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Abstract 
Utilizing the translation operator to represent Bernoulli polynomials and power 
sums as polynomials of Sheffer-type, we obtain concisely almost all their 
known properties as so as many new ones, especially new recursion relations 
for calculating Bernoulli polynomials and numbers, new formulae for ob-
taining power sums of entire and complex numbers. Then by the change of 
arguments from z into ( )1Z z z= −  and n into λ  which is the 1st order 
power sum we obtain the Faulhaber formula for powers sums in term of 
polynomials in λ  having coefficients depending on Z. Practically we give 
tables for calculating in easiest possible manners, the Bernoulli numbers, po-
lynomials, the general powers sums. 
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1. Introduction 

In many branches of mathematics the problem of Bernoulli numbers related to 
the millenary problem of power sums is probably the most studied since the 
publication of the book Ars Conjectandi by Euler in 1738 [1] as we can see on 
the net and, specially, in a didactical thesis of Coen [2], the explicative work of 
Raugh [3], Beardon [4], the bibliography of thousands of articles on Bernoulli 
numbers realized by Dilcher, Shula, Slavutskii [5], etc.  

Concerning Bernoulli polynomials ( )mB z , classically defined from a gene-
rating function, there had not so much properties, the most remarkable is its re-
presentation by a hyper-differential operator, the Hurwitz expansion of them 
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into Fourier series, the Roman formula for ( )mB nz , the Euler-McLaurin for-
mula, etc. 

As for the power sums on real and complex numbers, including the famous 
Faulhaber conjecture, there has no valuable formula linking them with Bernoulli 
polynomials until only some years ago [6].  

Regarding the situation, we would like to perform a selection of as many as 
possible known and new interesting properties of Bernoulli polynomials then of 
Bernoulli numbers in a coherent way, i.e., by only one approach, which utilizes 
principally operator calculus lying on the couple of operators position and deri-
vation, similar as the couple ,r ∇

  in quantum mechanics.  
In Section 2, we will treat the problem of Bernoulli polynomials, from their 

representation by a hyper-differential operator to almost all of their algebraic 
properties to the fact that ( )mB n  is equal to the primitive of the power sums of 
natural integers. Afterward we show that the formula giving Bernoulli polyno-
mials of a sum of two arguments ( )mB z y+  leads to two new recurrence re-
lations for obtaining ( )mB z . We also give another approach for calculating 
without integrations, the Fourier series of Bernoulli polynomials and the Ber-
noulli series of functions, the relation of ( )mB z  with the Euler zeta function. 
Afterward we show an up-to-date procedure for obtaining ( )mB z  from and 
only from ( )1mB z−  leading to the rapid establishment of Table of Bernoulli 
polynomials and numbers. Finally, we show a new way for obtaining Fourier se-
ries of Bernoulli polynomials, Euler zeta function, and vice-versa, the series of 
functions in term of a set of Bernoulli polynomials.  

In Section 3, we treat the problem of Bernoulli numbers mB , from its initial 
definition by Jakob Bernoulli in 1713 who related them by conjecture with the 
power sums on natural numbers. By comparison of this relation with the pre-
ceding formula linking ( )mB n  with power sums, we may identify mB  with 

( )0mB  then calculate mB  by a simple matrix method side-by-side with the 
method, more powerful, link with l, coming from the special recurrence formula 
coming from ( )mB z y+ .  

In Section 4, we prove by utilizing the translation operator e za∂ , coming from 
the Newtonian binomial, that the power sums on complex numbers are simply 
related to those on natural numbers. On the other hand, we prove that they are 
also related very simply to Bernoulli polynomials, from that we get again the re-
currence relation between Bernoulli polynomials. 

Section 5 is devoted to the Faulhaber problem regarding power sums on com-
plex numbers. Here we show that power sums on complex numbers may be cal-
culated from sums of entire numbers somehow by writing ( )2mB z  in function 
of the new argument ( )1Z z z= − . 

2. Bernoulli Polynomials  
2.1. Definition and Principal Properties 

In 1738, Euler introduced the Bernoulli polynomials ( )mB z  via the generating 
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function [1]  
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we directly find from (2.1) that ( )mB z  is the transform of mz  via a differential 
operator 
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mz
mB z z m
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                   (2.6) 

From (2.6) we get the famous known formulae  

( ) ( )1m mB z mB z−′ =                      (2.7) 

( ) ( ) ( ) ( ) 11 e 1z m m
m m m zB z B z B z z mz∂ −+ − = − = ∂ =        (2.8) 

( ) ( ) 11 0m m mB B δ− =                     (2.9) 

and the following formula which gives einxz  as series of Bernoulli polynomials.  
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From (2.8) we get the formula given by Roman [7] 
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From (2.10) we get the formulae on relations of Bernoulli polynomials versus 
trigonometric functions, especially the Castellanos formula [8] 
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The formulae (2.7) and (2.8) give the important formulae 

( ) ( ) ( )( )1
1 10

1d 1 0m m m mB z z B B
m

δ− = − =∫              (2.13) 
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( ) ( ) ( )( )11 10 0 1 1 mm m
m mB n B m n −− −− = + + + −           (2.14) 

and the Taylor expansion 
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B z B a z a B a z a B a

k −
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which may be put under symbolic form 

 ( ) ( )( ):
m

mB z a B a z+ = +                   (2.15) 

where undefined symbols ( )kB a  are to be replaced with ( )kB a . 
Exploring now the inter-relations between Bernoulli polynomials.  
From (2.4) and (2.7) we get the complementary of (2.15) 
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From (2.13)  
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( ) ( )
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i.e.,  
“The sum of powers of order m of n first entire numbers from 0 to ( )1n − , 

denoted by ( )mS n , is equal to the simple primitive (without constant of inte-
gration) of the Bernoulli polynomial ( )mB n ” and vice-versa, 

“The Bernoulli polynomial ( )mB n  is equal to the derivative of the power 
sums ( )mS n ” 

As for ( )mB z−  we see that 

( ) ( ) ( )
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which leads to  

( )1 11
2 2

m
m mB z B z   − + = − +   
   

                 (2.19) 

i.e., to the theorem 
“The graph of a Bernoulli polynomial is symmetric with respect to the axis 

1
2

z =  if m is pair and anti-symmetric if m is impair”. 

Joint (2.19) with (2.9) we get the famous property [1] 
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( ) ( )2 1 2 1 0
11 0
2m m mB B δ+ += − =                  (2.20) 

Now, by replacing in (2.6) z with z
n

 so that z∂  is with zn∂  we get  
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saying that 
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By replacing in (2.6) z with nz and z∂  with 1
zn

∂  we find again the formula 

given by Raabe [9] in 1851 
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2.2. Bernoulli Polynomials of Sum of Two Arguments 

From the following property of operators that we characterize fundamental [10] 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1! 2!z z z zf g z g z f g z f g z f′ ′ ′′ ′′∂ ≡ ∂ + ∂ + ∂ +    (2.23) 

we get 
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The above recurrence formula is to be compare with that given by Weisstein 
[11] without proof where there seems has a little mistake 
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m mm B z y m z y B z y B z B y−− + + + − + = +  

From (2.25) and knowing that ( ) ( ) ( )1 1 0k
k kB B= −  we obtain another type 

of recurrence formula for Bernoulli polynomials 
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2.3. The Fourier Series of Bernoulli Polynomials. Euler Zeta  
Function. Powers of pi  

By successive integrations by parts and utilizing the formula (2.13) for , 1n m ≥  
we get, knowing (2.9),  
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Because of the factor ( ) 11 n−−  we may conclude that 
( )2 1 0 0nB + =  for 0n >  and ( )2 2 0nB +  has opposite sign with respect to 
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The same method also gives  
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which provides us the following formula on Fourier series of ( )mB z  proven by 
Hurwitz in 1890 by another method [10] 
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2.4. Bernoulli Series of Functions 

Let ( )f z  be a periodic function defined on an interval a z b≤ <  and has the 
period P b a= − . For expanding ( )f z  into a Fourier series of exponentials 
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and see that the second member is equal uniquely to ( )0c n  so that 
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The Fourier series of a function, if it exists, is then 
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To avoid integrations in the calculation, we may utilize the method of integra-
tions by parts and get 
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so that we may write down the Fourier series formula  
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In the case 0 1z≤ < , jointed the preceding formula written under the form 
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with the Hurwitz formula we get the new and precious formula on expansion of 
derivable functions into series of Bernoulli polynomials 
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For examples, under matrix form 
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to be compared with  
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Formula (2.36) leads also to 
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As first interesting applications 
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By (2.36) we also obtain a precious recurrence formula of Bernoulli polyno-
mials  
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which may be resolved for ( )mB z  and ( )0mB  my matrix calculus. 

2.5. Obtaining ( )mB z  from ( )mB z1−  and Table of Bernoulli  
Polynomials 

Integrating two times as followed the Hurwitz formula on Fourier series of Ber-
noulli polynomials we get 
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( )
1

1

0 0

0

1d d !
2

m
z

m
n Z
n

z B x x m
i n

+∞

∈
≠

π
 =  
 

∑∫ ∫  

( ) ( ) ( ) ( ) ( )1
1 0 0 0

1 d 1 d d
z z

m m mB z m B x x m z B x x+ = + − +∫ ∫ ∫        (2.44) 

i.e.,  
( )1mB z+  is equal to ( )1m +  times the primitive of ( )mB z  minus the double 

primitive of ( )mB z  calculated for 1z = . The second term is so equal to  
( ) ( ) ( )0 1 1m

m mB B= − .                                           (2.45) 
This new algorithm for obtaining ( )1mB z+  from ( )mB z  and ( )0mB  is 

very easy to perform and may be utilized to establish Table of Bernoulli polyno-
mials.  

For examples: 

( )0 1B x =  
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( )
2

1
1

1
2 2x

xB x x x
=

= − = −  

( )
2 3 2

2
2

1

12 2
2 2 6 4 6

x

x x x xB x x x
=

   
= − − − = − +   

   
 

( )
3 2

3 2
3

1 1 1 33 3
3 2 6 12 6 12 2 2
x x x xB x x x

   = − + − − + = − +   
  

 

( )
4 3 2

4 3 2
4

1 1 1 14 4 2
4 2 4 20 8 12 30
x x xB x x x x

   = − + − − + = − + −   
  

 

( )
5 4 3

5 4 3
5

5 5 15
5 2 3 30 2 3 6
x x x xB x x x x x

 
= − + − = − + − 

 
 

( )
6 5 4 2

6

4 2
6 5

5 1 1 5 16 6
6 2 12 12 6.7 2.4 12.4 12.3

5 13
2 2 42

x x x xB x

x xx x

   = − + − + − + −   
  

= − + − +

 

( )
7 6 5 3 5 3

7 6
7

7 7 77 0
7 2 2 6 42 2 2 6 6
x x x x x x x xB x x x

 
= − + − + + = − + − + 

 
 

( )
8 7 6 4 2

8

8 7 6 4 2

7 7 1 1 7 7 18 8
8 2 12 24 12 8.9 2.8 8.6 24.5 12.3

14 7 2 14
3 3 3 30

x x x x xB x

x x x x x

   = − + − + − − + − +   
  

= − + − + −

 

( )
9 8 7 5 3

9

8 5
9 7 3

2 7 29 0
9 2 3 15 9 30

9 21 36 2
2 5 10

x x x x x xB x

x x xx x x

 
= − + − + − + 

 

= − + − + −

 

This method for establishing a table of Bernoulli polynomials is extremely 
easier if we utilize the list of fifty Bernoulli numbers ( )0mB  conscientiously es-
tablished by Coen [2]. For examples 

( ) 10 9 8 6 4 2
10

15 3 55 7 5
2 2 66

B x x x x x x x= − + − + − +  

( ) 11 10 9 7 5 3
11

11 55 11 511 11
2 6 2 6

B x x x x x x x x= − + − + − +  

( ) 12 11 10 8 6 4 2
12

33 33 6916 11 22 5
2 2 2730

B x x x x x x x x= − + − + − + −    (2.46) 

2.6. Bernoulli Polynomials and Euler Zeta Function 

From the Hurwitz formula 

( )
( )

2

, 0

1 1 1 e 0 1
! 2

i nz
k k

n Z
k

n
B z z

k ni

∞

∈ ≠

π= − ≤
π

≤∑  

we get the Euler zeta function one may find references in Coen [2] and Raugh 
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[3]  

( ) ( ) ( ) ( ) ( )1 2
22

1

1 12 1 2 0
2 !2

m m
mm

k
m B

mk
ζ

∞
+

=

π= = −∑          (2.47) 

as so as  

( ) ( ) ( )
( )

1
2

2

12

2 !2 12 1 cos 2m m
m

km

m
kz

B z k

∞
+

=

π − π= ∑            (2.48) 

( ) ( ) ( )
( )

2 1 1
2 1

12 1

2 1 !2 12 1 sin 2m
m

km

m m
kz

B z k

∞
+

+
=+

+π
+

= − π∑          (2.49) 

Moreover, by taking 1 1 1 1 1 20, , , , , , ,1
8 6 4 3 2 3

z =  in these formulae we get the 

known property 

( ) ( ) ( )
2 1

2 1 2 1

0

10 1 2 1 ! 0 for 0
2

m

m m
k Z
k

B B m m
i k

+∞

+ +
∈
≠

 
 π

= =


= − + >∑    (2.50) 

and the powers of pi. 
For examples 

( ) ( ) ( )
( )

( )1
2

12

2

1 2
2 !2 1

2 1
k

m
m m

km

m
B k

∞
+

=

−
= −π ∑              (2.51) 

( ) ( )
( ) ( )1

22 1 2 1
12

2 2 ! 11 1
2 1 2

mm k
mm m

km

m
kB

∞
+

− −
=

= − −
−

π ∑          (2.52) 

( ) ( ) ( )
( ) 12

2 1
2

2 !2 12 1 cos
31 6

m

km

m
m

m k
B k

∞
+

=

π π  


=


− ∑           (2.53) 

( ) ( ) ( )
( )

1
2

2
1

1

1

2 1 1 4
2 1 !2 12 1 sin

2
m

m
k

m

m

m k
B k

∞
+

+
=

+

+

π+  = −  


π


∑         (2.54) 

and 
1 1 1 1

4 1 3 5 7
= − + −

π
+  

2

2 2 2

1 1 11
4 2 3 4

= − +
π 

 −
 

+  

2
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 136
2 2 2 2 2 21 2 3 4 5 6 7 8

   = − − − + + + − +   
   

π   

3
3 3 3

1 1 132 1
3 5 7

 = − + − + 


π


  

etc. 

3. Bernoulli Numbers  
3.1. Definition and Properties 

In 1713, according to Jacob Bernoulli (1655-1705), was published the list of ten 
first sums of powers of entire numbers [3]  
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1 2m m m mn n= + + +∑                     (3.1) 

in terms of the numbers kB  which are conjectured to be the same for all m  

( ) 1

0

11 1 .
1

m km m k
k

k

m
n B n

km
+ −

=

+ 
= −  +  

∑ ∑              (3.2) 

Afterward, the kB  were baptized Bernoulli numbers. 
By comparison of the relation coming from (3.2)  

( ) ( ) ( )

( ) ( )

0

1 2
0 1 2

!1 :
! !

1
1

2

m k mm m k
n k

k

mm m m
m

mn B n B n
m k k

m m
B n mB n B n B

−

=

− −

∂ = − = −
−

−
= − + + + −

∑ ∑



    (3.3) 

with the formula coming from (2.16), (2.17) 

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

1 1

1 2
0 1 2

1 : 0

0 1 0 0 0
2

mm m m m m
n n m n

m m m
m

n n B n n B n mn

m
B n m B n B n B

− −

− −

∂ + + + ∂ = + ∂ = + +

 
= + + + + + 

 





  (3.4) 

we get, combining with (2.20), 

( )0 0 0B B=  

( )1 1
10 1
2

B B= − − = −  

( )2 2 0m mB B=  

( ) ( )2 1 2 1 2 1 0
10 1
2m m m mB B B δ+ + += − = =  

 ( )0m mB B=                        (3.5) 

i.e. 
“The Bernoulli numbers mB  are equal to the values at origin of the Bernoulli 

polynomial ( )mB z ”.  

3.2. Obtaining Bernoulli Numbers 

The above formula (3.5) and the recurrence formula for Bernoulli polynomials 
(2.43) corresponding to 0z =  

( )
1

010
11

m
km

k

Bm
km k=

 
= +  −+  

∑                  (3.6) 

lead to that for Bernoulli numbers 

31 2
0

1 0, 0
0 1 2 11 1 2 3

mm m m mB BB BB m
mm m

       
+ + + + + = >       −+        

  (3.7) 

which, knowing ( )0 0 1mB B= = , gives 1 2 4, , , , mB B B B  according to following 
Table 1. 

This matrix equation may be resolved by doing linear combinations over lines 
from the second one in order to replace them with lines containing only some 
non-zero numbers. 
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Table 1. Matrix equation for calculating Bm. 

0

1

2

3

1

1
11 2
01 3 3
01 4 6 4
0

1 0
1 2 1 m

B
B
B
B

m m m
B

m −

 
    
    
    
    
    

=    
    
         
         −          
    

 

 

 

 

 

      

 

  

 

      

 

 
For instance, for calculating successively { }0 1 2 4 6 18, , , , , ,B B B B B B  we may util-

ize the matrix equation (Table 2). 
We remark that the last line of this matrix has replaced  
19

, 0,1,2,4,6,8,10,12,14,16,18i
i

   =  
   

. 

The results are  

0 1B = , 0 12 0B B+ = , 1 23 0B B+ = , 2 45 0B B+ = , 2 67 0B B− + =  

2 8
9 9 0
5

B B+ = . 2 105 11 0B B+ = , 1 2 12
613 13 0

105
B B B− + = , 

1 1435 15 0B B+ = , 1 3 16240 17 17 0B B B+ + =  

1 4 18 18
438672052 775 19 0

798
B B B B− + = = +             (3.8) 

Another method, maybe more interesting, for establishing table of Bernoulli 
numbers is obtained from the formula (2.27). It is  

( ) 2 2 2 2 2 4 4 2 2 2

2 2 2
1 2 , 1

2 4 2m m m m

m m m
m B B B B B B B m− − −

     
− − = + + + >     

     
  

or, symbolically, 

( ) ( )1 : m
mm B B B− = −                      (3.9) 

For examples 

( ) ( )2
2 0 2 1 11 2 : 2 2B B B B B B B− = − = −  

3 1 2 2 14 : 3 3 0B B B B B− = − + =  

4 2 2 2 2 4

4 15 6
2 30

B B B B B B  −
− = = ⇒ = 

 
 

6 4 2 4 2 6

6 1 17 2 30
4 6 42

B B B B B B 
− = = = − ⇒ = 

 
 

8 6 2 4 4 8

8 19 8 7
4 30

B B B B B B 
− = × × + ⇒ = − 

 
 

10 8 2 6 4 10

10 511 10 9 2
6 66

B B B B B B 
− = × × + ⇒ = 
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Table 2. Simplified matrix equation for calculating Bm. 

0

1

2

4

6

8

10

12

14

16

18

11
01 2
00 1 3
00 0 1 5

0 0 1 0 7
0 0 9 5 0 0 9
0 0 5 0 0 0 11

610 3 0 0 0 0 13
105

0 35 0 0 0 0 0 0 15
0 240 0 17 0 0 0 0 0 17
0 2052 0 0 775 0 0 0 0 0 19

B
B
B
B
B
B
B

B
B
B
B

    
  
  
  
  
  −   
   =  −   
  −   
  
  
  
  
   −  



0
0
0

0
0
0
0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

12 10 2 8 4 6 6 12

12 12 69113 12 11 2
8 6 2730

B B B B B B B B   
− = × × + + ⇒ = −   

   
 

14 12 2 10 4 8 6 14

14 14 715 14 13 2 2
10 8 6

B B B B B B B B   
− = × × + + ⇒ =   

   
 

16 14 2 12 4 8 8 16

16 16 361717 16 15 2
10 8 510

B B B B B B B B   
− = × × + + ⇒ = −   

   
 

18 16 2 14 4 12 6 10 8

18 18 18
19 18 17 2 2 2

14 12 10
B B B B B B B B B     

− = × × + + +     
     

 

18
43867

798
B = , 20

174611
330

B = − , etc.            (3.10) 

We see that 18B  is a sum over only four terms 16 2 14 4 12 6 10 8, , ,B B B B B B B B ; 

20B  is over five, 40B  over ten, 50B  over twelve terms. 

3.3. Obtaining Bernoulli Polynomials and Power Sums from  
Bernoulli Numbers 

From the formula (2.15) 

( ) ( )( ):
m

mB z a B a z+ = +  

we get the symbolic Lucas formula  

( ) ( ): m
mB z B z= +                      (3.11) 

for calculating Bernoulli polynomials ( )mB z  from the set of Bernoulli num-
bers. 

For examples 

( ) ( ) 0
1 0 1

1:
2

B z B z B z B z z= + = + = −  

( ) ( )2 2 2
2 0 1 2

1: 2
6

B z B z B z B z B z z= + = + + = − +  

https://doi.org/10.4236/am.2022.1310051


D. T. Si 
 

 

DOI: 10.4236/am.2022.1310051 813 Applied Mathematics 
 

( ) ( )3 3 2 3 2
3 0 1 2 3

3 1: 3 3
2 2

B z B z B z B z B z B z z z= + = + + + = − +  

As for the power sums ( )mS n  we begin by calculating the formula coming 
from (2.17) 

( ) ( ) ( ): m
n m mS n B n B n∂ = = +                  (3.12) 

then take the primitives of both members. 
For examples 

( ) ( ) ( ) ( ) ( )
2

1 1 1 1
10 1 1
2 2 2n

n nS n B n S n n B n n ∂ = ⇒ = + + + − = = − = − 
 ∫ ∫  

( ) ( ) ( )
3 2

22 2 2
2 2

10 1 1
6 3 2 6

n n nS n n B n n n = + + + − = = − + = − + 
 ∫ ∫

 

( ) ( ) ( )224 3 2
3 2

3 3

13
2 2 4 2 4 4

n nn n n nS n B n n n
− = = − + = − + = 

 ∫ ∫  

3.4. Bernoulli Numbers and the Euler-McLaurin Formula 

From the formula for expansion of derivable functions into series of Bernoulli 
polynomials 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
10

0

1d 1 0
1 !

k k
k

k
f z f z z f f B z

k

∞

+
=

 = + −  +∑∫  which leads, for pe-

riodic functions ( )mB z  identical to ( )mB z  in the interval ( )0,1 , to  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1

0

1d 1
1 !

m k k
km

k
f z m f z z f m f m B z

k

∞+

+
=

 + = + + −  +∑∫  (3.13) 

we get the formula  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

11 1

0

1
1

0
d 1

1 !

1
d

!

rm k k k
m

k

r
m r

rm

B
f m f z z f m f m

k

f z B z z
r

−+ +

=

+
+

 = + + −  +

−
+

∑∫

∫

     (3.14) 

analogue to the Euler-McLaurin formula one may find in [11]  

For example, with ( ) 3f z z= , ( )1
10
2

B = − , ( )2
10
6

B = , ( )3 0 0B =  it is veri-

fied that 

( ) ( ) ( )33 3 3 3 2 2 1 1
2

1 1 0 81 16 19 152 d 3 2 3 3 2 6 3 2 8
2 12 3 4 2 12

z z −
= − − + − + − = − + =∫  

4. Obtaining Powers Sums of Real and Complex Numbers  
4.1. From Power Sums of Integers  

From the definition of the power sums on real and complex numbers 

( ) ( ) ( )( ), 1 1
mmm

mS z n z z z n= + + + + + −              (4.1) 

we get, by utilizing the translation operator e z∂  mentioned in (2.4),  
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( ) ( )( )1, 1 e e zz n m
mS z n z− ∂∂= + + +                 (4.2) 

and the formula for sums of geometric progressions, the compact formula 

( ) e 1,
e 1

z

z

n
m

mS z n z
∂

∂

−
=

−
                      (4.3) 

From (4.3) and the fact that  

( ) ( ) ( )z y z yf z y f z y f z y+∂ + = ∂ + = ∂ +                 (4.4) 

we get the symbolic formula 

( ) ( ) ( ) ( )( )e 1 e 1, : ,
e 1 e 1

z y y

z y y

n n
mm m

mS z y n z y z y z S y n
+

+

∂ ∂

∂ ∂

− −
+ = + = + = +

− −
 

leading to the very interesting new formula given powers sums of complex num-
bers from powers sums of integers 

( ) ( )( ),
m

mS z n S n z= +                      (4.5) 

where the undefined symbol ( )kS n  is to be replaced with the power sums on 
integers (2.17) 

( ) ( ) ( )0 1 1 kk k
k kS n n B n= + + + − = ∫ , 00 1=             (4.6) 

Another way, more shortly, to obtain (4.5) is by remarking that  

( ) ( )e nzz n n∂+ =   

so that 

( ) ( ) ( ) ( ) ( )( )
0 0

, e
!

n
km m mz k k

m m n m m k
k k

mzS z n S n S n z S n S n z
kk

∂
−

= =

 
= = ∂ = = + 

 
∑ ∑  

For examples 

( ) ( ) ( ) ( )0 1
1 1 0

1
,

2
n n

S z n S n z S n z nz
−

= + = +  

( ) ( ) ( ) ( ) ( )
3 2

2 2 2
2 2 1 0, : 2

3 2 6
n n nS z n S n S n z S n z n n z nz

 
= + + = − + + − + 

 
  

( ) ( )( ) ( ) ( ) ( )3 2 3
3 3 2 1, : : 3 3S z n S n z B n z B n z B n nz= + = + + +∫ ∫ ∫  

4.2. From Bernoulli Polynomials  

Now, because n may go until infinity, n∂  is well defined so that 

( ) ( )ee 1,
e 1 e 1

zz

z z

nn
m mz

n m n mS z n z z B z n
∂∂

∂ ∂

∂−
∂ = ∂ = = +

− −
         (4.7) 

On the other hand, from (2.18) 

( ) ( ) ( ) ( ), e 1
e 1

z
z

n mz
z m m mS z n z B z n B z∂

∂

∂
∂ = − = + −

−
        (4.8) 

so that we obtain the following beautiful important formula 

 ( ) ( ) ( ),n z m mS z n B z∂ − ∂ =                   (4.9) 
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as so as the historic Jacobi conjectured formula  

( ) ( )n m mS n B n∂ =                      (4.10) 

Formula (4.9) leads to the formula giving ( ),mS z n  directly from ( )mB z   

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2

2 1

1, 1

1! 2! 1 !

z z
m m m

n z n n

m
m

m m m

S z n B z nB z

n n nB z B z B z
m

+

  ∂ ∂ = = + + +  ∂ − ∂ ∂ ∂  

′= + + +
+





      (4.11) 

i.e., to the algorithm saying that  

( ),mS z n  is equal to ( )mnB z  plus ( )
2

2! m
n B z′  and so all until 

( )
( ) ( )

1

1 !

m
m

m
n B z
m

+

+
  

For examples 

( ) ( ) ( )
2 2

1 1 0,
2! 2 2
n n nS z n nB z B z nz= + = − +  

( ) ( ) ( ) ( )
2 3 3

2 2
2 2 1 0

1 1, 2 2
2! 3! 6 2 3
n n nS z n nB z B z B z n z z n z   = + + = − + + − +   

   
 

( ) ( ) ( ) ( )
2 4

3
3 3 2 1, 3

2! 4
n nS z n nB z B z n B z= + + +  

In particular, we get the recurrence relation between Bernoulli polynomials 
given by Roman [8]  

( ) ( ) ( ) ( ) ( )1 1 0
1,1

2! 1
m

m m m
mS z z B z B z B z B z

m−= = + + + +
+

    (4.12) 

and the well-known ancient formula of Bernoulli (1713)  

( )
2 1

1 1 01! 2! ! 1

m m

m m m
n n n nS n B mB B B

m m

+

−= + + + +
+

         (4.13) 

Lastly, because of (4.10) 

( ) ( ) ( )1
1 d

nm
m m mn

n S n S n B n n
+

= + − = ∫  

we get 

( ) ( ) ( )1
e 1 dz

zm
m mz

z S z B n n
+∂= − = ∫  

( ) ( )1e 1 d
z z

m mz
z

B z B n n
∂

+−
=

∂ ∫  

and, by expanding functions into Bernoulli series, the formula found in Wikipe-
dia  

 ( ) ( ) ( )
2 3

1e 1 d 1
2! 3!

z z z z
z

z

f z f n n f z
∂

+  ∂ ∂−
= = + + + 

∂  
∫        (4.14) 

We resuming the herein-before results of calculations in following Tables 
(Tables 3-5). 
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Table 3. Obtaining ( )mB z  and ( )mS n  from mB . 

mB  ( ) ( )10
d

z

m m mB z m B z z B−= +∫  ( ) ( ) ( )0 1 1 mm m
m mS n n B n= + + + − = ∫  

0 1B =  ( )0 1B z =  ( )0S n n=  

1
1
2

B = −  ( )1
1
2

B z z= −  ( )
2

1 2 2
n nS n = −  

2
1
6

B =  ( ) 2
2

1
6

B z z z= − +  ( )
3 2

2 3 2 6
n n nS n = − +  

3 0B =  ( ) 3 2
3

3 1
2 2

B z z z z= − +  ( )
4 3 2

3 4 2 4
n n nS n = − +  

4
1

30
B −

=  ( ) 4 3 2
4

12
30

B z z z z= − + −  ( )
5 4 3

4 5 2 3 30
n n n nS n = − + −  

5 0B =  ( ) 5 4 3
5

5 5
2 3 6

zB z z z z= − + −  ( )
6 5 4 2

5
5

6 2 12 12
n n n nS n = − + −  

6
1
42

B =  ( )
2

6 5 4
6

5 13
2 2 42

zB z z z z= − + − +  ( )
7 6 5 3

6 7 2 2 6 42
n n n n nS n = − + − +  

7 0B =  ( ) 7 6 5 3
7

7 7 7 7
2 2 6 42

B z z z z z z= − + − +  ( )
8 7

6 4 2
7

7 7 7
8 2 12 24 84
n nS n n n n= − + − +  

 
Table 4. Obtaining ( ),mS z n  from ( )mB z . 

( )mB z  ( ) ( ) ( ) ( ) ( ) ( )
2 1

,
2! 1 !

m
m

m m m m
n nS z n B z n B z B z

m

+

′= + + +
+

  

( )0 1B z =  ( )0 ,S z n n=  

( )1
1
2

B z z= −  ( )
2

1
1,
2 2!

nS z n z n = − + 
 

 

( ) 2
2

1
6

B z z z= − +  ( ) ( )
2 3

2
2

1, 2 1 2
6 2! 3!

n nS z n z z n z = − + + − + 
 

 

( )
2

3
3

3
2 2
z zB z z= − +  ( ) ( )

2 2 3 4
3 2

3
3 1, 3 3 6 3 6
2 2 2 2! 3! 4!
z z n n nS z n z n z z z

   = − + + − + + − +   
  

 

( ) 4 3 2
4

12
30

B z z z z= − + −  ( ) ( ) ( ) ( ) ( ) ( )
2 3 4 5

4 4 3 2 1 0, 4 12 24 24
2! 3! 4! 5!
n n n nS z n B z n B z B z B z B z= + + + +  

 
Table 5. Obtaining ( ),mS z n  from ( )mS n . 

( )mS n  ( ) ( )( ), :
m

mS z n S n z= +  

( )0S n n=  ( )0 ,S z n n=  

( ) ( )
1

1
2

n n
S n

−
=  ( ) ( )

1

1
,

2
n n

S z n nz
−

= +  

( )
3 2

2 3 2 6
n n nS n = − +  ( ) ( )

3 2
2

2 , 1
3 2 6
n n nS z n nz n n z= + − + − +  

( )
4 3 2

3 4 2 4
n n nS n = − +  ( ) ( ) ( ) ( ) ( )3 2

3 0 1 2 3, 3 3S z n S n z S n z S n z S n= + + +  
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5. The Faulhaber Formulae on Power Sums of Complex  
Numbers 

5.1. Powers Sums of Odd Order 

Although the problems of powers sums and Faulhaber conjecture were treated 
by many authors for examples by Radermacher [12], by Tsao in (2008) [13], by 
Chen, Fu, Zhang in (2009) [14], etc., nevertheless we would like to present he-
reafter one new approach about the problems.  

In ( ),mS z n  let us replace the arguments z and n by 

( )1Z z z= −  and ( ) ( )
2

1 1,
2
nS z n B z nλ = = +            (5.1) 

Because 

 ( ) ( )1 1
d d d d2 , 0, ,
d d d d
Z ZB z B z n n
z n n z

λ λ
= = = + =         (5.2) 

and consequently 

( )( )1
d d
d dn Z
Z B z n
n n λ λ

λ
∂ ≡ ∂ + ∂ = + ∂  

( )1
d d 2
d dz Z Z
Z B z n
z z λ λ

λ
∂ ≡ ∂ + ∂ = ∂ + ∂  

( )( )1 2n z ZB z λ∂ − ∂ ≡ ∂ − ∂                    (5.3) 

we have, regarding (4.9), 

( ) ( ) ( )( ) ( ) ( ) ( )1 1
1 12 , ,Z m n z m mS z n B z S z n B z B zλ
− −∂ − ∂ = ∂ − ∂ =    (5.4) 

and the form of the formula for general power sums 

( ) ( ) ( ) ( ) ( )
2

1 1
1

2 2
2 , 2

2! !

m
m

m Z Z mS z n B z B z
m

λ λ
λ − −

 
 = + ∂ + + ∂
 
 

     (5.5) 

that may be calculated by the following considerations. 
From the property 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2 1 2 2 2 2

2 2 1 2 2

d2 2
d

2 1 2

k z k Z k

Z k Z k

Zk B z B z B z
z

z B z B z B z

+ + +

+ +

+ = ∂ = ∂

= − ∂ = ∂
     (5.6) 

we get, for utilization in (5.5), 

( ) ( ) ( )1
1 2 1 2 2

1
1k Z kB z B z B z

k
−

+ += ∂
+

              (5.7) 

and, finally, 

( ) ( ) ( )
( ) ( )

( ) ( )

2 2 1
2

2 1 2 2

2 1
2 21

1

2 2 12 , 2
2! 2 1 ! 1

2
! 1

k
k

k Z Z Z k

jk
kj

Z Z
j

S z n B z
k k

B z
j k

λ λ
λ

λ

+

+ +

+
+−

=

 
 = + ∂ + + ∂ ∂
 + + 

 
= ∂ ∂ 

+ 
∑



 (5.8) 

All the problem is reduced to the calculations of ( )2 2Z mB z+∂  in function of Z 
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which are not so difficult. 
For examples: 

( ) ( ) ( )

( )

1 4 3 2
1 3 4

22 2

12 2
30

2

Z Z

Z Z

B z B z B z z z z

z z Z Z

−  = ∂ = ∂ − + − 
 

= ∂ − = ∂ =

 

( ) ( ) ( )2
2

3

2
2 , 2 2 2

2!
S z n Z Z

λ
λ λ λ= + = + , ( )1 ,S z nλ =  

( ) ( )2
2

3

2
2 2

2!
S n

λ
λ= =  

( ) ( ) ( )

( )

1 6 5 4 2
1 5 6

6 5 4 3 4 3 2

3 2 2

5 1 13 3
2 2 42
1 13 3
2 2

1 3
2

Z Z

Z

Z

B z B z B z z z z z

z z z z z z z

Z Z Z Z

−  = ∂ = ∂ − + − + 
 

= ∂ − + − − + −

 = ∂ − = − 
 

 

( ) ( ) ( ) ( )2 3

5

3
2 2

2 21 1 2 1 1 1, 2 2
2 3 1! 2 3 2! 2 3!

1 12 4
3 3 3

S z n Z Z Z

Z Z Z

λ λλ

λλ λ

   = − + − +   
   

   = − + − +   
   

 

( ) ( ) ( )2 3
5 1 1

1 4
3 3

S n S n S n= − +  

( ) ( ) ( )1 8 7 6 4 2
1 7 8

4 3 2 3 2

14 7 24 4
3 3 3

4 2 44 4
3 3 3

Z Z

Z

B z B z B z z z z z z

Z Z Z Z Z Z

−  = ∂ = ∂ − + − + 
 

 = ∂ − + = − + 
 

 

( ) ( ) ( ) ( )2 3
3 2 2

7

2 21 2 12 , 3 2 6 2
3 1! 3 2! 3!

S z n Z Z Z Z Z Z
λ λλ   = − + + − + + −   

   
 

and so all.  
As corollary of the calculations of ( )2 2Z kB z+∂  we may state that  
“All ( )2kB z  and all ( ) ( )1

1 2 1kB z B z−
+  are polynomials of order k in Z”. 

5.2. Faulhaber Formula for Even Power Sums ( )kS z n2 ,  

By differentiating both members of (5.7) and remarking that ( )2 1z Z Z z′∂ = = − , 
nλ′ =  we obtain the formula giving ( )2 ,mS z n  

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

2 1

2 1 2 2
1

12 1
1

2 2
1

2 12 1 ,
! 1

2 2 1
1 ! 1

km
k

m Z Z m
k

km
k
Z Z m

k

m S z n B z B z
k m

n
B z

k m

λ

λ

+

+
=

−+
−

+
=

 + = ∂ ∂ + 

 + ∂ ∂ − + 

∑

∑
 (5.9) 

For examples 
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( ) 2
3 ,S z n Zλ λ= +  

( ) ( ) ( )2 3
2

5

2 21 1 2 1,
2 6 1! 6 2! 3!

S z n Z Z Z
λ λλ   = − + − +   

   
 

( ) ( )2
2 2

4

21 2 1 1 15 , 2 4 4
6 1! 2 6 2! 6

S z n Z Z Z Z n Z Z n n
λλ λ λ     ′ ′= − + − + + − +     

     
 

The arrangement into polynomials with respect to ( 2λ ) is immediate. 
Remarks and Conclusions  

We subjectively think that this work is a real and effective contribution to the 
knowledge of Bernoulli polynomials, Bernoulli numbers and Sums of powers of 
entire and complex numbers, as indicated in Introduction.  

The main particularity of this work is the use of the translation or shift opera-
tor e za∂  that is curiously let apart by quasi all authors although this is seen to 
be very useful and easy to utilize.  

By the utilization of many new properties on ( )mB z  such as 

( ) ( )m mS n B n= ∫  

( ) ( ) ( ) ( ) ( )1
1 0 0 0

1 d 1 d d
z z

m m mB z m B x x m z B x x+ = + − +∫ ∫ ∫  

( ) ( ) ( ) ( ) ( )( )1: 1
m

m mB z y m z y B z y B z B y−+ = + + − + +  

( ) ( )e nzz n n∂+ =  

we easily get the new key formulae 
( ) ( )( ), :

m
mS z n S n z= +  together with ( ) ( ) ( ),n z m mS z n B z∂ − ∂ =  

for obtaining ( ),mS z n .  
We find also the miraculous symbolic formula for calculating rapidly the 

Bernoulli numbers 
( ) ( )1 : m

mm B B B− = −  
which together with the Lucas symbolic formula  

( ) ( ): m
mB z B z= +  

give easily ( )mB z . 
Afterward by a change of arguments from z into ( )1Z z z= −  and n into 

( )1 ,S z nλ =  we get the relation ( ) ( )( )1 2n z ZB z λ∂ − ∂ = ∂ − ∂  which together 
with the proof that ( ) ( )1

1 2 1kB z B z−
+  and ( )2kB z  are polynomials in Z gives 

simply rise to the Faulhaber form of ( ),mS z n .  
Operator calculus, which is very different from Heaviside operational calculus 

thus merits to be known. Moreover, it has a solid foundation and many inter-
esting applications in the domains of Special functions, Differential equations, 
Fourier and other transforms, quantum mechanics [10].  
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