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Abstract 
In this study, a revised version of some numerical methods for a class of 
hybrid integro-differential equations with weakly singular kernels (Abel types) 
is presented. These equations were developed from a class of integro-differential 
equations of first kind originating from an aeroelasticity problem. By mani-
pulating the bounds of initial conditions with random variations, this study 
numerically demonstrated the well-posedness properties of the equations. 
Finally, an assumption of separating variables, allowed for linear splines to 
be chosen as a basis and for the differentiation and integration of the inte-
gro-differential part to be interchanged; hence, a numerical scheme was con-
structed. 
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1. Introduction 

The aeroelastic dynamical model is governed by a class of integro-differential 
equations with weakly singular kernels [1]. In [2], Burns and Ito examined the 
well-posedness of the first kind equations in weighted product L2-spaces with 
singular kernels as weights. In this study, we numerically investigated the well- 
posedness property of hybrid equations. For hybrid type equations, especially for 
the integro-differential parts, we followed the works in previous studies [3] [4]. 
For the derivative parts, we revised the results outlined in [5] with second order 
accuracy difference methods for different boundary conditions. Thereafter, we 
introduced randomly perturbed noises with different bounds in the initial con-
ditions, and compared the corresponding solutions to solutions without initial 
perturbations. By setting reasonable tolerance of deviation, we successfully dem-
onstrated the well-posedness property. This paper is organized as follows: Sec-
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tion 1 introduces dynamical systems, Section 2 explains the development of the 
numerical methods, Section 3 presents examples with numerical results and Sec-
tion 4 summarizes the study. 

2. Dynamical Systems 

Let us consider weakly singular integro-differential equations of hybrid types 
with the general normalized form 

( ) ( ) ( ) ( )d, , , 0,
d t tG x t x D x L x f t t

t
+ + = >               (1) 

and initial condition ( ) ( )x s sϕ= , for 0s ≤ .  
Here, ( ), ,G x t x  is a function of state, time and time derivative of state. The 

other terms are such that  

( ) ( ) ( )0

1
dtD x g s x t s s

−
= +∫ ,                   (2) 

and  

( ) ( ) ( )0

1
dtL x b s x t s s

−
= +∫ .                    (3) 

The kernel ( )g s  belongs to a weakly singular type. In particular, the Abel 
type ( ) pg s s −=  is considered, where 0 1p< < . The kernel ( )b s  is assumed 
to be a smooth function for 1 0s− ≤ ≤ .  

3. Numerical Methods 

To develop the numerical algorithms, we separately discretize two variables. For 
the first variable, [ ]1,0s∈ −  is discretized as 1 1 01 0n nτ τ τ τ−− = < < < < = . 
For the second variable [ ]0,1t∈ , the nodes are 0 1, , , mT T T , with  

0 10 1mT T T= < < < = . The typical equations we study are  

( ) ( )( ) ( ) ( ) ( ) ( )0

1

0

1

d, , d d
d

pG x t t x t s x t s s b s x t s s f t
t

−

− −
+ + + + =∫ ∫ .     (4) 

Because the derivative is respect to t, we interchange the differentiation and inte-

gration of the second term and then apply the property ( ) ( )d d
d d

x t s x t s
t s

+ = + . If 

we assume that ( ) ( ),t s x t sκ = + , then  

( ) ( ), ,t s t s
t s

κ κ∂ ∂
=

∂ ∂
.                        (5) 

Next, suppose that ( ) ( ) ( )1, i i
n
it s a t sκ β
=

= ∑ , with the basis ( )i sβ ,  
1,2, , 1i n= − , defined as: 

( )

( ) [ ]

( ) [ ]

1 1
1

1 1

1 , , ,

1 , , ,

0, otherwise,

i i i
i

i
i i i

i

s s

s s s

τ τ τ
δ

β
τ τ τ

δ

+ +
+

− −

 − ∈
=  − ∈



                (6) 
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where 1 0i i iδ τ τ−= − > , 1, ,i n=  . In particular, ( ) ( )0 0
0 1

1s sβ τ
τ τ

= −
−

, 

[ ]1 0,s τ τ∈  and ( ) ( )1
1

1
n n

n n

s sβ τ
τ τ −

−

= −
−

, [ ]1,n ns τ τ −∈ . 

The semi-discretized form of Equation (4) becomes 

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

0 0 01

0

0

0

1

d, , d
d

d .

np
i ii

i ii
n

G a t t a t s a t s s
s

b s a t s s f t

β

β

−

=−

=−

 +  
 

+ =

∫

∫

∑

∑



          (7) 

With the piecewise linear property of ( )i sβ , the second term of Equation 

(7) can be further partitioned into ( ) ( ) ( )0 0 1 1 n nc a t c a t c a t+ + + , where kc , 
0,1, ,k n=  , depending on lτ , 0,1, ,l n=  . Analogously, the third term of 

Equation (7) can be discretized as ( ) ( ) ( )0 0 1 1 n nd a t d a t d a t+ + + , and kd ,  
0,1, ,k n=  , also depending on lτ , 0,1, ,l n=  . 

For a fully-discretized form, with a second-order finite difference approx-
imating the derivative term, Equation (7) becomes the following 

For 1, , 2k m= − ,  

( )
2 1

0 0 0
0 0 0

4 3
, ,

2

k k k
k k k k k

i i i ii i
k

n na a a
G a T a c a d f T

+ +

= =

 − + −
+ + = 

∆ 
∑ ∑ ,           (8) 

for 1k m= − , ( )
2

1 1 1 1 10 0
0 0 0

1

, ,
2

m m
m m m m m

i i i ii i
m

n na a
G a T a c a d f T

−
− − − − −

= =
−

 −
+ + = 

∆ 
∑ ∑ , 

and for k m= , ( )
1 2

0 0 0
0 0 0

3 4
, ,

2

m m m
m m m m mn n

i i i ii i
m

a a a
G a T a c a d f T

− −

= =

 − +
+ + = 

∆ 
∑ ∑ , 

with 1 0k k
k T T −∆ = − > , 1, ,k m=  . 

To identify 0
ka , 1, ,k m=  , and apply uniform discretization in both t and s, 

we use the transit property 1
1

j j
i ia a −

−=  and assume m n= . Therefore, we have 

0
j j i

ia a −= , for j i> . For j i≤ , 0
la , 0,1, , 1l n= − , can be determined by 

the initial condition. 
Without loss of generality, we use the special form ( ) ( )( ) ( ) ( ), ,G x t t x t x t x t= −   

and construct an n n×  linear system =Ax b  for the system of algebraic equa-
tions, where  

0 0

1 1 0 0

3 3 0 0

2 2 2 2 0 0

1 1 3 3 2 2 1 1 0 0

3 2 11 0
2 2

3 21 0 0
2

3 2 11
2 2

11
2

1 2 31
2 2

n n

n n

n n
n n

c d

c d c d

A
c d c d

c d c d c d

c d c d c d c d c d

− −

− −

− −
×

− − − − ∆ ∆ ∆ 
 − − − − ∆ ∆
 
 

=  −
− − − − 

∆ ∆ ∆ 
 

− − − − ∆ 
 − − − + − − − − −  ∆ ∆ ∆

 



     

 

 



,  
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1
0

0 1

n
n

a

a
×

 
 

=  
 
 

x   and 

( ) [ ] [ ] [ ]

( ) [ ] [ ]
( ) [ ]

1 0 0 0
0 1 1 1 2 2 1

1 0 0
0 1 1 1

0
0 1

n n n

n
n n n n

n
n n n

f T a c d a c d a c d

f T a c d a c d

f T a c d

−

−
− −

×

 − − − − − − −
 
 
 =

− − − − − 
 

− −  

b







. 

4. Examples 

In this section, we apply the methods derived from Section 2 to calculate the 
percentages of computed solutions that satisfy the infinity norm criteria. Com-
puted solutions are obtained by randomly perturbations in each node of the ini-
tial condition but bounded within [ ],ε ε− . The numbers in the tables indicate 
the percentages of successes satisfying the bounded criteria in each case. For n = 
1000, the number of nodes and number of test cases, three results are provided 
for comparison.  

In all cases, 0.5p = . The bounded criterion of infinity norm between the 
computed and exact solutions is 0.1.  

The following examples mainly show that for the hybrid type integro-diffe- 
rential equations, percentages of satisfying the infinity norm criteria between 
computed solutions and exact solution ( )x t  are increasing by decreasing the 
perturbation bounds of initial conditions. 

Example 1. 

( ) ( ) ( ) ( )2 2 251, , 2 7 , .
3

b s s s f t t t x t tφ= = = − + − =  

Table 1 contains percentages that satisfy the infinity norm criteria.  
Example 2. 

( ) ( ) ( ) ( )71, , 2 , .
2

b s s s f t t x t tφ= = = − + =   

Table 2 contains percentages that satisfy the infinity norm criteria.  
Example 3. 

( ) ( ) ( ) ( )
2

0.51, 0, 1 2 , .
2
tb s s f t t t x t tφ= = = + − − =   

Table 3 contains percentages that satisfy the infinity norm criteria.  
Example 4. 

( ) ( ) ( ) ( )8, , , .
2 3
tb s s s s f t x t tφ= = = − + =   

Table 4 contains percentages that satisfy the infinity norm criteria.  
Example 5. 

( ) ( ) ( ) ( )
3

0.5, 0, 1 2 , .
6
tb s s s f t t t x t tφ= = = + − + =   

Table 5 contains percentages that satisfy the infinity norm criteria.  
Example 6. 
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( ) ( ) ( ) ( )
2 3 4

2 0.5 1.51 7 8, , 2 , .
12 3 3 2 6 12

t t tb s s s s f t t t t x t tφ= = = − + + − + + − =   

Table 6 contains percentages that satisfy the infinity norm criteria.  
 

Table 1. Results of Example 1. 

ε 0.05 0.005 0.0005 0.00005 0.000005 

n = 100 0% 0% 77% 100% 100% 
n = 100 0% 0% 70% 100% 100% 

n = 1000 0% 0% 90% 100% 100% 
n = 1000 0% 0% 100% 100% 100% 
n = 1000 0% 0% 100% 100% 100% 

 
Table 2. Results of Example 2. 

ε 0.05 0.005 0.0005 0.00005 0.000005 

n = 100 0% 0% 69% 100% 100% 
n = 100 0% 0% 78% 100% 100% 

n = 1000 0% 0% 100% 100% 100% 
n = 1000 0% 0% 100% 100% 100% 
n = 1000 0% 0% 100% 100% 100% 

 
Table 3. Results of Example 3. 

ε 0.05 0.005 0.0005 0.00005 0.000005 

n = 100 0% 0% 68% 100% 100% 

n = 100 0% 0% 57% 100% 100% 

n = 1000 0% 0% 100% 100% 100% 

n = 1000 0% 0% 100% 100% 100% 

n = 1000 0% 0% 99.9% 100% 100% 

 
Table 4. Results of Example 4. 

ε 0.05 0.005 0.0005 0.00005 0.000005 

n = 100 0% 0% 0% 99% 100% 
n = 100 0% 0% 0% 99% 100% 

n = 1000 0% 0% 92.5% 100% 100% 
n = 1000 0% 0% 90.8% 100% 100% 
n = 1000 0% 0% 92% 99.9% 100% 

 
Table 5. Results of Example 5. 

ε 0.05 0.005 0.0005 0.00005 0.000005 

n = 100 0% 0% 0% 100% 100% 
n = 100 0% 0% 0% 100% 100% 

n = 1000 0% 0% 91.9% 100% 100% 
n = 1000 0% 0% 91.8% 100% 100% 
n = 1000 0% 0% 92.1% 100% 100% 
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Table 6. Results of Example 6. 

ε 0.05 0.005 0.0005 0.00005 0.000005 

n = 100 0% 0% 0% 100% 100% 

n = 100 0% 0% 0% 99% 100% 

n = 1000 0% 0% 92% 99% 100% 

n = 1000 0% 0% 92.4% 100% 100% 

n = 1000 0% 0% 92.4% 100% 100% 

5. Conclusion 

In this study, we investigated the well-posedness property of a class of hybrid 
integro-differential Equations by revising the numerical methods outlined in a 
previous study [5]. From the numerical examples, when the bounds ε of pertur-
bation of the initial conditions approach 0, the percentages of the associated so-
lutions fall into the envelopes of 0.1 bounded criteria compared with solutions 
without perturbation, which increase instead. 
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