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Abstract

Utilizing the translation operator to represent Bernoulli polynomials and power
sums as polynomials of Sheffer-type, we obtain concisely almost all their
known properties as so as many new ones, especially new recursion relations
for calculating Bernoulli polynomials and numbers, new formulae for ob-
taining power sums of entire and complex numbers. Then by the change of
arguments from z into Z =z(z-1) and ninto A which is the 1* order

power sum we obtain the Faulhaber formula for powers sums in term of
polynomials in A having coefficients depending on Z Practically we give
tables for calculating in easiest possible manners, the Bernoulli numbers, po-
lynomials, the general powers sums.

Keywords

Bernoulli Numbers, Bernoulli Polynomials, Powers Sums, Zeta Function,
Faulhaber Conjecture

1. Introduction

In many branches of mathematics the problem of Bernoulli numbers related to
the millenary problem of power sums is probably the most studied since the
publication of the book Ars Conjectandi by Euler in 1738 [1] as we can see on
the net and, specially, in a didactical thesis of Coen [2], the explicative work of
Raugh [3], Beardon [4], the bibliography of thousands of articles on Bernoulli
numbers realized by Dilcher, Shula, Slavutskii [5], etc.

Concerning Bernoulli polynomials B, (z), classically defined from a gene-
rating function, there had not so much properties, the most remarkable is its re-

presentation by a hyper-differential operator, the Hurwitz expansion of them
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into Fourier series, the Roman formula for B, (nz), the Euler-McLaurin for-
mula, etc.

As for the power sums on real and complex numbers, including the famous
Faulhaber conjecture, there has no valuable formula linking them with Bernoulli
polynomials until only some years ago [6].

Regarding the situation, we would like to perform a selection of as many as
possible known and new interesting properties of Bernoulli polynomials then of
Bernoulli numbers in a coherent way, Ze., by only one approach, which utilizes
principally operator calculus lying on the couple of operators position and deri-
vation, similar as the couple T,V in quantum mechanics.

In Section 2, we will treat the problem of Bernoulli polynomials, from their
representation by a hyper-differential operator to almost all of their algebraic
properties to the fact that B, (n) is equal to the primitive of the power sums of
natural integers. Afterward we show that the formula giving Bernoulli polyno-
mials of a sum of two arguments B (z+y) leads to two new recurrence re-
lations for obtaining B, (z). We also give another approach for calculating
without integrations, the Fourier series of Bernoulli polynomials and the Ber-
noulli series of functions, the relation of B (z) with the Euler zeta function.
Afterward we show an up-to-date procedure for obtaining B (z) from and
only from B, _,(z) leading to the rapid establishment of Table of Bernoulli
polynomials and numbers. Finally, we show a new way for obtaining Fourier se-
ries of Bernoulli polynomials, Euler zeta function, and vice-versa, the series of
functions in term of a set of Bernoulli polynomials.

In Section 3, we treat the problem of Bernoulli numbers B, , from its initial
definition by Jakob Bernoulli in 1713 who related them by conjecture with the
power sums on natural numbers. By comparison of this relation with the pre-
ceding formula linking B (n) with power sums, we may identify B, with

B, (0) then calculate B by a simple matrix method side-by-side with the
method, more powerful, link with 1, coming from the special recurrence formula
coming from B (z+Y).

In Section 4, we prove by utilizing the translation operator €%, coming from
the Newtonian binomial, that the power sums on complex numbers are simply
related to those on natural numbers. On the other hand, we prove that they are
also related very simply to Bernoulli polynomials, from that we get again the re-
currence relation between Bernoulli polynomials.

Section 5 is devoted to the Faulhaber problem regarding power sums on com-
plex numbers. Here we show that power sums on complex numbers may be cal-
culated from sums of entire numbers somehow by writing B, (z) in function

of the new argument Z =z(z-1).

2. Bernoulli Polynomials

2.1. Definition and Principal Properties

In 1738, Euler introduced the Bernoulli polynomials B, (z) via the generating
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function [1]
t e? = iiBm(z)trn (2.1)

el -1 =ml

which directly gives by identification

B, (z)=1, Bl(z):z—%, BZ(O):% (2.2)

Utilizing the translation operator €** coming from the Newtonian binomial

m Ak

(x+a)" = Zm:[r:jakxmk = Z%a‘;x’“ =ex" (2.3)
k=0 k=0 A=

and having the property

elg? = g!(*Y) — glg® (2.4)

(2.5)

we directly find from (2.1) that B (z) is the transform of z" via a differential

operator

B, (z)= ﬁaz 1z’“,m>0 (2.6)

From (2.6) we get the famous known formulae

B (z)=mB, () (2.7)
B.(z+1)-B,(z)=(e™ -1)B,(z)=0,2" =mz"* (2.8)

B (1)-B, (0)=0

ml

(2.9)

and the following formula which gives &"™

- thm(z) 0 tz t tz

z :aze: e

= m! e —1 et -1

as series of Bernoulli polynomials.

(2.10)

From (2.8) we get the formula given by Roman [7]
Bm+1[£+Nj—Bm+1[£j:(m+l)Nzl(£+njm (2.11)
y y n=o\ Y

From (2.10) we get the formulae on relations of Bernoulli polynomials versus

trigonometric functions, especially the Castellanos formula [8]

2. (2ix)" B, (0) _ XCOSX

2.12
mZ::z m! sin x ( )
The formulae (2.7) and (2.8) give the important formulae
1
:Bm_l(z)dz:E(Bm (1)- B, (0)) =5, (2.13)
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m

B, (n)-B, (O):m(O”"1+1"H+---+(n—1)m_l) (2.14)

and the Taylor expansion

m

B,(z)= Bm(a)+-~-+(kj(z—a)k By (a)++(z—a)" By (a)
which may be put under symbolic form
B,(z+a)=:(B(a)+ z)m (2.15)

where undefined symbols B* (a) are to be replaced with B, (a).
Exploring now the inter-relations between Bernoulli polynomials.
From (2.4) and (2.7) we get the complementary of (2.15)

B,(z+a)=e""B, (z)= 1+-..+§ak+-..+£am B, (2)
" ooy k! m! "
=Bm(z)+~~-+(TJBmk(z)ak+~~-+BO(z)am (2.16)

From (2.13)
LMBm (y)dy =J';Bm (z+y)dy= z"‘_[olB0 (y)dy=z"
_[:Bm (y)dy=0"
_[;Bm(y)dy:Om +1" +-+(n-1)" (2.17)

Le.,
“The sum of powers of order m of n first entire numbers from 0 to (n —1) s
denoted by S (n), is equal to the simple primitive (without constant of inte-

»

gration) of the Bernoulli polynomial B, (n)” and vice-versa,

“The Bernoulli polynomial B, (n) is equal to the derivative of the power
sums S (n)”

Asfor B, (-z) we see that

- .8
B (-2)= t (-z)" =(-1)"e% —2—z"
(7)o (= (e P -

= ()" B, (2+1) = (-2)" (B(2)+1)"

which leads to
1 1
B, (—z +—j =(-1)" Bm(z +—j (2.19)
2 2
Le., to the theorem
“The graph of a Bernoulli polynomial is symmetric with respect to the axis
1 . . e o
Z= 3 if mis pair and anti-symmetric if 72 is impair”.

Joint (2.19) with (2.9) we get the famous property [1]
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1
BZm+1 (l) = _BZm+1 (0) = _§m0 (220)

Now, by replacing in (2.6) zwith 2 5o that 0, iswith no, we get
n

(37503 - o
" e" —1\n (e —1)(1+ e’ +e% +~--+e(”'1)‘31) n

n

and the formula
n-1
B, (ﬂj =n""8, (2) (2.21)

saying that
oM . z+k
B, (z) is n"" times the sumof B — Jk<n

For examples:

z+1)

1 2 om
Bomit (gj + By [gj =0= ( ? _1) Bona (1)

By replacing in (2.6) zwith nzand 0, with 161 we find again the formula
n

given by Raabe [9] in 1851

B, (nz)= nml[Bm (z)+B, (z +%J+---+ Bm(z +nT_ljJ (2.22)

saying that
k

“B,(nz) is n"" times the sumof B, (Z +—), k<n.
n

For examples

s8,0-{1o7)[n. (25 £

2.2. Bernoulli Polynomials of Sum of Two Arguments

From the following property of operators that we characterize fundamental [10]

f(5z)9(2)5Q(Z)f(az)+%9'(2)f’(62)+%g”(2)f"(az)+--- (2.23)

we get
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a a 1 5 eaZ
B )= z_ My 2 gm _ z 2
m+l( ) eBZ -1 eaz -1 * eé‘z -1 (eaz 1)2J
1 . €79,
= ZBm (Z)+ z - z

e’ -1 (e —1)2

m

g% 52
Y4 Zm
o)

(m-1)B,(z)=120,B,(z)—e™ eazaz_le (2)

9,B.1(2)=0,2B,(z)+B,(z)-

z-m+l

Now, because
0,y f(z+y)=0,T(z+y)=0,f(z+Y) (2.24)
5 0
m-1)B,(z+y)=m(z+Yy)B,,(z+y)-e” =B, (z+
(M=2)By (2+y)=m(2+7)Bos(2+) e’ 1 (2+) (2.25)
::m(z+y)Bm_l(z+y)—(B(z)+ B(y+1))m

The above recurrence formula is to be compare with that given by Weisstein

[11] without proof where there seems has a little mistake

(1-m)B, (z+y)+m(z+y-1)B,, (z+y)=(B(z)+ B(y))m

From (2.25) and knowing that B, (1)= (—l)k B, (0) we obtain another type

of recurrence formula for Bernoulli polynomials

(-1)8, (2) - m2B, . (2)-((2) + B 229
2 (2)-82)8, ()220 [ 08 () G
For examples, with B, ( ):z—%, Bz(o)zé,
5.(2)=8,(2)8, (1) 58.(0)8, ()= 25|~ =72+
B, (2) =B, (2)B, (2) 538, (0)B,(2)

2.3. The Fourier Series of Bernoulli Polynomials. Euler Zeta
Function. Powers of pi

By successive integrations by parts and utilizing the formula (2.13) for nm=1
we get, knowing (2.9),
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1B (2)B, (2)dz =~ [1B, (2) By, (2)c2
1

1 n 1
:m(Bn(z)Bmﬂ(z))k—m 1B, (2)B,..(2)dz

= (8, (2)8,, (1),

(m+n)!

(" e )

(2.28)

Because of the factor (~1)""
B,...(0)=0 for n>0 and B,,,(0) has opposite sign with respect to

B,, (0).
The same method also gives

we may conclude that

-1 2iknz \
= :Bm(z)(e 2 ) dz

_ 1 ‘ifl
2mik ™ 2mik o ™t
m!

(27:ik)m

1 “2iknz 4, _
,Bn(z)e™ " dz =
(z)e?™dz (2.29)

which provides us the following formula on Fourier series of B (z) proven by
Hurwitz in 1890 by another method [10]

0

B, (2)= le(z)e‘Z‘k"Zdz)e‘Z”"Zz— m! i ieiz’“‘z,0§zsl (2.30)

. m m
keZ,kiO( 0 (2|Tc) keZ k0 K

2.4. Bernoulli Series of Functions
Let f(z) be a periodic function defined on an interval a<z<b and has the
period P =Db-a.Forexpanding f(z) intoa Fourier series of exponentials

f(z):Zc(n)esz, a<z<b=a+P (2.31)

we firstly write
b —iznnoé dz b i2n(n-ng)% dz
f(z)== P—
[ e (2) = nEZ;c(n)LI e >

and see that the second member is equal uniquely to ¢(n,) so that
1 b~ —iZTmOE
C(nO):EL e Pf(z)dz (2.32)

The Fourier series of a function, if it exists, is then

f (z):%ieizmgj:ie

neZ

“i2mn %
Pf(z)dz (2.33)
To avoid integrations in the calculation, we may utilize the method of integra-

tions by parts and get

. z
—i2nn—

c(n):%_[:_ f(z)e = Pdz
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2intn

b o a - _iomnZ
Pc(n):__—npn[f(b)elznn"—f(a)elznnpj+_ij': t'(z)e "Pdz

Pc(n):—kZ( P jkﬂ(f(k)(b)eimb"— f(k)(a)eizmz]—o(k)

—o\ 2i7tn

so that we may write down the Fourier series formula
_ k+1 . 7-a
1 (b 1& K b P i2mn =%
2)==[ f(2)dz-=Y t¥(z — e P 2.34
EEIRIOLES NEIO B ey 234
In the case 0<z<1, jointed the preceding formula written under the form

1 k+1
k i2nnz
j f(z)dz— zﬂ () (2mnj g2

neZ n=0k=0
with the Hurwitz formula we get the new and precious formula on expansion of

derivable functions into series of Bernoulli polynomials

1

)= [ (@aze X[ 19 )1 VOB ® @

j f z)dz+2f(k)( )‘1 By.. (2 )_z i (k)( )‘ (2, njkﬂeiZnnz (2.36)

(k 1)' neZ k=N-+1

For examples, under matrix form

t) [[[t@] [f@] [(f@] [t'@)] - [f(m’”(z)}: 1
1 1 Blgz;?u
z _ 12 1 B,(z)/2! .
z 13 1 2 B, (2)/3! 23
z" 1/(n;+l) . m o omm-1) - m B, (z)/m!
to be compared with
1
(@) (@] [f@ [F@) (@] - [ @] | Ze /@)
. 1 ¥ e /(2inn)’
= 1/2 1 "o N L] 38
z. 13 1 2 ;)e '“”Z/(Zmn)
z 1/(m+1) 1 m m(m-1) - m! 5% (2izn)"

n=0

Formula (2.36) leads also to
1

)=[,f(z dz+z[ (1)~ f (o)}mBM(o) (2.39)
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PP B.1(2) (2.40)

As first interesting applications

e’ =(e-1)+(e- )g 4(2) 0<z<1

k+1)!

—~

2 50 o

5 (k+1)!
By (2.36) we also obtain a precious recurrence formula of Bernoulli polyno-
mials
m B, (z)
" =[z"dz+ : 0<z<1 2.42
e B @)

1.e., under matrix form

z 21 (1 B (z)/1
22| |3 |1 2 B,(z)/2
2 |={4"|+]1 3 3 B,(2)/3 (2.43)
2| |5t |1 4 6 4 B,(z)/4

which may be resolved for B, (z) and B (0) my matrix calculus.
2.5.Obtaining B, (z) from B, (z) and Table of Bernoulli
Polynomials

Integrating two times as followed the Hurwitz formula on Fourier series of Ber-
noulli polynomials we get

m+1 1 . 1 m+1
B d —_ml i2mnz _1 :—B ! -
I remm E(Zmnj (e ) m+1 ma(2)4m ;(Zinnj

n=0 n=0

jdzj B, (x)dx = le(Zman

nez
n=0

B, (2)=(m+1) [ B, (x)dx—(m-+1) [ dz[B, (x)dx (2.44)

Le.,

B,.1(2z) isequalto (m+1) times the primitive of B (z) minus the double
primitive of B (z) calculated for z =1. The second term is so equal to
B, (0)=(-1)"B, (1). (2.45)

This new algorithm for obtaining B, (z) from B, (z) and B (0) is
very easy to perform and may be utilized to establish Table of Bernoulli polyno-
mials.

For examples:

By (x)=1
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20 8 12
5 4 3
By (x)=5 XX X Xy Dy 0 1y
5 2 3 30 2 3 6

6 5 4 2
B, (x) =6 X XX +6(L_i I j
6 2 12 12 6.7 24 124 123

8
=x° —gi +6X’ ——le +2x° —3—X
2 10

This method for establishing a table of Bernoulli polynomials is extremely
easier if we utilize the list of fifty Bernoulli numbers B, (0) conscientiously es-

tablished by Coen [2]. For examples

By (X) =x"° -5x%° o B st 32
2 2 66
Bll(x):x“—E 0,350 15 1 - e 1 2
2 6
By, (X) =X —6x" +11x° — 33 X8 +22x° 33x4+5x2—ﬂ (2.46)
2 2730

2.6. Bernoulli Polynomials and Euler Zeta Function

From the Hurwitz formula

1 1 e 1 .
—B (z)=- it 0<z<1
kl k ( ) (Zln)k neZ,n=0 nk

we get the Euler zeta function one may find references in Coen [2] and Raugh
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= 1 m-+ 1 m
as so as

m m+ 2 12 =
(27:)2 =(-1) ' EB m()z) > kim cos 2mtkz (2.48)

2m k=1

e mer (2M+1)12 & _
(2 )2 1_ (_1) 1 (Bm + ()z) Z k;}nu sin 27tkz (2.49)
2m+1 k=1

Moreover, by taking z 20%%,%,%,%%,1 in these formulae we get the

known property

and the powers of pi.

For examples

. ma (2m)12 & (<1)f
21)"" = (-1 : ( 2.51
( TE) ( ) BZm (]/2); kZm ( )
m+ Zm)l & k 1
2" = (=1)™ ( -1 (2.52)
( ) 22m—1 (1_ 22m—l)Bzm é( ) k2m
2m)12 & kr) 1
2n)" = ()" ( (—j 2.53
2m+1)12 & (k) 1
2 2m+1: _1 m+1(— (_) 254
( T[) ( ) BZm+1(]/4)éSIn 2 k2m+1 ( )
and
n 1111 .
4 13 5 7
[zjz_l_i+i_i+
4) T 22 @ 4
nz_36(&_li_i_1i+£i+ij+(£i_lij+...
212 22% 3 24* 252 @? 27 28
1 1 1
ﬂ3=32(1—3—3+5—3—7—3 j
etc.

3. Bernoulli Numbers
3.1. Definition and Properties

In 1713, according to Jacob Bernoulli (1655-1705), was published the list of ten

first sums of powers of entire numbers [3]
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> =1" 42" 4"

(3.1)

in terms of the numbers B, which are conjectured to be the same for all m

i) M LU

m+lk:g

Afterward, the B, were baptized Bernoulli numbers.
By comparison of the relation coming from (3.2)
8, y.n" = i(—l)k _m B.n"* =(B-n)"
= (m—k)k!
m(m-1)
2
with the formula coming from (2.16), (2.17)

=B,n" —mBn"" + B,n"?+--+(-1)"B

m

8, (1" ++-+n"")+8,n" =B, (n)+2,n" =(B(0)+n)" +mn""

m

=B, (0)n™ +m(1+B, (0))n"* +( )

]Bz(o)nm'2+--~+Bm(0)

we get, combining with (2.20),

B, =B, (0)
1
B,=-B,(0)-1= -5
BZm = BZm (0)

1
BZm+1 = _BZm+1 (0) = Bzm+l (1) = Eémo
B, B, (0)

Le.

(3.2)

(3.3)

(3.4)

(3.5)

“The Bernoulli numbers B, are equal to the values at origin of the Bernoulli

»

polynomial B (z)

3.2. Obtaining Bernoulli Numbers

The above formula (3.5) and the recurrence formula for Bernoulli polynomials

(2.43) correspondingto z=0

om oL +m( m JBk(O)

Tm+l Elk-1)

lead to that for Bernoulli numbers

(3.6)

m m m m
1 BU+ E+ E+ E+...+ i:o'm>0 3.7)
m+1 0)1 1)2 2)3 m-1) m

which, knowing B, =B, (0)=1, gives B,B,,B,,---,B
Table 1.

m

according to following

This matrix equation may be resolved by doing linear combinations over lines

from the second one in order to replace them with lines containing only some

non-zero numbers.
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Table 1. Matrix equation for calculating Bn.

us]

o

N
W W
O O O -

e S

For instance, for calculating successively {BO, B,B,,B,,B; " Bm} we may util-
ize the matrix equation (Table 2).
We remark that the last line of this matrix has replaced

19
{( J, i=0,124, 6,8,10,12,14,16,18} .

The results are
B,=1, B,+2B,=0, B +3B,=0, B,+5B,=0, -B,+7B,=0
9 61

B, +98,=0. 5B, +11B,, =0, 38,—; B, +138, =0,
35B,+15B, =0, 240B, +17B,+17B, =0
43867

2052B, — 775B, +19B,, =0 = +By (3.8)

798

Another method, maybe more interesting, for establishing table of Bernoulli

numbers is obtained from the formula (2.27). It is

2m 2m 2m
(_1_2m)BZm: 2 Bon2B, + 4 BynaBy +--+ 2 B,Byn o, Mm>1

or, symbolically,
(1-m)B, =(B-B)" (3.9)
For examples
(1-2)B, = (B-B)" =2B,B, - 2B,B,
—4B, = —3B,B, +3B,B, =0

4 1
-5B, {ZJ B,B, =6B,B, = B, =

6 1 1
~7B;=2| , |B,B, =30B,B, =—= =B, =

8 1
—9B, =8x7x BB, +(4j B,B, = By :—%

10
~11B,, =10x9x B;B, +2[ 6]8684 = By, =%
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Table 2. Simplified matrix equation for calculating Bu.

1 B,) (1
1 2 B, 0
0 1 3 B, 0
0 0 1 5 B,| |0
0 0 -1 0 7 B, 0
0 0 95 0 0 B, | |0
0O 0 -5 0 0 011 B,| |0
0 3 o 0 00 13 : :

105 B, 0
0 3 0 0 0 0 0 15 B,| |0
0 240 0 17 0 0 0 0 0 17 B,| |0
02052 0 0 -775 0 0 0 0 0 19)g | (0

12 12 691
-13B, =12x11x B, B, +2 8 B,B, + 6 BsB, = B, =0

14 14 7
~15B,, =14x13xB,,B, +2| | |ByB, +2|  |BB, =By, =

16 16 3617
~178, =16x15xB,,B, +2| , ' |BuB, +| o BBy =By =-T
18 18 18
~19B,, =18x17xB, B, +2|  |BuB, +2| . BBy +2| ' |ByB,
_ 43867 __ineu o (3.10)

8 798 7 ® 330

We see that B, is a sum over only four terms B,B,,B,,B,,B,B,B,,B;;

B,, isover five, B,; overten, By, over twelve terms.

3.3. Obtaining Bernoulli Polynomials and Power Sums from
Bernoulli Numbers

From the formula (2.15)
B, (z+a)=(B(a)+z)"
we get the symbolic Lucas formula
B, (z)=(B+2)" (3.11)

for calculating Bernoulli polynomials B (z) from the set of Bernoulli num-
bers.

For examples
B,(z)=(B+2)=B,z+B;z° = z—%

B,(z)=(B+2)" = B,z* +2B,z + B, :zz—z+%
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B,(z)=(B+2)’ =B,z° +3B,2° +3B,2 + B, = 2° —gzz +%z
As for the power sums S (n) we begin by calculating the formula coming
from (2.17)
0,8, (n)=B, (n)=(B+n)" (3.12)

then take the primitives of both members.

For examples

8,8, (n)=B,(n)=$,(n)=0+1+-+(n-1)=[B,(n) j( j

2
S,(n)=0%+12 +--+(n-1)" = [B,(n (2- %j %—7%

3 n) n* n® n? n¥( )
oo 3.3

3.4. Bernoulli Numbers and the Euler-McLaurin Formula

From the formula for expansion of derivable functions into series of Bernoulli

polynomials

.[ f(z)dz +Z[ ( )— f )(O)]ﬁ B.,.1(z) which leads, for pe-

riodic functions B (z) identicalto B (z) in theinterval (0,1), to
1

f(z+m)=["" ()dz+z[ J(m+1)- f<k>(m)]msm(z) (3.13)

we get the formula

r—.

f(m)=["" ()dz+z[ '(m+1)- £ (m )](Il:-lr(l))

(3.14)

e

rt om

analogue to the Euler-McLaurin formula one may find in [11]

1

For example, with f (Z) =7°, B (0)=—=, B, (0) = % , B;(0)=0 it is veri-

fied that
)O 81-16 19 15

23=j;z3dz—%(33—23)+3(32—22)%+6(31 T

4. Obtaining Powers Sums of Real and Complex Numbers

4.1. From Power Sums of Integers

From the definition of the power sums on real and complex numbers
Sm(z,n):z”‘+(z+l)m+-~-+(z+(n—1))m (4.1)

we get, by utilizing the translation operator e mentioned in (2.4),
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Sm(Z,n):(l+e62 +...+e(n_1)az)zm (42)

and the formula for sums of geometric progressions, the compact formula

g™ —1
S (z,n)=— z" 43
m(zn) =" (4.3)
From (4.3) and the fact that
0, f(z+y)=0,f(z+y)=0,f(z+y) (4.4)

we get the symbolic formula

enauy -1 enéy
(Z + y)m = o7

Sp(z+y,n)= (z+y)" ::(z+S(y,n))m

e 1 v 1

leading to the very interesting new formula given powers sums of complex num-

bers from powers sums of integers
Sm(z,n)z(s(n)+z)m (4.5)
where the undefined symbol S* (n) is to be replaced with the power sums on
integers (2.17)
S, (n)=0"+1+++(n-1) =[B, (n), 0° =1 (4.6)
Another way, more shortly, to obtain (4.5) is by remarking that

(z+n)=¢e"(n)

so that
m 5k m
Sm(z,n)ze"’"sm(n)=zz—aﬁsm(n)=2(mjz"smk(n):(S(n)+z)m
k:Ok! k=0 k
For examples
S, (z,n)=S,(n)z° +S,(n)z" = n(n2_1)+nz
S,(z,n)=S,(n)+2S,(n)z+S,(n)z* = LU L +(n*=n)z+nz’
3 2 6

S,(z.n)=(s(n)+z2)’ = [By(n)+32[ B, (n)+32°[ B, (n)+nz®

4.2. From Bernoulli Polynomials

Now, because n may go until infinity, 0, is well defined so that
enaz -1 enazaz
0,5, (z,n)=0, o) " = o _12’“ =B, (z+n) (4.7)
On the other hand, from (2.18)
8,5, (z.n) = (e ~1)-2 2" =B, (2+1)-B, (2) (4.8)
e’ —

so that we obtain the following beautiful important formula

(6,-0,)S,(z,n)=B,(z) (4.9)
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as so as the historic Jacobi conjectured formula
O3S (n) =B (n

Formula (4.9) leads to the formula giving S

) (4.10)
(z,n) directly from B (z)

m

S, (z.n) = B, {1+_+[2_] J (2)
noe (4.11)
n m+1 (m)
=—B —B . B
1 n(2)+ 2! (2)+ +(m+1) n (2)
Le., to the algorithm saying that
2 m+1
Sn(z,n) isequalto nB (z) plus %B%(Z) and so all until (r:+1)!Bmm)(z)

For examples
2 n 2

Sl(z’n): nBl(Z)+%BO(Z) = nz—2+?

2 3

3
S,(z,n)= nBz(z)+%ZBl(z)+%ZBo(z) = n(z2 —z+%)+n2(z—%j+%

2 4

S,(z,n)= nt(z)+%3Bz(z)+n3Bl(z)+nI

In particular, we get the recurrence relation between Bernoulli polynomials

given by Roman [8]

m m 1
S, (z1)=2"= Bm(z)+58m4(z)+---+ B, (z )+mB (z) (412
and the well-known ancient formula of Bernoulli (1713)
n2 nm nm+l
Sn(n)= 1IBm+ mB,_, + +KB +m+1B° (4.13)
Lastly, because of (4.10)
n" =S, (n+1)-s,(n)=[""B, (n)d
we get
2" =(e™ -1) :LMB )d
e’z -1 z+1
P Bm( )= , Bm( )d
and, by expanding functions into Bernoulli series, the formula found in Wikipe-
dia
[t mdn=[1+ 2 S b ) @
0, : 21 3l

We resuming the herein-before results of calculations in following Tables
(Tables 3-5).
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Table 3. Obtaining B, (z) and S, (n) from B .

(n)=0"+1"+---+(n-1)" =_[Bm(n)

B. B.(2)= mjoz B,.(z)dz+B, S,
B, =1 B,(z)=1 S,(n)=n
Blz—% Bl(z)zz—% 51(”):%2—%
BZ:% B,(2)=2-z+= S, ( )_l;_i; %
B,=0 Bi(2)=2"-77"+12 S,(n) %4—%3+n72
4=;—; B4(z)=z“—223+22——0 34(n):%5—%4 %3—3%
B,=0 B,(z)=1' %ze+%zs—%23+%z S,(n) %B—n—; é 6—%n“+8l4n2

Table 4. Obtaining S, (z,n) from B (z).

2
B, (2) sm(z,n)=Bm(z)n+B;(z)%+...+sgﬂm>(z)(r:+l)!
B,(z)=1 Sy(z,n)=n
1 n?
B(z)=2-= S1(Z’n):(z_§)n+§
B(z):zz—z+E S,(z,n)= 2 _z4t n+(22—l)n—2+2n—3
’ o 6 21 3
2 2 2 3 4
Bg(z)=23—%+§ S3(z,n)=[z3—3;+;]n+(3zz—32+;)2!+(62—3)2!+6T“
B (7) = 7% —27% 4 22 n? n® n* n
(2)=2" -2+ 2" - — SA(Z,n):B4(z)n+4B3(z)§+1282(z)a+24Bl(z)z+2480(2)5.

Table 5. Obtaining S, (z,n) from S (n).

Sm(z,n)z:(S(n)+z)m

S, (n)
Sy(n)=n Sy(z,n)=n
S,(n)= n(nz_l) S,(z,n)=nz +M
3 2 3 2
Sz(n):%—% g Sz(z,n):nzz+n(n—1)z+%—n7+g
4 3 2
sg(n)—”?_”? ”7 S,(2,n) =S, (n) 2 +38,(n) 2 +35,(n)z+ S, ()
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5. The Faulhaber Formulae on Power Sums of Complex
Numbers

5.1. Powers Sums of Odd Order

Although the problems of powers sums and Faulhaber conjecture were treated
by many authors for examples by Radermacher [12], by Tsao in (2008) [13], by
Chen, Fu, Zhang in (2009) [14], etc., nevertheless we would like to present he-
reafter one new approach about the problems.

In S (z,n) letus replace the arguments zand n by

I,12

Z=1(z-1) and Azsl(z,n):Bl(z)nJr? (5.1)
Because
dz dz di di
—=2B,(z), —=0, —=B , ——= 5.2
B gm0 =B g =n G2
and consequently
dz di
0 =gy 02t 50 =(B,(z)+n)a,
dz dA
, EE(’)Z +E@ =2B,(z)0, +no,
0,-0,=B(z)(6,-20,) (5.3)

we have, regarding (4.9),
(a/l _262 )Sm (Z' n) = Blil(z)(an _62 )Sm (Z’ n) = Blil(z) Bm (Z) (5'4)

and the form of the formula for general power sums

(22)° (22)" 1o
2S,(z,n)= 2/1+Taz+---+Tﬁz B;*(z)B,(2) (5.5)

that may be calculated by the following considerations.

From the property
dz
(2k+2)sz+1(Z)=5szk+2(Z)=EﬁzBZk+z(z) (5.6)
=(22-1)0,B,,,(2)=2B,(2)0,By,,(2)
we get, for utilization in (5.5),
_ 1
Bll(Z)Bzml(Z):maz BZk+2(Z) (5.7)
and, finally,
21V 222K 1
25,1 (z,n) = 2/1+( 2!) o, +..-+E2k)+1)!a§k k+1az B2 (2)
_ (5.8)
% 24)’ oo, By (2)
=1 J' k+1

All the problem is reduced to the calculations of 9,B,,.,(z) in function of Z
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which are not so difficult.

For examples:
ZB]__l(Z)BS(Z)zaZB4(Z)=aZ (24 _223 +ZZ _%j

=0, (22 -2) =9,z =22

2 2
283(z,n):(2/1)2+( ;) =24Z+22*, 2=S,(z,n)

(24)
21

25, (n) ==L =222

38,*(2)B,(2)=0,B,(2) =@ ( 358 g 24—3

=0, (2°-32°+37* )—lz“+z3—£z2
2 2

(
=0, [23 j:szz—
_%2[2_3)2_1+1(22_1)@+%(2)@

31 2 3) 2! 3!

s, (n) :—%sf (n)+253 (n)

3
18, (2)8, (1) 008 (1) =00 £+ 2L 57

=0 (24—523 1272 j=4z3—4zz+fz
3 3 3

21) 22)°
25,(z,n)= 7:-72:17 1% (372 07+ L ﬂ+(62—2)ﬂ
! 37 )1 3) 21 3!

and so all.
As corollary of the calculations of 9,B,,,,(z) we may state that
“All B, (z) andall B*(z)B,.;(z) are polynomials of order kin Z”.

5.2. Faulhaber Formula for Even Power Sums S, (z,n)

By differentiating both members of (5.7) and remarking that 0,Z =Z'=(2z-1),

A"=n we obtain the formula giving S, (z,n)
2m+1 (Zﬂ)k

(2m+2)55, (2.0) = 32 U8 (2)0% 2008 (2)

L ea(22) " an ( 1
S (k-1 7 (m+1

(5.9)

97Bym.z (Z)

For examples
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S;(zn)=22+4°

Ss(z,n):(%zz _%ZJ%+(Z _%)(2/1-)2 +(2/1-)

22)°
55,(z,n)=2’ z 1124 (L2 1, 2n+Z’(—)+ z-1asn+anrn
6)1! \2 6 2! 6

The arrangement into polynomials with respect to (21 ) is immediate.
Remarks and Conclusions

We subjectively think that this work is a real and effective contribution to the
knowledge of Bernoulli polynomials, Bernoulli numbers and Sums of powers of
entire and complex numbers, as indicated in Introduction.

The main particularity of this work is the use of the translation or shift opera-
tor €% that is curiously let apart by quasi all authors although this is seen to
be very useful and easy to utilize.

By the utilization of many new properties on B, (z) such as
Sm(n)z,[Bm(n)
By.1(2)=(m+1)[7 B, (x)dx—(m+1) [ dz[ B, (x)dx
B, (z+y)=m(z+y)B,.(z+y)~(B(2)+B(y+1))"
(z+n)=e""(n)
we easily get the new key formulae
S, (z.n)=(S(n)+2)" togetherwith (9,-9,)S,(z.n)=B,(z)
for obtaining S (z,n).

We find also the miraculous symbolic formula for calculating rapidly the

Bernoulli numbers
(1-m)B, =(B-B)"
which together with the Lucas symbolic formula
B, (z)=(B+2z)"

give easily B (z).

Afterward by a change of arguments from z into Z =z(z-1) and » into
A=8,(z,n) we get the relation (8,-0,)=B,(z)(0,,-0,) which together
with the proof that B;*(z)B,,,(z) and B, (z) are polynomials in Z gives
simply rise to the Faulhaber form of S_(z,n).

Operator calculus, which is very different from Heaviside operational calculus
thus merits to be known. Moreover, it has a solid foundation and many inter-
esting applications in the domains of Special functions, Differential equations,

Fourier and other transforms, quantum mechanics [10].
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