 days (right).  

For finding MAM  in (22), the deconvolution procedure described in the 
foregoing with (11)-(16) is used first, embracing the entire time period of 327 
days. 35N =  is selected for the model and Q-vectors size, a single “sliding 
window” size of 327 days, and 300 288 86400k = × =  samples at 5-minute time 
steps for repetition in the LSQ solution. 

The model identification procedure converges in a few seconds, resulting in 
an MAM  operator, plotted in Figure 6 in two views for the positive and nega-
tive domains. As shown, MAM  is a lower triangular matrix with variable ele-
ments under the main diagonal, dominating in the lower-right half, representing 
the newest data, over the upper-left half, representing the past, history data in 
the input and output Q-vectors. 
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Figure 5. The methane-driving pressure variation maxP P−  over 327 days (94,176 steps of 5-min length, left); and zoom-in 
(right). 
 

   

Figure 6. MMA matrix for pressure-driven methane transport in the positive domain (left) and negative domain (right). 
 

The shape of MAM  in Figure 6 is unlike that of MM  in Figure 2, revealing 
fundamental differences in the physical processes, assumptions in the me-
thane-driving pressure difference force, and the foundations of the operator 
model, moving from speculative to be data-driven. The experimental foundation 
of MAM  lends its priority over MM  that comes from simplified assumptions. 
The high value of A necessary for matching calibration in Figure 4 indicates that 
the measured methane flux variation may respond to fast pressure variation 
from a shallower strata layer of much larger surface area than that for the 
large-amplitude and slower pressure change during coal extraction from the 
long wall.  

The performance of MAM  can be checked using the monitored max
ˆ ˆP P−  

data, and predicting 35Q  from (22), and comparing it with the measured data, 

,35
ˆ

MQ . The results are in Figure 7, showing that the FDO model covers well the 
variation of the monitored methane flux data. The RMS error of match, divided  
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Figure 7. Measured and modeled methane flux variation over 327 days: ( )35
ˆ 35, iQ t , and ( )35 35, iQ t  from FDO(35) model (left); 

enlargement for four days (right). 
 
by the arithmetic average of the methane flux is 0.29, that is, 29% for the entire 
327 days with a single FDO model, comprising of a lower-triangular, 35 × 35 
matrix with only 630 non-zero elements.  

The error of fit of the FDO model and its optimization procedure are charac-
terized by its probability density function and histogram, shown in Figure 8. 
The histogram matches very closely the normal distribution graph, proving the 
success of the LSQ procedure for random, white-noise error minimization. 

4.3. Simplified FDO Models for Real-Time Analysis and  
Forecasting 

Although a single FDO model may be obtained in seconds from a past, moni-
tored data over 327 days, the acquisition time interval for the data series is long 
and exhausting. For real-time data analysis and forecasting, the concept of Oc-
cam’s Razor is used to reduce the size of N as well as to revert to a simplified 
model according to (18), converting the full matrix to diagonal elements for eli-
minating model complexity. Experimentation is necessary to find the best com-
bination of N (size of operator and Q-vectors), nT (history time span, that is, the 
sliding time window with N divisions), and k (number of repetitions of the 
Q-vectors at ∆t successions). According to Hypothesis 3.4, there should be a best 
combination for each task, however difficult it may be to find it.  

4.3.1. The First Occam’s Razor Example for an FDO Model 
Is given with a reduced-size selection of 10N = , 10nT =  days (2880 time 
steps); k = 10 days (2880 time steps) for Q-vectors processing; and FDO model 
identification for each 5-minute, real time instant over the allowable time period 
that stretches from day 10 (step 2880) to day 316 (approx. step 91,000). Each of 
the approx. 87,000 model is identified and may be used for analyzing of the 
sub-system around the subject time instant or forecasting its behavior in the  
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Figure 8. Probability density function and histogram of the error of fit of FDO model (N 
= 35, RMS = 0.0433). 
 
immediate future before the next data and sub-model is already available. Each 
10 × 10 lower triangle, sparse matrix is stored in a compressed form arranging 
the non-zero elements row-continuously into a single, 55-element column vec-
tor for further processing. Figure 9 shows all such vectors plotted along the time 
steps showing high variations between the consecutive models.  

The measured and the modeled methane flux variation are shown in Figure 
10 for over 300 days (left), and for a four-day time period as an enlargement 
(right). Figure 10 depicts three overlaid graphs such as: 1) the measured 
Q-vector’s last element, ( )10

ˆ 10, iQ t ; 2) the last element of ( )10 10, iQ t  from the 
full FDO model using prediction model (22); and 3) the last element of 

( )10 10, iQ t  from the simplified, diagonal FDO model using diagonalization (18) 
and prediction model (22). As shown, graph (1) of the measured methane flux is 
followed well with graphs (2) and (3) from the two models. As expected, graph 
(2) from the full FDO model shows a closer match that graph (3) from the di-
agonal FDO model to graph (1). Graph (3) is of a simplified curve, reacting fast-
er, yet less sensitively to sudden jumps in its driving pressure difference input, as 
it will be shown in following applications.  

Figure 11 shows the probability density function and histogram of error of fit 
of the FDO model. The match is close to a normal distribution graph, but not as 
good as that found in Figure 8 for the full model.  

4.3.2. The Second Occam’s Razor Example for an FDO Model 
Is given with a reduced-size selection of 15N = , 15nT =  days (4320 time 
steps); k = 50 days for Q-vectors processing; and FDO model identification for 
each 5-minute, real time instant over the allowable time period that stretches 
from day 15 to day 312 (approx. step 86,000). Each of the approx. 78,000 model 
is identified and may be used for analyzing of the sub-system around the  
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Figure 9. The variation of the 55 nonzero elements of the compressed, row-continuous 
matrixes of FDO over all time steps (N = 10).  
 

    

Figure 10. Measured and modeled methane flux variation over 300 days: ( )10
ˆ 10, iQ t , measured; ( )10 10, iQ t , predicted by the av-

eraged, full Q model; and ( )10 10, iQ t , from the QD model, (left); enlargement for four days (right). 

 
subject time instant. The 15 × 15 lower triangle, sparse matrixes are stored in a 
compressed form arranging the non-zero elements row-continuously into single, 
120-element column vectors for further processing. Figure 12 shows all such 
vectors plotted along the time steps. 

The measured and the modeled methane flux variation are shown in Figure 13 
for over 300 days (left), and for a four-day time period as an enlargement (right). 
Figure 13 shows three overlaid graphs such as 1) the measured Q-vector’s last 
element, ( )15

ˆ 15, iQ t ; 2) the last element of ( )15 15, iQ t  from the full FDO model 
using prediction model (22); and 3) the last element of ( )15 15, iQ t  from the 
simplified, diagonal FDO model using diagonalization (18) and prediction mod-
el (22). As shown, graph (1) of the measured methane flux is followed  
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Figure 11. Probability density function and histogram of the error of fit of FDO model 
(N = 10, RMS = 0.0576). 
 

 

Figure 12. The variation of the 120 nonzero elements of the compressed, row-continuous 
matrixes of FDO over all time steps (N = 15).  
 

    

Figure 13. Measured and modeled methane flux variation over 300 days: ( )15
ˆ 15, iQ t , measured; ( )15 15, iQ t , predicted by the av-

eraged, full Q model; and ( )15 15, iQ t , from the QD model, (left); enlargement for four days (right). 
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well with graphs (2) and (3) from the two models. As expected, graph (2) from 
the full FDO model shows a closer match to graph (1) than graph (3) from the 
diagonal FDO model. The FDO models results in the second Occam’s Razor 
example are favorably compare with those in the first example, showing that in-
creased training time and model size are still advantageous. However, longer 
training time delays the availability of the FDO model for real-time analysis and 
forecasting.  

The error of fit of the FDO model to input data and the optimization proce-
dure are characterized by the probability density function and histogram, de-
picted in Figure 14, showing a close to normal error distribution with a slight 
offset at the lowest part of the histogram curve, indicating a process bias that 
may be caused by an unknown side-effect, trended as systematic error by the DU 
model identification.  

The methane concentration at the tail gate, TGc , the ultimate parameter of 
interest for work safety, is calculated back based on (21) from the full FDO, as 
well as for the simplified, diagonal model for methane mass flux, MQ , as:  

ˆˆTG MG
Mc c Q Qa= + .                     (23) 

As seen in (23), TGc  may be affected by three components, ˆMGc , MQ  from 
the FDO model affected by P̂ , and Q̂a . Therefore, the prediction of MQ  
from the FDO model becomes part of a three-variable input-output algebraic 
model,  , for methane concentration analysis and forecast as: 

( )ˆˆ , ˆ,TG MGc c Qa P=  .                    (24) 

Using the available data, the quality of (23) and (24) is checked, comparing 
the calculated results from (23) with the measured results, ˆMGc , for the full and 
the simplified, diagonal models for MQ , depicted in Figure 15 with the three  
 

 

Figure 14. Probability density function and histogram of the error of fit of FDO model 
for methane flux (N = 15, RMS = 0.0941). 
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Figure 15. Measured and modeled methane concentration variation (converted into per cent from mass fraction) over 300 days: 

( )15
ˆ 15, iQ t , measured; ( )15 15, iQ t , predicted by the averaged, full Q model; and ( )15 15, iQ t , from the QD model, (left); enlarge-

ment for four days (right). 
 
curves, (1)-(3), similarly defined to those in Figure 13. As shown, the concentra-
tion trends and matches from (23) are similar to those presented in Figure 13 
for MQ . 

4.3.3. The Third Occam’s Razor Example for an FDO Model 
Is derived from the second by time-averaging the 78,000 individual FDO models. 
Averaging further simplifies the individual FDO models, replacing them with a 
single matrix for the entire time period. The mesh of the averaged, restored, full 
matrix operator of the single FDO is shown in Figure 16 in two views: in the 
positive (right), and negative (left) domains. The averaged matrix should be 
comparable to the single matrix of MAM  obtained in 4.2. 

The measured and modeled methane flux variations are shown in Figure 17 
(left) over 300 days, depicting ( )15

ˆ 15, iQ t , measured, ( )15 15, iQ t , predicted by 
the averaged, full FDO model, and ( )15 15, iQ t , predicted by the diagonal FDO 
model, on the left. Enlargement of the curves for a four days’ time period is also 
shown in Figure 17 (right). 

Figure 18 shows the error of fit of the averaged FDO model to input data and 
its optimization procedure, comparing the probability density function and his-
togram of the error. As depicted, the error is greater for the averaged FDO mod-
el (RMS = 0.0627) than that for the individual model’s case in 4.2 (RMS = 
0.0433); but is still close to the normal distribution.  

4.4. Brief Discussion of the FDO Models in 4.2 and 4.3 

The FDO models described in 4.2 and 4.3 have shown simulation results using 
monitored data under normal operations for both methane mass flux liberated 
from the strata and the resulting methane concentration variations in the air, 
correlated with the variation of barometric pressure. The variation of the sampled  
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Figure 16. Average of the individual matrices for the FDO (N = 15) of pressure-driven methane transport in the positive domain 
(left) and negative domain (right). 
 

  

Figure 17. Measured and modeled methane flux variations over 300 days: ( )15
ˆ 15, iQ t , measured, ( )15 15, iQ t , predicted by the 

averaged Q model; and ( )15 15, iQ t , from the QD model, (left); enlargement for four days (right). 

 

 

Figure 18. Probability density function and histogram of the error of fit of the averaged 
FDO model (N = 15, RMS = 0.0627). 
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data with time for both methane mass flux and barometric pressure under nor-
mal operation are moderate and acceptable for the safety of work at the longwall 
face. The variations may be considered normal, attributed to the minute-wise, 
hourly, and daily, periodically changing working conditions, the movement of 
the shearer, the progression of the moving longwall face and the shields, and the 
variations of the incoming air flow rate and its pressure, affected the upstream 
part of the ventilation system. As shown, the FDO model predictions performed 
remarkably well against monitored data from normal operations, especially 
those with simplifications following the philosophy of Occam’s Razor. All FDO 
models are obtained by the DU method of the methane transport system. 
Therefore, they are ready for analyzing the effect of extreme changes in the input 
variables, such as in ˆˆ ,MGc Qa , and P̂  listed in (24), affecting the highest me-
thane concentration, TGc , at the working face. 

4.5. Pressure-Driven, Extreme Methane Liberation Analysis and  
Forecasting 

The FDO models described in 4.2 and 4.3 are all tested for analyzing the effect of 
sudden, extreme barometric pressure variations in the working face. The syn-
thetic, extreme barometric pressure variation is created from the monitored P̂  
data steam by superimposing two, negative, absolute barometric pressure spikes 
starting at the 40,000 and 60,000 time steps, shown in Figure 19 as positive dif-
ference steps of max

ˆ ˆP P−  over all time steps. The absolute pressure spikes in-
clude 10 steps of linear descent by 5000 [Pa], 10 steps of the negative plateau, 
and 10 steps of linear ascent to the undisturbed value, all shown as positive 
pressure difference changes in Figure 19. 

4.5.1. ORP1: Perturbed Input Pressure Prediction Using the First  
Occam’s Razor’s FDO Model  

The model prediction result for methane flux using the subject FDO with the  
 

  

Figure 19. Assumed barometric pressure difference variation with two synthetic, extreme, barometric pressure spikes at 40,000 
and 60,000 time steps (left); and enlargement of one spike (right).  
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hypothetical, synthetic, perturbed barometric pressure input is shown in Figure 
20. The modeled methane flux variations over 300 days are depicted (on the left) 
by three curves: 1) ( )10

ˆ 10, iQ t , measured, unperturbed; 2) ( )10 10, iQ t , per-
turbed, predicted by the full Q model; and 3) ( )10 10, iQ t , from the QD model, 
(left). Figure 20 (on the right) shows enlargement for four days of curves 
(1)-(3). 

The model prediction result for the percentage of methane concentration us-
ing the subject FDO with the hypothetical, synthetic, perturbed barometric 
pressure input is shown in Figure 21. The modeled methane concentration vari-
ations over 300 days are depicted (on the left) by three curves: 1) ( )10

ˆ 10, iQ t , 
measured, unperturbed; 2) ( )10 10, iQ t , perturbed, predicted by the full Q model;  
 

  

Figure 20. (ORP1) Modeled methane flux over 300 days: ( )10
ˆ 10, iQ t , measured, unperturbed; ( )10 10, iQ t , perturbed, predicted Q 

model; and ( )15 10, iQ t , QD model, (left); enlargement for four days (right). 

 

  

Figure 21. (ORP1) Modeled methane concentration over 300 days: ( )10
ˆ 10, iQ t , measured, unperturbed; ( )10 10, iQ t , perturbed, 

predicted Q model; and ( )10 10, iQ t , QD model, (left); enlargement for four days (right). 
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and 3) ( )10 10, iQ t , from the QD model, (left). Figure 21 (on the right) shows 
enlargement for four days of curves (1)-(3). 

4.5.2. ORP2: Perturbed Input Pressure Prediction Using the Second  
Occam’s Razor’s FDO Model 

The model prediction result for methane flux using the subject FDO with the 
hypothetical, synthetic, perturbed barometric pressure input is shown in Figure 
22. The modeled methane flux variations over 300 days are depicted (on the left) 
by three curves: 1) ( )15

ˆ 15, iQ t , measured, unperturbed; 2) ( )15 15, iQ t , per-
turbed, predicted by the full Q model; and 3) ( )15 15, iQ t , from the QD model, 
(left). Figure 22 (on the right) shows enlargement for four days of curves 
(1)-(3). 

The model prediction result for the percentage of methane concentration us-
ing the subject FDO with the hypothetical, synthetic, perturbed barometric 
pressure input is shown in Figure 23. The modeled methane concentration vari-
ations over 300 days are depicted (on the left) by three curves: 1) ( )15

ˆ 15, iQ t , 
measured, unperturbed; 2) ( )15 15, iQ t , perturbed, predicted by the full Q model; 
and 3) ( )15 15, iQ t , from the QD model, (left). Figure 23 (on the right) shows 
enlargement for four days of curves (1)-(3). 

4.5.3. ORP3: Perturbed Input Pressure Prediction Using the Third,  
Averaged-Type Occam’s Razor’s FDO Model with the 10 × 10 Model  
Size  

The model prediction result for methane flux using the subject, averaged FDO 
with the hypothetical, synthetic, perturbed barometric pressure input is shown 
in Figure 24. The modeled methane flux variations over 300 days are depicted 
(on the left) by three curves: 1) ( )10

ˆ 10, iQ t , measured, unperturbed; 2) ( )10 10, iQ t , 
perturbed, predicted by the averaged Q model; and 3) ( )10 10, iQ t , from the QD 
model, (left). Figure 24 (on the right) shows enlargement for four days of curves 
(1)-(3).  
 

  

Figure 22. (ORP2) Modeled methane flux over 300 days: ( )15
ˆ 15, iQ t , measured, unperturbed; ( )15 15, iQ t , perturbed, predicted Q 

model; and ( )15 15, iQ t , QD model, (left); enlargement for four days (right). 

https://doi.org/10.4236/am.2022.1312062


G. Danko 
 

 

DOI: 10.4236/am.2022.1312062 1013 Applied Mathematics 
 

   

Figure 23. (ORP2) Modeled methane concentration variations over 300 days: ( )15
ˆ 15, iQ t , measured, unperturbed; ( )15 15, iQ t , 

perturbed, full Q model; and ( )15 15, iQ t , QD model, (left); enlargement for four days (right). 

 

    

Figure 24. (ORP3) Modeled methane flux variations over 300 days: ( )10
ˆ 10, iQ t , measured, unperturbed; ( )10 10, iQ t , perturbed, 

predicted by the averaged Q model; and ( )10 10, iQ t , from the QD model, (left); enlargement for four days (right). 

 
The model prediction result for the percentage of methane concentration us-

ing the subject, averaged FDO with the hypothetical, synthetic, perturbed baro-
metric pressure input is shown in Figure 25. The modeled methane concentra-
tion variations over 300 days are depicted (on the left) by three curves: 1)  

( )10
ˆ 10, iQ t , measured, unperturbed; 2) ( )10 10, iQ t , perturbed, predicted by the 

averaged Q model; and 3) ( )10 10, iQ t , from the QD model, (left). Figure 25 (on 
the right) shows enlargement for four days of curves (1)-(3). 

4.5.4. ORP4: Perturbed Input Pressure Prediction Using the Third,  
Averaged-Type Occam’s Razor’s FDO Model with the 15 × 15 Model  
Size  

The model prediction result for methane flux using the subject, averaged FDO  

https://doi.org/10.4236/am.2022.1312062


G. Danko 
 

 

DOI: 10.4236/am.2022.1312062 1014 Applied Mathematics 
 

  

Figure 25. (ORP3) Modeled methane concentration over 300 days: ( )10
ˆ 10, iQ t , measured, unperturbed; ( )10 10, iQ t , perturbed, 

averaged Q model; and ( )10 10, iQ t , QD model, (left); enlargement for four days (right). 

 
with the hypothetical, synthetic, perturbed barometric pressure input is shown 
in Figure 26. The modeled methane flux variations over 300 days are depicted 
(on the left) by three curves: 1) ( )15

ˆ 15, iQ t , measured, unperturbed; 2) ( )15 15, iQ t , 
perturbed, predicted by the averaged Q model; and 3) ( )15 15, iQ t , from the QD 
model, (left). Figure 26 (on the right) shows enlargement for four days of curves 
(1)-(3). 

The model prediction result for the percentage of methane concentration us-
ing the subject, averaged FDO with the hypothetical, synthetic, perturbed baro-
metric pressure input is shown in Figure 27. The modeled methane concentra-
tion variations over 300 days are depicted (on the left) by three curves: 1) 

( )15
ˆ 15, iQ t , measured, unperturbed; 2) ( )15 15, iQ t , perturbed, predicted by the 

averaged Q model; and 3) ( )15 15, iQ t , from the QD model, (left). Figure 27 (on 
the right) shows enlargement for four days of curves (1)-(3). 

4.5.5. ORP5: Perturbed Input Pressure Prediction Using the Full,  
Averaged FDO Model with 35 × 35 Model Size  

The model prediction result for methane flux using the subject, averaged FDO, 

MAM , from 4.2 with the hypothetical, synthetic, perturbed barometric pressure 
input is shown in Figure 28. The modeled methane flux variations over 300 days 
are depicted (on the left) by three curves: 1) ( )35

ˆ 35, iQ t , measured, unper-
turbed; 2) ( )35 35, iQ t , perturbed, predicted by the averaged Q model; and 3) 

( )35 35, iQ t , from the QD model, (left). Figure 28 (on the right) shows enlarge-
ment for four days of curves (1)-(3). 

The model prediction result for the percentage of methane concentration us-
ing the subject, averaged FDO with the hypothetical, synthetic, perturbed baro-
metric pressure input is shown in Figure 29. The modeled methane concentra-
tion variations over 300 days are depicted (on the left) by three curves: 1)  

( )35
ˆ 35, iQ t , measured, unperturbed; 2) ( )35 35, iQ t , perturbed, predicted by the  
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Figure 26. (ORP4) Modeled methane flux over 300 days: ( )15
ˆ 15, iQ t , measured, unperturbed; ( )15 15, iQ t , perturbed, averaged Q 

model; and ( )15 15, iQ t , QD model, (left); enlargement for four days (right). 

 

   

Figure 27. (ORP4) Modeled methane concentration over 300 days: ( )15
ˆ 15, iQ t , measured, unperturbed; ( )15 15, iQ t , perturbed, 

averaged Q model; and ( )15 15, iQ t , QD model, (left); enlargement for four days (right). 

 
averaged Q model; and 3) ( )35 35, iQ t , from the QD model, (left). Figure 28 (on 
the right) shows enlargement for four days of curves (1)-(3). 

4.5.6. ORP6: Perturbed Input Pressure Prediction Using the PBO Model  
with 35 × 35 Model Size  

The PBO model is used for predicting methane release as a response to the fine 
scale, perturbed, pressure difference input driving force of max

ˆ ˆP P− , shown in 
Figure 19. A further calibration multiplier was necessary to re-calibrate the PBO 
matrix elements for matching the predicted, average rate of methane release for 
300 days. 

The simulated methane release rate variations over 300 days are shown in 
Figure 30 by three curves: 1) ( )35

ˆ 35, iQ t , measured, unperturbed; 2) ( )35 35, iQ t ,  
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Figure 28. (ORP5) Modeled methane flux variations over 300 days: ( )35
ˆ 35, iQ t , measured, unperturbed; ( )35 35, iQ t , perturbed, 

predicted by the averaged Q model; and ( )35 35, iQ t , from the QD model, (left); enlargement for four days (right). 

 

  

Figure 29. (ORP5) Modeled methane concentration variations over 300 days: ( )35
ˆ 35, iQ t , measured, unperturbed; ( )35 35, iQ t , 

perturbed, predicted by the averaged Q model; and ( )35 35, iQ t , from the QD model, (left); enlargement for four days (right). 

 
perturbed, predicted by the re-calibrated PBO model; and 3) ( )35 35, iQ t , from 
the QD model, (left). Figure 30 (on the right) shows enlargement for four days of 
curves (1)-(3). The re-calibration multiplier, determined by trial-and-error, is 
verified by Figure 30, showing a good match in the average rate of methane re-
lease between model and measured data.  

Figure 30 shows high positive and negative, random methane release spikes. 
The positive, random spikes are in the realistic regime against monitored data. 
The negative spikes are considered linearized model artifacts, as discussed in the 
foregoing. The PBO model response in methane release increase to the synthetic, 
negative, absolute pressure spikes are definite and high, about 2 to 3 times higher 
than those experienced from the FDO models. 
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Figure 30. (ORP6) Modeled, perturbed methane flux variations together with unperturbed measurement results over 300 days: 

( )35
ˆ 35, iQ t , measured, unperturbed; ( )35 35, iQ t , perturbed, predicted by the calibrated, analytical PBO Q model; and ( )35 35, iQ t , 

from the analytical PBO QD model, (left); enlargement for four days (right). 

4.6. Brief Discussion of Pressure-Driven, Extreme Methane  
Liberation Analysis Results and Forecasting Applications 

4.6.1. Interpretation and Application of the FDO Model for Analysis  
Application of the FDO model with strongly perturbed, suddenly increased ba-
rometric pressure input, significantly different in shape and nature from the 
monitored data used in FDO model identification rases the risk of errors due to 
the potential presence of false correlation in the input and output data streams. 
Such false correlation may be suspected due to the common influence of mining 
activities and operations at the longwall face upon both monitored and recorded 
input pressure and output methane concentration data. Lacking proof to exclude 
it, a hypothesis must be made about the lack of such false correlation for accept-
ing the results presented hereby for FDO model analysis forecasting.  

As depicted in Figures 20-29, the model predictions for methane liberation 
due to pressure-depression pulses generally agree, all showing responses in me-
thane flux pulses within a −1.5 to 1.5 [kg/s] range for the 300 m face drift. The 
larger the model size from N = 10 to 35, the higher the methane flux peaks in 
both the negative and the positive direction.  

The extreme, negative values from a linear model must be interpreted as a 
physically invalid extrapolation, well outside the small, all-positive validity 
range, that is used in model identification. Only the positive methane flux, en-
tering the air flow is physically plausible. Methane mass flux may pulsate within 
a positive domain up and down, such as observed in Figure 4 (with only a 
minute violation of the range at a few points, indicating likely measurement er-
ror uncertainty in the input data) used as the input data for model identification. 
Methane flow direction from the air flow into the strata is inconceivable, as me-
thane mixes with air rapidly and only a low-concentration mixture (but not pure 
methane) may be driven back to the porous and fractured strata under forcing 
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driving pressure.  
However, the tendency to block methane inflow right after the start of the 

Q-vector of the negative pressure pulse reveals useful methane transport infor-
mation about the linearized system. It would be counterproductive to consider 
forcefully eliminating the unwanted negatives from the results. The beginning 
part of the Q-vector refers to the oldest data in the sliding window, varying from 
about 5.5 days (N = 10) to 70 days (N = 35) as shown in Figure 1. The beginning 
part of the max

ˆ ˆP P−  pressure Q-vector may be initiating methane blockage 
from a farther distance in the methane-bearing strata and starting a “peristaltic 
wave” of methane flux into the airway, culminating in a series of positive and 
negative pulses toward the latest time, showing dynamic fluctuations and defi-
nite time delays in Figures 20-29. 

The diagonal simplification of the FDO model in (18) replaces M with a di-
agonal matrix, MD. The physical meaning of diagonalization is an assumed his-
tory variation change in the driving force’s Q-vector (that is, in P̂ ), forcing to 
replace the real, variable history (used during model identification) into an ab-
stracted, step change variation in P̂ , constant from the beginning to the most 
recent value. The step change solution eliminates the delayed, “fly-wheel” effects 
in the prediction for methane flux with time in the simplified, diagonal model 
solution.  

It is interesting to see that all diagonal, MD model solutions (marked as QD 
curves), show acceptable (albeit somewhat simplified) match to the measured, 
unperturbed data, but robust, single, positive methane flux as well as methane 
concentration responses to pulse-type perturbations. Note that MD inherits all 
information carried in the full M matrix of the FDO model, and it integrates, 
rather than forcefully eliminates unwanted response components.  

It is convenient to use the modeled pulses for the methane flux rates and the 
methane concentrations from the MD models for their apparent stability marked 
as QD curves in Figures 19-29. The small size, sliding window, full model with 

10N =  appears to be satisfactory for the response analysis to barometric pres-
sure depression pulses. Each model is trained over a 10-day sliding time window, 
with past data sampled every 5 minutes for 2880 readings for processing the in-
put Q vectors. Each model is evaluated within 10−3 sec on a regular laptop com-
puter. Each model is updated at every 5 minutes, allowing to adjust to opera-
tional changes, and evaluate model consistence relative to previous models.  

4.6.2. Comment on Checking the Prospect of False Correlation in the FDO  
Models 

The PBO model is used for predicting methane release as a response to the the 
fine scale, perturbed, pressure difference input shown in Figure 30. An accepta-
ble match is seen between the predicted, average rate of methane release from 
the re-calibrated PBO against the measured data for 300 days. The PBO results 
show high sensitivity with positive and negative, random methane release spikes.  

Nevertheless, the PBO model response in methane release increase to the 
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synthetic, negative, absolute pressure spikes are definite and high, about 2 to 3 
times higher than those experienced from the FDO models.  

In spite of understandable differences from the FDO models, the PBO model 
verifies a definite, physically plausible, deterministic methane release due to 
negative absolute barometric pressure changes. Since the PBO model is free from 
false correlation effects, its general agreement with the FDO models makes the 
prospect of false correlations unlikely in the FDO models.  

4.6.3. Application of the FDO Model for Forecasting 
Each 5-minute FDO model is applicable for a much longer time period than its 
history time period, backward and forward, as shown in model matching exam-
ples in Figures 20-27 where acceptable difference is seen in the model predic-
tions between the instantaneous (full) and the averaged models over 300 day 
time periods. A slowly changing FDO model can be used for forecasting re-
sponse outcome for an upcoming, conceivable, future variation of its input pa-
rameters, such as demonstrated in the examples for two, negative, barometric 
pressure pulses. 

Similarly, for example, a sudden fan stoppage in the ventilation network may 
generate pressure as well as simultaneous air flow rate pulses. Such disturbance 
may be analyzed with the latest, undisturbed FDO model, and the input Q vec-
tors, substituted in (22) and (23) for the instantaneous forecasting of methane 
flux liberation and future concentration variation.  

For preventive interventions, it is advisable to incorporate the analysis of the 
mines’ methane transport system by identifying their FDO models, and analyze 
their dynamic responses to any conceivable disturbances for understanding the 
safety and health risks. This way, the regular forecast information from weather 
service, or from mine operations risk analysis can be turned into quantitative 
model input and methane concentration warning data from the FDO models.  

5. Concluding Remarks 

A matrix operator model is developed and tested for a system model building 
and time-series data analysis. The deconvolution procedure identifies an FDO 
model from monitored, uncontrolled data streams using both system input and 
response output vectors obtained over past time intervals.  

The FDO model is applicable to predict future output features for deviated 
input vectors from the expected, future input for hazard evaluation, for example, 
for methane inflow into the working face in an underground mine.  

The results show that a complex gas inflow system in a mine example can be 
approximated well within reasons by a PBO model only for processes that are 
well understood, filtered, and simplified.  

FDO models may be identified for matching the unexplainable, short-term 
variations with time in the measured data of methane inflow. The numerical 
coefficients of PBO and FDO model are found to differ by two to three orders of 
magnitude for methane release as a function of short-time barometric pressure 
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variations.  
For real-time data analysis and forecasting, Occam’s Razor is used to reduce 

the size of N and as well as to revert to a simplified model according to (18), 
converting the full matrix to diagonal elements for eliminating model complexi-
ty. Experimentation is necessary to find the best combination of N (size of oper-
ator and Q-vectors), nT (history time span, that is, the sliding time window with 
N divisions), and k (number of repetitions of the Q-vectors at ∆t successions). 

A hypothesis is formulated for the learnability of FDO of a physical process 
from uncontrolled input-output data streams in 3.4 intuitively, supported by 
experimentation with real word data, FDO model identification, model fit tests 
to input data, and model prediction power measured from resilience against in-
put variations in different shapes from those used in model training.  

As being data-driven, the significantly different results from an FDO versus 
the PBO models may shed light of methane release processes poorly understood 
and modeled in PBO, missing the relevant boundary conditions or input data 
interpretation for the modeled processes. 

However, problems in the monitored and recorded data fluctuations, their 
quality and inter-dependence may still be another reason for differences between 
the PBO and FDO models. False input-output relations may be perceived if both 
inputs and outputs are caused by a third, common disturbing factor, not entered 
as an independent input in the model identification procedure. False correlation 
may appear in the application of the model which will be valid only when the 
third, common factor is also present.  

An experimental proof, using a re-calibrated PBO model is shown to likely 
exclude the likelihood of false correlation in the presented study.  
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