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Abstract 
Motivated to obtain the second critical point of a nonlinear differential equa-
tion, which is expressed by derivatives of convex functional defined on a Ba-
nach space, an estimate with ,f f g−  is given to see the relation between 

( )1 0f −  and ( )1 0g − . And both the Fréchet differentiability and the continu-
ity of Fréchet derivative of every convex functional defined on an open subset 
of a Banach space are shown. 
 

Keywords 
Banach Space, Convex Functional, Subdifferential, Frèchet Derivative, Gâteaux 
Derivative, Deformation Lemma, Mountain Pass Theorem 

 

1. Introduction 

Many important differential equations are concerned with derivatives of convex 
functional defined on real Banach spaces. 

This paper’s research is motivated to fined u in a Banach space ( ).,X  such 
that 

( ){ } ( ) ( ){ } ( )1 1
0 d 0 ,u uϕ ψ

− −
∂ =                 (1.1) 

where dψ  denotes the Fréchet differential of a functional ψ  and ϕ∂  is the 
subdifferential of a lower semi-continuous convex functional ϕ . In general, for 
a proper convex functional ϕ  and u X∈ , the subgradients of ϕ  at u are the 
elements *f X∈  satisfying 

( ) ( ) ( ) ,    ,u w f u w w Xϕ ϕ≤ + − ∀ ∈  
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and the subdifferential ( )uϕ∂  is the set of all subgradients of ϕ  at u (see [1]). 
For a most interesting example, put ( )qX L= Ω , nΩ ⊂ R , and 

( ) ( ) ( ) ( )
1

1 1 d , ,   .
p

n q

i i

ww x x w D w w
p x q

ϕ ϕ ψ
Ω

=

∂
= ∈ =

∂∑∫       (1.2) 

If we can find u as a solution of (1.1) with (1.2), then there is 0α >  such that 
uα  is a critical point of ϕ ψ− . In this example, to find the second critical 

point is very interesting since the mountain pass theorem is not so useful. 
The author wants to verify the following assertion. 
Assertion 1.1. Fix infλ ϕ> , infµ ψ> . Assume that there are , 0kδ >  sa-

tisfying 

( ) ( ) ( )
( )

( )
( )

d
,   ,

d
v v

v v
v v

ϕ ψ
ϕ λ δ ψ µ δ δ

ϕ ψ
∂

− < − < ⇒ ± >
∂



       (1.3) 

( ) ( )d .v v kψ µ δ ψ− < ⇒ ≥                  (1.4) 

Then, for ( )0,δ δ′∀ ∈ , ( ) ( ){ }, :C v vϕ λ ψ µ δ ′≥ −


  and  

( ) ( ){ }, :C v vϕ λ ψ µ δ ′≥ +


  are homeomorphic. Here, 

( ) ( ){ }, : : ,   C w X wϕ λ ϕ λ λ= ∈ ≤ ∈R
 

and α β±  means both α β+  and α β− . 
Assertion 1.1 is a kind of Morse lemma in the sense that the contraposition 

implies the existence of solutions of (1.1) in the case where ( ),C ϕ λ  is compact 
and ( )1C Xψ ∈  (cf. [2] [3]). In trying to prove Assertion 1.1, the author ob-
tained a number of propositions, and some of them seem to be useful in other 
mathematical researches. This paper’s theorems are obtained in such process. 

2. Results 

Assertion 1.1 is proved if we can define a Lipschitz continuous vector field ( ).Z  

such that the flow ( ) ( ) ( )( )d d , ,t v x t Z v x t= , ( ),0v x x=  defines a homeo-

morphism between ( ) ( ){ }, :C v vϕ λ ψ µ δ ′≥ −


  and  

( ) ( ){ }, :C v vϕ λ ψ µ δ ′≥ +


 . For example, ( ).Z  is expected to satisfy the fol-

lowing property. 
(a) If ( ) ( ){ }, :v C v vϕ λ ψ µ δ ′∈ ≥ +


 , then ( ) 0Z v = . 

(b) If ( ) ( ) ( ){ }1: 2,v C v vϕ λ µ δ ψ µ δ′ ′∈ − ≤ ≤ +

 
 ,  

(b-1) if ( ) , 
2

v δϕ λ λ
′ ∈ −  

  , then ( ) ( )( )d d 0t v tϕ =  and ( ) ( )( )d d 1t v tψ = , 

or 

( ) ( )
( )

( ) ( )
( ) ( )

1 1
d 1 0
d d

v v
Z v

v v v
ϕ ψ
ϕ ψ ψ

− −
     ∂

∈          ∂     


 
(b-2) if ( ) min , vϕ ϕ λ δ ′∈ − 

 , then ( ) ( )( )d d 1t v tψ = , or 
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( ) ( )
( ) ( )

1
d 1
d d

v
Z v

v v
ψ
ψ ψ

−
   

∈      
     

(b-3) if ( ) , 
2

v δϕ λ δ λ
′ ′∈ − −  

  , then ( ).Z  is continuous with (b-1) (b-2). 

(c) If ( ) ( ), :
2

v C v vδϕ λ µ ψ µ δ
′ ′∈ ∩ + ≤ ≤ + 

 


  , ( )Z v  is continuous with 

(a) (b). 
In general, we cannot construct a Lipschitz continuous vector field ( ).Z  

with (a)-(c). The author has constructed a sequence ( ){ }.nZ  such that each 
( ).nZ  is Lipschitz continuous with the constant nL , and that  

( ) ( )limn nZ v Z v→∞ ∞= ∃  local uniformly. To do this, assumptions (1.3) (1.4) 
play an important role to see 

( )
( )

( ) ( )
( ) ( )

1 1
d 1dist 0, 0 .
d d

v v
M

v v v
ϕ ψ
ϕ ψ ψ

− −      ∂  ≤ ∃           ∂      
       (2.1) 

Here, for w X∈  and A X⊂ , 

( )dist , : inf .
A

w A w
ξ

ξ
∈

= −
 

Hence, in the case where ( ){ }.nZ  satisfies 

( ) ( ) 0,    local uniformly,n nL Z v Z v∞− →             (2.2) 

then for x∀  and 0t∀ >  the convergence ( ) ( ), ,nv x t v x t∞→ ∃  holds and 
( ).,v T∞  is the aimed homeomorphism with some 0T > . 

The author thinks, at this moment, that (2.2) can be hold if the following as-
sumptions are satisfied. 

(i) ϕ  is even, or equivalently ( ) ( ), ,C Cϕ λ ϕ λ− = . 
(ii) [ ): 0,ρ∃ ∞ → R  such that ( ) ( )rw rϕ ρ= , for 0r∀ > , ( )1 1w ϕ−∀ ∈ . 
(iii) (i) (ii) together mean that putting :Yrw r=  for ( )1 1w ϕ−∀ ∈  defines a 

norm in the linear space ( ):Y D ϕ= . Suppose that this norm is uniformly con-
vex and uniformly smooth in Y. 

(iv) ( ),C ϕ λ  is compact in X. 
In constructing the sequence ( ){ }.nZ  required above, the following theorem 

plays important roles, and seems to be useful in many other mathematical re-
searches. 

Theorem 2.1. Let X be a real Banach space, and *X  be the dual space of X. 
For { }*, \ 0f g X∈  and ( )1 0v g −∈ , 

( )( )1dist , 0
  .

v f f g
v f

− −
≤                   (2.3) 

In the next two theorems, the differentiability and continuity of derivatives of 
convex functionals are shown. 

For a moment, we recall definitions of derivatives (cf. Masuda [2]). Let 
:F U W→ , where ,V W  are normed vector spaces and U is an open subset of 
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V. 
Definition 2.1. (Fréchet derivative) F is called Fréchet differentiable at x U∈  

if there is a bounded linear operator :A V W→  such that 

( ) ( )
0

lim 0.
F x F x A

ξ

ξ ξ
ξ→

+ − −
=

 
Equivalently, the first-order expansion holds, in Landau notion 

( ) ( ) ( ).F x F x A oξ ξ ξ+ = + +  
Definition 2.2. (Gâteaux derivative) The Gâteaux differential ( )d ;F x ξ  of F 

at x U∈  in the direction Vξ ∈  is defined as 

( ) ( ) ( ) ( )
0

0

dd ; : lim
d

F x F x
F x F x

τ
τ

τξ
ξ τξ

τ τ→
=

+ −
= = +

 

If the limit exists for all Vξ ∈ , then one calls F is Gâteaux differentiable at x . 
The Gâteaux differential may fail to be linear, unlike the Fréchet derivative. 

Even if linear, it may fail to depend continuously on ξ . 
In the following, let { }: Xϕ → +∞R  be a lower semi-continuous convex 

functional. The set 

( ) ( ){ }: : D x X xϕ ϕ= ∈ < +∞
 

is called the effective domain of ϕ . 
Remark 2.1. For ( )x D ϕ∈ , put 

( ) ( ) ( ){ }: : 0 such that , .Y x X x x Dξ δ δ ξ δξ δξ ϕ= ∈ ∃ = > + − ∈
 

Suppose that the Gâteaux differential ( )d ;xϕ ξ  for every direction ( )Y xξ ∈  
exists. Then, since ϕ  is convex, ( )Y x  is a linear subspace of X and  

( ) ( )
d ;

Y x
x

ξ
ϕ ξ

∈
 is linear with respect to ξ . 

Theorem 2.2. Let ( )x U D ϕ∈ ⊂ . If U is open in X and ϕ  is Gâteaux diffe-
rentiable at x, then ϕ  is Fréchet differentiable at x . 

Remark 2.2. In Theorem 2.2, the openness of U is needed. For example, put 

( ) 2   if  ;    otherwise,x x x Cϕ = ∈ = +∞  
where C is a closed convex subset of X. Then ϕ  is a lower semi-continuous 
convex functional on X. As is noted in Remark 2.1, the Gâteaux differential 

( ) ( )0
d 0,

Yξ
ϕ ξ

∈
 exists for all ( )0Yξ ∈  and is linear on ( )0Y , where 

( ) ( ){ }0 : : 0 such that , .Y X Cξ δ δ ξ δξ δξ= ∈ ∃ = > − ∈
 

If 0 is not an inner point of C, or equivalently ( )0Y X≠ , then ϕ  is not 
Fréchet differentiable at 0. 

Theorem 2.3. Suppose ( )U D ϕ⊂ , U is open in X, and ϕ  is Fréchet diffe-
rentiable on U. Then the Fréchet derivative of ϕ  is continuous on U. 

3. Proof of Theorem 2.1 

Throughout this paper, the following symbols are used. 
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( ) { } ( ) { }, : : ,  , : : .B z r X z r S z r X z rξ ξ ξ ξ= ∈ − < = ∈ − =
 

For any *,f g X∈ , ( ) ( )1 1f g −−  is expressed by 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }1 1 1 1 11  1 0 1 0 1 .
t

f g t f g t f g− − − − −

∈

 − = + − −  



R
  (3.1) 

Let ( ) ( )1 0 0,1v g S−∈  . Take α ∈R  such that ( ) ( )1 1v f gα −∈ − . Then, 
since ( )1 0v gα −∈ , 

( ) ( ) ( )1 11 0 .v f g gα − −∈ −   
Noting the relation ( ) ( )1 10 1g g− − − = ∅  in (3.1) implies 

( ) ( ) ( ) ( ) ( )1 1 1 11 0 1 0 .v f g g f gα − − − −∈ − =             (3.2) 

Since ( )1 0f −  is a linear subspace, ( )( ) ( )( )1 1dist , 0 dist , 0v f v fα α− −= . 
Therefore, 

( ) ( )( ) ( )( ) ( )( )1 1 1 11 dist 1 , 0 dist , 0 dist , 0 .
 

f f v f v f
f

α α− − − −= = =
 

On the other hand, the relation ( ) ( )1 1v f gα −∈ −  implies 

( ) ( )( )1 1dist 0, 1 .
 

v f g
f g

α α −= ≥ − =
−  

Thus, Theorem 2.1 is proved. 

4. Proof of Theorem 2.2 

Let 0U  be an open subset of U satisfying 0 0x U U U∈ ⊂ ⊂ . 
We verify that the linear functional ( )d ;.xϕ  is bounded. For λ ∈R , put 

( ) ( ){ }0; : : .C x U xϕ λ ϕ λ= ∈ ≤
 

Since ϕ  is lower semi-continuous, ( );C ϕ λ  is closed in 0U . By Baire cate-

gory theorem, the inclusion relationship ( ) 0;
n

C n Uϕ
∈

=
 N

 implies that, for 

some 0n ∈N , ( )0;C nϕ  has an inner point. Therefore, ( ){ } ( )( )1
0d ;.x n xϕ ϕ

−
−  

is not dense in X. Hence also ( ){ } ( )1
d ;. 0xϕ

−
. This means that ( ){ } ( )1

d ;. 0xϕ
−

 

is closed in X, or equivalently, ( )d ;.xϕ  is bounded (cf. Rudin [4]). 

Now, put 

( ) ( ) ( ) ( ) 1 0: d ; ,    : .x x x U x Uξ ϕ ξ ϕ ϕ ξ ξΦ = + − − ∈ = − +  

Since Φ  is lower semi-continuous convex functional on 1U  satisfying 

( )
1

min   0 0,
U

Φ =Φ =
 

the Fréshet differentiability at x  is proved if for each 0ε >  there is 
( ) 0δ δ ε= >  such that 

( ) ( )  ,    0; .Bξ ε ξ δΦ < ∈                    (4.1) 

To see this, fix any 0ε > . Put 
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( ) ( ){ }1 1; : : .C Uλ ξ ξ λΦ = ∈ Φ ≤
 

Since ( ) ( )1 1; ;C n nCε εΦ ⊂ Φ  and ( )1 1;
n

C n Uε
∈

Φ =
 N

,  
( )1 1;

n
nC Uε

∈
Φ =

 N
. Thus, Baire category theorem implies that ( )1 ;C εΦ  has 

an inner point 1z . Take 1 0ρ >  such that ( ) ( )1 1 1; ;B z Cρ ε⊂ Φ . 
If ( )1 10 ;B z ρ∈ , then taking 0δ >  such that ( ) ( )10, ;B B zδ ρ⊂  implies 

(4.1). Hence, the proof is finished. 
In the case where ( )10 ;B z ρ∉ , take the following closed cone. 

( ){ }1 1: : 0, ; .K B zκξ κ ξ ρ= ≤ ∈  

Then, taking ( )1 ;C KλΦ   instead of ( )1 ;C λΦ  in the same discussion im-
plies that there is an open ball ( ) ( )2 2 1; ;B z C Kρ ε⊂ Φ  . Since ( )1 ;C εΦ  is 
convex, the convex hull 

( ) ( ) ( ) [ ]{ }1 2 1 1 1 2 2 21 : , , , , 0,1t t B z B z tξ ξ ξ ρ ξ ρ+ − ∈ ∈ ∈
 

is an open subset of ( )1 ;C εΦ , and 0 is included. Thus, Theorem 2.2 is proved. 

5. Proof of Theorem 2.3 

Suppose that the result is not true. Then, there are v∞  and a sequence { }kv  in 
U such that for some 0δ >  

( ) ( ),    d d 3 .k kv v v vϕ ϕ δ∞ ∞→ − >
 

For each k, there is ( )0,1kw S∈  satisfying ( ) ( ){ }( )d d 3k kv v wϕ ϕ δ∞− > . 
Hence, for all 0h > , 

( ) ( ) ( )( ) ( ) ( )( )d d 3k k k k k k kv hw v v hw v v hw hϕ ϕ ϕ ϕ ϕ δ∞+ ≥ + ≥ + +   (5.1) 

where in the first inequality, the convexity of ϕ  is used. 
On the other hand, since ϕ  is Fréchet differentiable at v∞ , 

( ) ( ) ( )( ) ( )d ,k k k k k kv hw v v v hw v o v hw vϕ ϕ ϕ∞ ∞ ∞ ∞+ = + + − + + −  
( ) ( ) ( )( ) ( )d .k k kv v v v v o v vϕ ϕ ϕ∞ ∞ ∞ ∞= + − + −  

Thus, (5.1) implies 

( ) ( ) 3 .k k ko v hw v o v v hδ∞ ∞+ − ≥ − +                (5.2) 

Take 0h >  such that 

( )      if 2 .
2

o hδη η η< <
 

Then, taking k such that kv v h∞− <  in (5.2) yields that 2δ δ> , which is a 
contradiction. Therefore, the aimed result is true. 
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