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Abstract 
The implementation of optimal control strategies involving preventive meas-
ures and antiviral treatment can significantly reduce the number of clinical 
cases of influenza. In this paper, a model for the transmission dynamics of in-
fluenza is formulated and two control strategies involving preventive meas-
ures (awareness campaign, washing hand, using hand sanitizer, wearing mask) 
and treatment are considered and used to minimize the total number of in-
fected individuals and associated cost of using these two controls. The result-
ing optimality system is solved numerically. Hamiltonian is formulated to in-
vestigate the existence of the optimal control, in the optimal control model. 
Pontryagin’s Maximum Principle is applied to describe the control variables 
and the objective function is designed to reduce both the infection and the 
cost of interventions. From the numerical simulation, it is observed that in 
the case of high contact rate (β = 3), both the controls work for a longer pe-
riod of time to reduce the disease burden. The optimal control analysis and 
numerical simulations reveal that the interventions reduce the number of 
exposed and infected individuals. 
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1. Introduction 

Influenza viruses cause the infectious disease, influenza, commonly known as 
“the flu” and this infection primarily transmitted through respiratory droplets 
produced by sneezing and coughing by an infected person [1]. Symptoms range 
from mild to severe and often include fever, sore throat, runny nose, headache, 
muscle pain, coughing, and fatigue and these symptoms begin from one to four 
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days after exposure to the virus (typically two days) and last for about 2 - 8 days. 
Particularly in children diarrhea and vomiting can occur. Some other complica-
tions caused by the infection include meningitis, acute respiratory distress syn-
drome, encephalitis and worsening of pre-existing health problems such as asth-
ma and cardiovascular disease. 

For the past few centuries, influenza remains a serious threat to public health 
globally [2]. During the past century, thousands of people lost their lives during 
three disastrous pandemics including the Spanish flu (1918), Asian flu (1958), 
and Hong Kong flu (1968) [2]. In 2009, the world experienced the H1N1 in-
fluenza, also known as the Swine Influenza, an epidemic that led to over 16,455 
deaths globally. 

In reducing the spread of influenza, frequent hand washing with soap and 
water, using hand sanitizers (alcohol-based) and not touching one’s nose, eyes 
and mouth with one’s hands, are highly effective. Covering nose and mouth 
when coughing or sneezing and staying home when sick, is important to limit 
influenza transmission [3]. Creating awareness among people about the afore-
mentioned etiquette and hygiene by spreading health education through media 
is important. The disease can be treated with supportive measures and, in severe 
cases, with antiviral drugs such as oseltamivir.  

In view of the serious consequences due to the H1N1 epidemic on the public 
health, various mathematical models have been proposed and analyzed in order 
to know the transmission dynamics of the H1N1 influenza [4]-[10]. 

Optimal control theory is another area of mathematics that is used extensively 
in controlling the spread of infectious diseases. It is a powerful mathematical 
tool that can be used to make decisions involving complex biological situation 
and is a decent strategy for deciding how to control a sickness best. 

To overcome H1N1 influenza, mitigation strategies are proposed in [11], an 
H1N1 influenza model was analyzed in [12] that accounts for the role of an im-
perfect vaccine and antiviral drugs that administered to infected individuals, the 
evolutionary model of influenza A with drift and shift was discussed in [13]. 
Authors in [14] discussed two strain influenza model with vaccination for strain 
1 and transmission dynamics of H1N1 influenza was rigorously analyzed with 
optimal control in [5]. All these studies reveal the complex feature of trans-
mission dynamics of influenza and to the author’s knowledge no such model 
for transmission of influenza in a population has been developed in which op-
timal control strategies have been designed on the basis of considering all 
possible preventive measures and treatment and this is the novelty of this re-
search work. 

The task of identifying optimal control strategies with a simple SEIR model 
that minimize the impact of influenza epidemics through the use of antiviral 
drug in combination with aforementioned preventive measures (which is highly 
prioritized) like covering nose and mouth, washing hand, using hand sanitizer, 
creating awareness through health education are the focus of this manuscript. 
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Optimal control theory [15] [16] [17], is the primary tool used in the analysis. 
To complement the aforementioned studies by formulating a simple model and 
considering all possible preventive measures and treatment as control parame-
ters to reduce the disease burden, is the main objective of this study. 

This paper is organized as follows: Section 2 (Model formulation), Section 3 
(Existence of an optimal control), Section 4 (Necessary conditions of the optimal 
control), Section 5 (The optimality system), Section 6 (Numerical simulations 
and discussion) and Section 7 (Conclusion). 

2. Model Formulation 

The total population is divided into four mutually exclusive compartments, 
namely susceptible (S(t)), exposed (E(t)), infected (I(t)), and recovered (R(t)) at 
any time t. Thus, the total population can be written as  

( ) ( ) ( ) ( ) ( )N t S t E t I t R t= + + + . 
The corresponding system of nonlinear ODEs is, 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1

1

1 2

1

1 2

,

,

,

,

.

S t bN t S t I t S t

E t S t I t E t

I t E t r I t

R t rI t R t

N t b N t I t

β µ

β µ γ

γ µ µ

µ

µ µ

= − −

= − +

= − + +

= −

= − −

′

′

′

′

′

                (1) 

with initial conditions 

( ) ( ) ( ) ( ) ( )0 0 0 0 00 0, 0 0, 0 0, 0 0, 0 0S S E E I I R R N N= ≥ = ≥ = ≥ = ≥ = ≥  (2) 

Here b is the recruitment rate, γ  is the transmission rate from exposed class 
to infected class, r is the recovery rate and 1 2,µ µ  are natural death rate and 
disease induced death rate respectively. Susceptible individuals acquire infection 
at a per capita rate ( )I tβ , where β  is the transmission coefficients. 

To control various types of diseases, optimal control techniques are of great 
use in developing optimal strategies. In this model two control strategies are in-
troduced namely ( )1v t , which represents the preventive measures like covering 
nose and mouth, washing hand, using hand sanitizer, awareness campaign 
among the community and ( )2v t , which represents the treatment of infectious 
people. The modified model to estimate the effect of controlling strategies, is 
given below, 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1

1 2 2

1 2 1

,

,

,

,

S t bN t S t I t v S t

E t S t I t E t

I t E t r v I t

R t v S t v I t rI t R t

β µ

β µ γ

γ µ µ

µ

= − − +

= − +

= − + + +

= + + −

′

′

′

′

              (3) 

with initial conditions 

( ) ( ) ( ) ( )0 0 0 00 0, 0 0, 0 0, 0 0S S E E I I R R= ≥ = ≥ = ≥ = ≥         (4) 

To limit the number of infectious individuals and minimize the cost of applied 
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controls 1 2,v v , the required objective functional J is defined as follows, 

( ) ( ) ( )2 2
1 2 1 1 2 20

1, d
2

T
J v v YI t w v vw t = + + 

 ∫               (5) 

and the control set is, ( ) ( )( ) ( ) ( ) [ ]{ }1 2 1 2, : 0 1,0 1, 0,V v t v t v t v t t T= ≤ ≤ ≤ ≤ ∈ . 
A linear combination of quadratic terms ( )2 , 1, 2iv i =  are used to model the 

control efforts, and the constants Y, 1 2,w w  are a measure of the relative cost 
of the interventions over [0, T]. Here the problem is to find optimal controls, 

( )1 2,v v∗ ∗  such that 

( ) ( )( ) ( ) ( )( )1 2 1 2, min ,
V

J v t v t J v t v t∗ ∗ =                (6) 

3. Existence of an Optimal Control 

From the model (3), ( ) ( ) ( )1N t b N tµ≤ −′ . Then there exists M +∈  such 
that 

( ) ( ) [ ]1
0e , 0,b TN t N M t Tµ−≤ = ∈  

Since, ( ) ( ) ( ) ( ) ( )N t S t E t I t R t= + + +  and the state variables,  
( ) ( ) ( ), ,S t E t I t , and ( )R t  are bounded above, then there exists solution for the 

system (3). 
To prove the existence of the optimal control, it’s required to check the fol-

lowing hypotheses [15]. 
(M1) The set consisting of controls and corresponding state variables is non-

empty. 
(M2) The admissible control set V is convex and closed. 
(M3) R.H.S of state system (3) is bounded by a linear function in the state and 

control variables. 
(M4) J, the objective functional, has a convex integrand on V and the inte-

grand is bounded below by ( )1 2 1 2,b b v v
η

− +  with 1 20, 0b b> >  and 1η > .  
To prove the above statements the following theorem is required, 
Theorem 1. If each of the functions  iF , for 1,i n=   and the partial deriv-

atives i

j

F
x
∂
∂



 for , 1,i j n=  , are continuous in 1n+  space, then there exists a 

unique solution ( ) ( )( )1 1 , , n nx t x tφ φ= =  of the system of differential equa-

tions, ( )1, , ,i i nx F t x x′ = 

  for 1,i n=  , with initial conditions ( ) 0
0i ix t x=  for 

1,i n=  , and the solution also satisfies the initial conditions [15]. 
To prove the hypotheses (M1-M4), let us consider the system, 

( )

( )

( )

( )

1

2

4

3

d , , , , ,
d
d , , , , ,
d
d , , , , ,
d
d , , , , ,
d

S F t S E I R
t
E F t S E I R
t
I F t S E I R
t
R F t S E I R
t

=

=

=

=









                   (7) 
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where 1 2 3,,F F F    and 4F  represent the right side of the system (3) and for some 
constants 1c  and 2c , let ( )1 1v t c=  and ( )2 2v t c= . The functions iF  for 

, 41i =  , must be linear and their partial derivatives with respect to all state va-
riables are constants. Hence the functions and their partial derivatives are con-
tinuous everywhere. So, according to the theorem 1 we can say that, there exists 
a unique solution ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4, , ,S t t E t t I t t R t tφ φ φ φ= = = = , which sa-
tisfies the initial conditions. Therefore, the consisting set of controls and corres-
ponding state variables is nonempty. 

Now for any two controls 1 2,v v V∈  and [ ]0,1θ ∈ , ( )1 20 1 1v vθ θ≤ + − ≤ . 
Therefore, the set V is convex and closed (by definition). 

Now comparing (7) with (3),  

1 1

2

3 2

4 1 2

F bN v S

F KI

F E v I

F v S v I rI

γ

≤ −

≤

≤ −

≤ + +









 

in matrix form,  

( ) ( )1 2, , , ,
I I
R

S S
E E

F t X V m t X t m

R

t V

      
      
      ≤ +      
               

            (8) 

where,  

1

0 0 0 0
0

,
0 0

0 0 0
0 0 0

K
I

S
E

m t

R r
γ

    
    
    =    
         

 and 2

0
,

I
R

S S
E

m t
I

S I

  −   
    
    =    −
      +    

 

Here all the parameters are constant and nonnegative. Therefore from (8), 

( ) ( ) ( )( ) ( ) ( )( )( )1 1 2 1 2, , , ,t X V m X S I v t v t q X v t tF v≤ + + ≤ +  

Therefore, the right side of the state system (3) is bounded by a linear function 
in the state and control variables. 

Moreover, the integrand, ( ) ( )2 2
1 1 2 2

1
2

YI t w v w v+ +  of the objective functional 

J, is convex and satisfies ( ) ( ) 2
1 2 1 2 1 2, ,J v v b b v v= − +  where 1 20, 0b b> >  and 

2 1η = > , according to [18] [19] [20]. 

Hence, we have the following theorem. 

Theorem 2 For ( ) ( )( ) ( ) ( ) [ ]{ }1 2 1 2, : 0 1,0 1, 0,V v t v t v t v t t T= ≤ ≤ ≤ ≤ ∈  sub-

ject to Equation (3) having the initial conditions and  

( ) ( ) ( )2 2
1 2 1 1 2 20

1,
2

T
J v v YI t w v w v dt = + + 

 ∫ , there is an optimal control ( )1 2,v v∗ ∗  

such that ( ) ( )( ) ( ) ( )( )1 2 1 2, min ,
V

J v t v t J v t v t∗ ∗ =  [7]. 
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For the solution of the system (3), it’s Hamiltonian has to be defined. 

4. Necessary Conditions of the Optimal Control 

Let ( ) ( )1 2, , , , ,X S E I R V v v= =  and ( ), , ,S E I Rλ λ λ λ λ′ ′ ′ ′= . Then the Hamilto-
nian H for the optimal control problem is,  

( ) ( ) ( ) ( )( )
( )( ) ( )( )

( )

2 2
1 1 2 2 1 1

1 1 2 2

1 2 1

1, ,
2

 

 

S

E I

R

H X V YI t w v w v bN SI v S

SI E E r v I

v S v I r I R

λ λ β µ

λ β µ γ λ γ µ µ

λ µ

= + + + − − +

+ − + + − + + +

+ + + −



   (9) 

Pontryagin’s maximum principle [17] is used to derive the necessary condi-
tions for the optimal control, which (Pontryagin’s maximum principle) converts 
the problem (6) into the problem of minimizing the Hamiltonian. 

Hamiltonian H is used for determining the adjoint equations and transversal-
ity conditions.  

The following can be derived from the differentiation of H, with respect to 
each state variables 

( )( )1 1 1S S E R
H I v I v
S

λ λ β µ β λ λ∂′ = − = + + − −
∂

, 

( )1E E I
H
E

λ µ γ λ γλ∂′ = − = + −
∂

, 

( ) ( )1 2 2 2I S E I R
H S S r v v r Y
I

λ β λ β λ µ µ λ λ∂′ = − = − + + + + − + −
∂

,  

1R R
H
R

λ µ λ∂′ = − =
∂

  

with transversality conditions, ( ) ( ) ( ) ( ) 0S E I RT T T Tλ λ λ λ= = = = . 

With the help of controls and conditions of optimality,  

1 11

0
v v

H
v ∗=

∂
=

∂
 

1 1 0RSv w S Sλ λ∗⇒ − + =  

( )
1

1

S RS
v

w
λ λ∗ −

⇒ =  

and  

2 22

0
v v

H
v ∗=

∂
=

∂
 

2 2 0I Rv w I Iλ λ∗⇒ − + =  

( )
2

2

I RI
v

w
λ λ∗ −

⇒ =  
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5. The Optimality System 

The resulting optimality system is given as follows, 
State equations with initial conditions, 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1

1 2 2

1 2 1

,

,

,

,

S t bN t S t I t v S t

E t S t I t E t

I t E t r v I t

R t v S t v I t rI t R t

β µ

β µ γ

γ µ µ

µ

= − − +

= − +

= − + + +

= + + −

′

′

′

′

             (10) 

with initial conditions 

( ) ( ) ( ) ( )0 0 0 00 0, 0 0, 0 0, 0 0S S E E I I R R= ≥ = ≥ = ≥ = ≥        (11) 

Adjoint system with transversality conditions, 

( )( )

( )

( ) ( )

1 1 1

1

1 2 2 2

1

,

,

,

S S E R

E E I

I S E I R

R R

H I v I v
S
H
E
H S S r v v r Y
I
H
R

λ λ β µ β λ λ

λ µ γ λ γλ

λ β λ β λ µ µ λ λ

λ µ λ

∂′ = − = + + − −
∂
∂′ = − = + −
∂
∂′ = − = − + + + + − + −
∂
∂′ = − =
∂

   (12) 

and,  

( ) ( ) ( ) ( ) 0S E I RT T T Tλ λ λ λ= = = = .              (13) 

Controls 1v∗  and 2v∗  are given by, 

( )

( ) ( )

( )

1

1
1 1

1

0, if 0

, if 0 1

1, if 1

S R

S R S R

S R

S
w

S S
v

w w
S

w

λ λ

λ λ λ λ

λ λ

∗

 −
<


 − −= ≤ ≤

 −
 >


          (14) 

and 

( )

( ) ( )

( )

2

2
2 2

2

0, if 0

, if 0 1

1, if 1

I

I I R

RI

R

R

I
w

I I
v

w w
I

w

λ λ

λ λ λ λ

λ λ

∗

−
<


 − −= ≤ ≤

 −
 >


          (15) 

6. Numerical Simulations and Discussion 

For the numerical solution of the system (10), the Runge-Kutta method is used. 
The simulation of the model is done with different scenarios. For this, the con-
sidered initial population size for susceptible class, exposed class, infected class 
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and recovered class are 0 0 00.8, 0.06, 0.05S E I= = =  and 0 0.05R =  respec-
tively and total number of years, T = 8. 

Here intead of whole numbers the proportions are used. Description of the 
variables of the model and other parameter values are given in Table 1 and Ta-
ble 2 respectively. 

Figure 1 shows the density of the susceptible, exposed, infected and recovered 
population with and without control. It is noticed that, the extinction of infected 
and exposed class is possible if the control parameters are kept. Otherwise the 
infection reaches to the maximum level.  

Figure 2 and Figure 3 show a comparative situation with varying effective 
contact rate. For low contact rate ( 0.4β = ) there is a significant increase in the 
recovered compartment, compared to the high contact rate ( 3β = ). In the case 
of high contact rate, both the controls 1v  and 2v  work for a longer period of 
time to reduce the disease burden. Figure 4 and Figure 5 portray the solution of 
the optimal control problem with different control weights ( 1 20.2, 0.5w w= = ) 
and ( 1 20.5, 0.2w w= = ) respectively and there are no significant changes in the 
infected and exposed class. Applying more awareness control does not signifi-
cantly bring down the number of exposed and infected individuals as compared 
to the case when applying more of the treatment control. In both cases there are 
increase in the infected individuals after the time t = 7.4 years. 

 
Table 1. Description of the model variables. 

Variable Description 

( )S t  Susceptible Population at time t 

( )E t  Exposed Population at time t 

( )I t  Infected Population at time t 

( )R t  Recovered Population at time t 

 
Table 2. Description and nominal value of the model parameter. 

Parameter Description Value 

b Birth rate 0.03 [assumed] 

1µ  Natural death rate 0.02 [5] 

2µ  Disease induced death rate 0.01 [5] 

β  Effective contact rate 0.9 [5] 

γ  Transmission rate from ( )E t  to ( )I t  class 0.53 [5] 

r Recovery rate 0.2 [5] 

Y Weight parameter 10 [assumed] 

1w  Weight parameter 0.2 [assumed] 

2w  Weight parameter 0.3 [assumed] 
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Figure 1. The graph shows the comparison of changes in population with 
and without control. 

 

 

Figure 2. The graph shows the effect of low contact rate ( 0.4β = ). 
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Figure 3. The graph shows the effect of high contact rate ( 3β = ). 
 

 

Figure 4. The graph shows the effect of weight parameters ( 1 20.2, 0.5w w= = ). 
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Figure 5. The graph shows the effect of weight parameters ( 1 20.5, 0.2w w= = ). 

7. Conclusions 

In this paper, a deterministic mathematical model of Influenza was formulated 
with preventive measures (awareness campaign, washing hand, using hand sani-
tizer, wearing mask) and treatment as interventions. It is monitored that there is a 
significant effect of using control strategies in reducing the exposed and infected 
individuals. In case of high effective contact rate, the effectiveness of the controls 
should last for longer period of time because of increasing disease burden. More-
over, the combination of both the controls has positive impact on reducing the 
disease burden and minimizing the corresponding cost. The main findings are: 

For high contact rate ( 3β = ), to reduce disease burden both the controls, 
preventive measures and treatment should work for long period and in the case 
of low contact rate ( 0.4β = ), exposed and infected individuals decrease rapidly 
and for this, control 1v  needs to work for more than 2 years. 

For different control weights ( 1 20.2, 0.5w w= = ) and ( 1 20.5, 0.2w w= = ), it is 
monitored that the number of recovered individuals increases more rapidly and 
reaches it maximum level faster whenever preventive measures get more priority 
and this is more economical than treatment cost.  

In this study, the optimal control problem does not include vaccination, which 
is important and for further study, this problem extends by considering the vac-
cination as intervention. 
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