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Abstract

In order to obtain with simplicity the known and new properties of linear
canonical transformations (LCTs), we show that any relation between a couple
of operators (A, B) having commutator identical to unity, called dual couple
in this work, is valuable for any other dual couple, so that from the known
translation operator exp(aax) one may obtain the explicit form and proper-
ties of a category of linear and linear canonical transformations in 2/N-phase
spaces. Moreover, other forms of LCTs are also obtained in this work as so as
the transforms by them of functions by integrations as so as by derivations. In
this way, different kinds of LCT's such as Fast Fourier, Fourier, Laplace, Xin
Ma and Rhodes, Baker-Campbell-Haussdorf, Bargman transforms are found
again.

Keywords

Dual Operators, Fundamental Law of Operator Calculus, Newtonian
Binomial and Translation, Linear and Linear Canonical Transforms,
From Fourier to Gauss and LCTs’ Transforms

1. Introduction

Linear canonical transforms (LCTs), probably first studied by Moshinsky and
Quesne in 1971 [1], are the transformations in a 2/N-dimensional phase space
which leave invariant the Hamiltonian and the Poisson brackets of coordinates

and momenta. Their studies permit to calculate the unitary representations of
A B

o)

where BA=AB, CD=DC, DA-CB =1, then calculate the transform by S of

a wavefunction into a new one. Afterward there are the works of Stern [2], Wolf

each of these transformations, realizing by a parametrized operator S = [
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[3], etc. The method utilized in [1] [3] for studying LCTs is based on the me-
thods of symplectic group and the “2 + 1” Lorentz group which are not very
well-known by many readers. This work, following a recent work [4] on the role
of the Fourier transform, which is a special case of LCTs, in quantum mechanics,
proposes another approach for studying LCTs based on the fundamental law of
operator calculus [5] saying that any relation between a said dual couple of op-
erators (A, B) , e, operators such that [A,B]= AB —BA = 1, is valuable also for
any other dual couple. With this law, from the translation operator €** which
transforms x into (X+ a) we arrive to get the dilatation operator e*®* which
transforms (A, B) into (e’“ A, e B) then a LCT which transforms the dual
couple (AB) into the dual couple (aA+bB,cA+dB) if a=c¢a, bd =db,
dd —Cb=1. We obtain also that products of three operators of the forms
e @828 A% form different types of LCTs. To get the transforms of func-
tions by integration as so as by differentiation we firstly search for a method for
obtaining the Gaussian transforms of Dirac delta and unity functions. This may
be done departing from the common definition of the Fourier transform. By this
method we arrive to find again known results on different kinds of LCT's such as
Fast Fourier, Fourier, Laplace, Xin Ma and Rhodes, Baker-Campbell-Haussdorf,
Bargman transforms. Details of reasoning and calculations in this work are pre-
sented in the following paragraphs. Section 2 exposed the method of operator
calculus. Section 3 illustrated the special case of generalized translations. Section
4 discussed the LCTs in 2N-phase spaces formed by products of three Gaussian
operators. Section 5 devoted to the research of a method leaned on the Fourier
transform for calculating the LCT transforms of functions. Section 6 presented
the way we calculate the transforms of functions by integrations. Section 7 ex-
posed some cases of LCTs. Section 8 showed how to calculate the LCT trans-

forms of functions by differentiations.

2. Method of Operator Calculus

2.1. The Fundamental Law

In a one-dimensional space of functions, consider the derivative operator D,

D, f(x)=f'(x) (1)
and the Eckaert operator X which consists in “multiply by the variable x” [6]
)Zf(x)zxf(x) (2)
we get the identity
D,X = XD, +1 3)

by applying both members of it on any derivable function f (X) , I being the
unitary operator.
More generally, let A and B be two operators constructed from D, and X

respecting the following condition that we will be called duality in this work
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[A,B]EAB—BAEI (4)
From (4) we deduce that
A"B =BA" + mA™*! (5)
A™B = BA™" +(m+1) A" (6)
so that let
f(x):iamxm (7)
m=0

be an entire function and f '(X) its derivative function then because
t(A)=3 a A" (8)
m=0

we get from (5) the identity in Operator Calculus [5]
f(A)B=Bf(A)+f'(A)
f(A)Bf*(A)=B+f'(A)f*(A) (9)

which shows the way that f(A) transforms Bif (A B) formed a dual couple.

We remark that as the identity (9) applies for any couple of dual operators
then consequently from one known relation between a dual couple of operators
(A, B) we may deduce another relation simply by replacing (A, B) with
another dual couple. We dare say that this affirmation is a fundamental law in
operator calculus because it gives us a powerful tool in mathematics and quan-

tum mechanics as we may see in this work.

2.2. The Simplest Transforms of Operators

From (9) we deduce the identities
. e¥Be*=B+al (10)

which means that the operator €* transforms or more precisely translates the
operator Binto (B +al ) .
For curiosity we remark that the translation operator may be obtained from
and at the same time leads to the Newton’s binomial formula
n (N m,,n-m -1 mpEmyNn aDy \,n n
(x+a) =3 a™x"" =3 —a"Dyx" =e™x" =(x+a) (11)
m=0\ M m=0 m!

The formula (10) may be generalized by replacing the dual couple (DX, X)

1 R R
with the dual couple —( D,-X,D,+X ) for example

V2

e%(Dx**)(

a

D, +X )e 7o)

E(DX+)2)+a«/§I

and so all.
. e*Be™ =B12aA (12)

Association of (10), (12) generate the very interesting formula
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B+2aA) _ aA? (B, -aA2 -B B aAze—a(A—l)2 B _ n-an2aA,B

e( =e €€ € e =¢e

a2 a2 B2 @ 2
p(tB+aA) _ eZbA PLEM " g PBghB — eZbA e ap(AP) b8

1 1
—=ab —ab
. e(aA+bB) =e 2 eaAebB =g?2 ebBeaA (13)

Identity (13) was proven by Stone-von Neumann in 1930’s utilizing the Bak-
er-Campbell-Hausdorff formula as we can find easily on the net. From (13) we
see that within a scalar factor the operator €™ permute with the operator e
and that the exponential of creation and annihilation operators in quantum me-

chanics may each be disentangled into two simple operators
X Lo Lx = Lx silp,
=e'e 2 g2 Zg'e2 g2 (14)
3. Operators Realizing Linear Transforms in Phase Spaces
3.1.In one Dimensional Space
Joint (11) with the evident identity
A AR = A

2
we may write down the important properties of the linear transforms e*" and

2
e*® under matrix forms where an element of the phase space is presented by

X
the matrix (pj instead of the vector (X, p) asin [1]
. eaAz A e_aAz _ eaAz AeiaA2 _ A
B e e’ B+ 2aA
2 A 2 1 0)A
ie e* e = (15)
B 2a 1)\ B
2 A 2 (1 -2b)(A
. et® e 08 _ (16)
B 0 1 ){B

Moreover, because of the fact

[XD,,InX |=X[D,,nX ]+[X,nX |D, =1 (17)

X

we get miraculously from (10)
e In Xe ™ =In X +al
ea)ZDx X e-a>2Dx = e|n>2+a| =¥ )2 (18)
and, if the couple (A, B) is a dual couple as is (DX, X ) , the remarkable iden-
tity
. e Be " =¢"B (19)

Afterward, by substituting in (19) the dual couple (A, B) with another dual
couple (—B,A)
e—aBAAeaBA = eaA (20)
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we arrive to get the very interesting realization of the dilatation by a hyperdiffe-

rential operator written under the proposed matrix form

eaBA A efaBA _ eaBAAe—aBA _ e—aA
B - eaBA Be—aBA - e°B
—al
P N L 1)
B 0 & )\B

Combining (15) and (16) we may write down the matrix formula for products of

exponential operators

ecAzeszeaAz A 67M287b8267CAZE 1 0)1 -2b 1 0\ A
B 2a 1){0 1 2c 1){B

ecAzeszeaAz A e_aAze_sze_cAz _ 1-4bc -2b A (22)
B 2a—8abc+2c 1-4ab)\ B

Equivalently, with
a=1-4bc, f=-2b, 1-4ab=5, ad—-pPyr=1 (23)
a2 Ppa 971y O B 2ty
02h e’EBzezﬂA A o 28 e?Bze 2" _[@ B)[A (24)
B y &)\B

The formula (24) means that in a phase space within a multiplicative constant A
the hyperdifferential operator

2 EAZ

A ,EB
2" % (25)

a-1,2
S(a,ﬂ,yﬁ)zlezﬂ e

realizes the linear transformation of a dual couple of operators (A, B) into the
dual couple (aA+ FB.yA+ 5B) .
Hereinlater we will extend the theorem (25) for 2 NV-dimensional phases spac-

€s.

3.2.In a Two-Dimensional Phase Space

In the case where the operator A is a set of two operators A, A, and B of two

operators B,,B, we may write for examples

ea1A1(BljealAIE(Bl+ailj (26)
BZ BZ

ealBl(AljealBl E(Ai_ailj (27)

A, A
plifi+arky By p Rt B, +a,l (28)
B, B, +a,l
A 10 20, 0 (A
b8} +,83 A, o b8 -biBf _ 01 0 -2 A (29)
B, 00 1 0 B,
B, 00 0 1 )iB,
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A exp(-a,) 0 0 0 A
p¥BIA+22Bo A A, g 2Bl -aBIA _ 0 EXp(_az) 0 0 A, (30)

B, 0 0 exp(a,) 0 B,

B, 0 0 0 exp(a,) /| B,

3.3.In a 2N-Dimensional Phase Space

With bold letters A,B designed Nx1 column matrices, ® a NxN matrix
and tilde sign the transposition of a matrix, we have from the operational rela-
tions (15), (16), (21) the following formulae

¢« € e = = (31)
B B +2DA 20 | )\ B
. (AJ [A_chs [u 4@}@
o € e = = (32)
B B 0o 1 B
. ohoe [Aje_/&ms _ (e'd’ Aj _ e® 0 J[Aj (33)
B e’B 0 e”)B

where for simplicity we suppose that @ is a NxN symmetric matrix, Ze,
O=0.

3.4. Case Study of Linear Transformations Deriving from
Translations

Let us define the duality of a couple of operators (A, B) in a multidimensional

space by the identity
[AB]=AB-BA=1 (34)

[aA+DbB,cA+dB]
- ST - e s (35)
= A(ac—ca) A+B(bd —db)B+A(ad —cb) B+ B(bc—da) A
we may affirm that if
ac=Ca, bd=db, ad-¢cb=1 (36)
then
[aA+bB,cA+dB]=[A,B]
ie,that (aA+bB,cA+dB) isa dual couple as being (A, B).
In this case we may write, according to the fundamental property of operator

calculus saying that any identity between a dual couple of operators is valuable

for any other dual couple,

e(A§+I§B)®(cA+dB) aA+bB e-(Aa+é5)¢(cA+dB): e® 0 ) (aA+bB
cA+dB L0 e®)lcA+dB

ie., e(Aﬁ*EB)‘D(CA*dB) A e—(Aé+l§5)®(cA+dB)E a b\" e ® ?D a b)) A (37)
B c d 0 e*)lc d)\B
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+ In the cases where the set (a,b,c,d) does not verify the condition
ad —eéb =1 we introduce the matrix
®=ad-¢b (38)
which leads if ® #0 to
adod' —chd =D =1 (39)
and see that the set (a, bd™,c, d(D’l) verifies the said condition.
We can then write, in accordance with (36), (37)
e(Améci)’lB)cb(cAmqle) (Qj ef(AaJr E?ﬁ)’lﬁ)cb(cAerdle)

_(®*d -db)(e™® Ol)a bd™) A
| -¢ a Jlor e )lc dot)(B
O (40)
_(@7'd -d7b)fe®a e“bd| A
| -¢ a e’c e®do™ (B
(a BYA
“\y s)\B
(a ,Bj_ d'de *a-d'be®c D lde ®bd - he®dd )
y o —Ge ®a+4ae®c —Ge "Dt +ae®d
It is easy to verify that in (41) we indeed have the relation ad—f7=1.
As example consider the case
o aE—bEig|, c=d=1, =>Dd=idl (42)
We have according to (41)
i%(o-X)(ox+X) [ Dy} %o, -%)(D,+x) (a B[ D«
~ | =
X y o)X
_(®*d -d7b)(e® Ol)fa bd™)(A
- a Jlor e®)lc dot)(B
1 -6 i0 1 -6 io
) E(e I +e I) I—(—e I +e I)
i_H(_e’“?l +ei9|) —(efiel +ei"l)
2
so that
eig(Dfﬂzz) D, e—ig(Df—iz) _[ cosd! 07 sinol |( Dy (43)
X —0sin@| cosdol X
In the circumstance that
° Cb = BC (44)
we may replace (39) with
adot-bcdt=pdt=| (45)
and see that (43) becomes
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eiZ(DX—X)(DXwZ)(E?\XJe—iZ(DX—X)(DXHZ)E(Of 'BJ(D”X]
X 7y o)\ X
(@ -b)(e® ol [ a b j[A]
-0 a)lor e®)lco? do*\B

1 -6 i0 1 -6 io
a p)_ E(e I+e I) E(_e I +e I) _(cosél isingl (462)
vy o isindl cosdl

%(—e"f’l +eigl) %(e"f’l +e‘9I)

We have to remark that if ¢b=bc then (43) and (46a) are all valuable. This, we
think, may explain the difference between parameters in the integral representa-
tion of LCT's of Wolf [3] versus that of de Bruijn [7].

Formula (46a) shows that expig(Dx2 - )22) realizes the Fractional Fourier
transform.
We find again also the result of Wolf [8] showing that expi%(Dx2 - )22)

realizes the Fourier transformation.

Another example is

. a:c—gl, b=-d=®d=-6b
2
(EDX-#bXJ(fDX—bXJ D, -(goxwi)(gax-bx)_ a B D,
(X] 2[7 5J£>3J
_(@'d -@M)(e® ol)(a bo) D
| -¢ a ol e®)lc dot)|l X
« B %(e“"%e"bg) %(e‘bg—e"bg) i cos b ;—isineb
T )T e ey Ly ey | |06 (46b)
4 —(e'b"—e"b”) —(e'b"+e"b") ~~_sinb  coséb
4 2

The second solution according to (46a) is

U WERS I P e ]

cosh 6b —267*bsinh &b
v 5)-

(46¢)
y 0 —gb’l sinh 6b cosh 6b

and is found to correspond to the multimode squeeze operators of Xin Ma and
Rhodes [8] who work with the dual couple (a, a*) that as we have seen may be

generalized for any other dual couple.

4. General Linear Transforms of Operators in Phase Spaces

Apart from the operators realizing one category of linear transforms in phase

space developed in (41) we have also the followings.
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4.1. The General Cases

D \%
In the 2 V-dimensional phase space scanned by ( ){] or (fj we have from

the formulae (31), (32), (33)
8y pP2p X% (D, ) -x%x -5,%2p, %% (a B[ D
e g 2 g 2 g 2 | ‘g 2 e 2 e 2 = .| (47a)
X y o)l X
with
a=1-0,0,=-0, -0, +D,0,D,
y=0,,0=1-0,0,

X
| —@, (e | 01)(D,
. e ol & (47b)
o 1 )lor e )ld, 1/ X
_[e" DD, 0 | Dy
B e, e® X

g 5,225 (%3 (D, ) x®Wx p5,P2x K™y
e 2 e ? e 2 e 2 e ?

5,%p, 6,22% M3 (D) x®x 5,%2x% 5, Mp,
e 2 e 2 e 2 e 2 e 2 g 2

e 2

~

_[e% —e 2@, —de® | D,
Lo e® X

4.2. Study Case on One Type of Linear Transforms of Operators in
Phase Space

(47¢)

The identity (44) and the relation (45) lead to the conclusion “In a 2N-dimens-

D \%
ional phase space ( ){J or (fj , within a scalar factor A, the hyperdifferen-

tial operator

Dy, < D s Dy
LX D,—2D, X—X

S(a,ﬂ,y,é)zﬂNe)Q? e 2 e ? (48)
with
ab-py=|
O, =yt (1-a),®,=y,0,=y(1-5) (49)

realizes the linear transformation of

(DAXJ into [a ﬂ)(DAXJ” (50)
X vy o)X

Thanks to the following formula coming from (49)

5% e )

we get
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S(a,B,7,0)S(8,-p,~r,a)=1 (51)
and see that the inverse of S (a,ﬂ, 12 5) is

X233 5,~%2p, Xy

X—= X
S(6,-p.-r.a)=e 2 e 2 e 2 (52)
It is foreseen that there are equivalent theorems concerning other forms of
transforms shown in (47a), (47b).
5. Roles of Fourier and Gauss Transforms in LCTs

As we shall see the Gauss transforms are related to the Fourier transformation as

discussed hereafter.

5.1. Useful Properties of the Fourier Transform

Let us adopt the convention that the Fourier transform of a function, if it exists,

in one dimensional space has the definition

F(x)=FTf ( \/_ ——[Te™f (x,)dx, (53)
with this choice we obtain the properties
1
FTo(x)= 54
=1 (54)
FTxf (x) = iD,FTf (x) (55)
FTf'(x) = ixFTf (x) (56)

and conclude that FT transforms the operator D, into the operator iX and
vice-versa X into iD,
FTD,FT* =iX (57)
FTXFT ! =iD, (58)

According to (15), (16) we see that the operator
_iga dipa ige

g2 g2 g2 (59)

has these properties as shown hereinafter

_ige ipz iga) (ige ip2 ige igeipe o iz dge
e?2 e2'e?2 |X|e2 e?2'e?2 |=e?2 |e2 Xe? |g?

ig2 ig2

e (X+iD,)e?" =X+i(D,+iX)=iD,

g ipe ige Ige ip2 iz A
e2 e2'e? |D,le?2 e?'e? |=iX

so that we may write
ig2 LDE _ige
FT=de?2 e2 ‘g2 (60)

Iz I>22

FTe2 = Je 2 (61)
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Remarking now that because

(D, #iX)e™>" =0 (62)
Ay 12 " ix2
FT(D,+iX)e? =-i(D,~iX)FTe " =0 (63)
we get
ige Qg2
FTe2 =Ce? (64)
_ige ige
FTe 2 =C,e? (65)
so that
_ige _ige
FTFTe? =CCe? =C.C =1 (66)
Combination of (64) with the property
. Le e Y e
FTf(x)=(F(-x)) = FTe? =|C,e? | =Cle? (67)
gives the relation
. +Z
C,=C =e ¢
In this work we adopt the choice
C'=C =e* (68)

although the other choice is equally valuable as seemingly affirmed Moshinsky
and Quesne [1].
On the other hand, by comparing (61) with (68)
e e lpz e o 1y 1y

FTe? —Je2 e2 e2 €2 =Je?2 =Ce? (69)

we get finally the waited value of A

i
A=C_=et (70)
with this choice we get the hyperdifferential realization of the Fourier transfor-
mation
L _lgz i _ige
FT=e‘e? g2 e? (71)

The above formula together with the formula

SRRy
FT =e “%e? (72)
was obtained by Wolf by another method [9].

It is interesting to note that the Fourier transform of itself is itself
FTFTFT ' =FT

so that it has another hyperdifferential realization
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i2 g2 P2
2 -1x2 1lp

U
FT =e'“e? e 2 g2

(73)

From the formula (54) we may calculate the FT of the unity function as fol-

lowed
FTFTS(x) = FT —o = 5(—x) = 8(x)

J2n
FT1=+/215(x)

(74)

5.2. The Gaussian Transformation in One-Dimensional Space

From the equation
(DX +2aX )e“‘>22 =0
and the properties (57), (58) of the Fourier transformation we get
FT(D, +2aX Je " =i(2aD, + X ) FTe ™" =0

1
2 -2

FTe™ =C(a)e “* ,a>0

Similarly
L _Lxe iz
FT(2aD,+ X )e * =i(D, +2aX FTe % =0
1,2
FTe % :c(ijea*z
4a
so that

Now, because

2
, e—x2/4a X
e i o) _ 20

m-1 a0 2m(2a)m+l

lim FTe ™ = lim-—— =
a—0 a—0 (2&) a—0 zm(za)

we obtain that
1.0

FTe ™ =(2a) e *

1.0

FTe ™ 1= ¢ FT1=(2a) e *

Xe“a =+/4nad(x),a>0

(75)

(76)

(77)

(78)

=0=>m=-1

(79)

(80)

Concerning Gaussians with imaginary parameter a we utilize the definition

formula of FT and get

igo2

FTS(x)=ete 2 e 2

in2 1.2
X

02 g2" =2ri5(x)

(81)
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g 20X e4a =/2niad(x) (82)

Joining (80) and (82) we get the Gaussian transform of the corresponding Gaus-

sian function

i g 4a =+4nas(x),a>00ra=id (83)
and inversely of the Dirac delta function
e 5(x) = L w ,a>0o0ra=i@
Y, 4ma (84)

5.3. Gaussian Transforms in 2N-Dimensional Phase Space

In this case we have

iNE _Fle gl _flp

FT=e ‘e 2e2¢e 2 (85)
1 L
and, according to the generalization of (84) for the dual couple [CDZV, 0} ZF] ,

the formula
-1

- D
e o(@¥r)=(2n) e (86)

In purpose to calculate & (dfl/ 2r) let us propose that there exists a function
r ((1)) such that

5(®r)=T(®)5(r) (87)
Under this hypothesis we have
5(O¥r)=T(®)r(¥)s(r) (88)
so that for a matrix ® diagonalizable into the diagonal matrix A
Udu™=A (89)
we have the relation
s(@r)=5(UdU'r)=5(ar) (90)
which leads to
[(®)=T(A) (91)
But between ® and A the only relation is
det ® =detA (92)
so that we can take for @ real
[(®)=T(A)=]|detA|=|detD| (93)
and get from (86) and the property &(—r)=5(r) the generalization
. ejgveﬂ)Tlr = N/ 2 |det<1>|]/2 (94)

From (94) we deduce that
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N N _12 ((D’(Dkl)
o =(2n)2 [detw’ *|(2n) 2 |det(~(@ - ")) Pl (95)
o-ot)"
= |det(1-o'@)[ e T T drart

T i (szb"l)il

e Ze I’Zir:|det(I—CI)’<1))|7]/2er N (96)
5.4. Gaussian Transforms of Functions

Consider the differential equation of Hermite polynomials

(Df—2xDx+2n)y:O (97)

Thank to (10) we may write
e% /42X 5(2)2 + Dx)eDf/4

e%/* (D ~2xD, +2n)y = (-2xD, +2n)e™/*y =0

and get
y= Hn(x):e‘Df/“cnxn (98)
On the other hand, from the factorizations of a linear operator in (DX, X )
~\n -ip? CRUIE S 5
(D,-2X) =e " (-2X) e* " =e* DJe * (99)
we get the Rodrigues formula for Hermite polynomials
Ha(x)=(-1)" Dl (100)
which leads to the formula
H, (x) =& 7 (2x)° (101)

From (101) we see that the Gaussian transform of an entire function f(X)

may be put under the symbolic form
e i/ g (x)= e’Df/“Z fx" = Zzin fH, (x)=f (%) (102)
n=0 n=0

where H" isreplaced with H, (X).

6. Integral Realization of Linear and Linear Canonical
Transforms

Consider the hyperdifferential operator realizing a linear transformation in a
2 N-phase space

V2
S(a,p.7.6)=e 2 e 2 e?

zDq [ D5,
lp V—2v -3¢

or, by (49)
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-1 -1
= - - = 1-6
frlma)y grg g (129);

e?2e ? (103)
F®1+®3f

Remarking that in the case ®, =0I, S(a,ﬂ,y,é') is reduced to e 2 o)

M1l
(¢]
N

that in the following we suppose that @, =y =0l .

We may write
S(a,B.7.8)t(r)= [ S(a.B,7.6) f(1,)5(r—r,)dr (104)
RN
But thanks to (95)
CD1 V(DZV ‘1)3

S(a,B,7.8)8(r-r,)=e 2e 2 e 2 5(r-r)

D3, 0. -0y

fo—fy F—tf V-2V

‘2% 2¢ 2 5(r—r0) (105)
D,z 2\0FL .

erTre—(r—ro)T(r—ro)

=(2n N/2|detCI)’]/2

so that
S(at, B.7,8) T (r)=(2n) " |det @, [ ** o2/ (707 ) [ f(r)em " e 27 %oy (106)
AN
From the relations coming from (49)
D, :y’l(l —a), D, =y, 0, :(I —5)7’1
O, - =—ay ™, O, -0, =5y, D, =y, DS =D - D,

we may also write

L Faye-2fy iy +Ryoy 1
S(at,B.7.8) (r)=(2n) "*|dety| ** [ £(r,)e o for o2t iy O)dro (107)
RN
From (103) we see that
?—iﬂ’l(l—(i); Gify ?4,5*1(17,1)?

S(s,-iyipa)f(r)=e 2 e2e 2 f(r)
Fﬂf N
N/2|det,3| 2 .[ f(r,)e 2270 ot 0)dr[J (108)

RN

. =27tl

N/2 (rb/} f-2fp r0+r0aﬁ ro)

= detip| J' f(r)e dr,

In one-dimensional space the formula (108) is identical with the formula on the
integral representation of a canonical transform given by Wolf [3] in his work
“A Top-Down Account of Linear Canonical Transforms” as so as with that of
Stern [2].

Resuming the results, we may state that:

Principal Theorem on LCT: The linear canonical transformation represented

by the hyperdifferential operator

Fmif” ta -0). Gify F7i/3*1(|7az)f

Scanonical(alﬂv%é‘)zs( —iy,ip, 0!) e 2 e e 2 (109)

transforms operators as followed
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o) o (e (5] e (s 200

and transforms functions according to the integral formula

Scaronical (2 8,7,6) (1) =S (6,~iy,if, ) f (r)

$\~N/2 -2 ?%f it ?0i£f0
= (2ni) " (det p 7 2 [ £ (r)e ™ o™ 2 ar,
RN

(110)

or, equivalently, according to a Gaussian function multiplied with a Gaussian

transform of a Fourier transform

Scanonical (Ol,ﬁ,]/,5) f (I’)

-1
P i

Flop s
|det/;’|_1/2e 2 g Zvj f(r,)e™” odr, (111)

RN

-N/2

=(2ni)

—e 2 [detp[*e AR (B7r)

7. Examples of Canonical Transforms

7.1. The Fractional Fourier Transform

Consider the case
a=cosdl, g=isindl, y =isindl,=cosol (112)

Thank to (49)

O, =- _1 (1-cosd)l =—itangl
isin@ 2

@, =isindl

@,

=——(1-cos0)I —itanZ)
isin@ 2

we see that this case corresponds to

The Fractional Fourier transformation

N il vlsinov —Flanlp

FTW =e 4e 2 zg2 g 2 2 (113)

v cos@l isingl\(V
.| into | . - (114)
r isindl  cosdl )\ r

and canonically transforms

r cosdl sinél )\t
. into . . (115)
v —-sin@dl cosdl {1V

It is seen that the special case & =m/2 corresponds to the Fourier transforma-

which transforms

tion.

7.2. The Laplace Transformation LT

We know that in a Laplace transformation f '(X) =D, f (X) is transformed into
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XF(x)-f(0)
Xf (x)=xf (x) istransformed into (—DXF (X)) (116)

so that in the space of homogeneous derivable functions we have

(“ ﬁj:[o 'j, o,-Lao-Lao-_1 (117)
y 8) -1 0 2 2 2

and see that the Laplace transformation is realized by A" times the operator

Lov L&

S(a.p, y,&)ze%ﬁ{E e? (118)
~ | 1nto ~
r -1 0)ir
. into | . . (119)
(\% il 0LV

8. Obtaining Canonical Transforms of Functions

which transforms

and canonically

For calculating the transform of a function by the operator S(a,f3,7,5) we

write

S(O!,,B,]/,5) f (r): S(a,ﬁ,;/,é') f (f)S’l(a,ﬂ,}/,é')S(a,ﬂ,}/,é')|

~ (120)
=f(yV+6F)S(a,B.7,6)I
and see that we must calculate firstly that of the unity function U (r) =1
PO P2y ;03
S(a,B.y.6)l=e2e 2 e 2| (121)
and afterward utilize the formulae coming from (14)
ﬁﬁv ﬁﬁv iﬁf ?ﬁf
f(6V+yf)=e 2 f(r)e 2 =e 2 f(yV)e 2 (122)
8.1. Obtaining S(a,B.7,6)]|
Concerning the transform
e P2 f0sp
o S(a,By.6)l=e?e 2e?| (123)
we get immediately according to (21)
@2 [or)
FOp fe2 Doz D2
S(a.By.6)l=e?e 2 e? (124)
As for
P g2y §ap
o S(a,py.6)l=e2e 2 e?| (125)
we utilize the formulae (92), (94) as so as (49) to get
O, =y (l-a),®,=y,®,=(1-6)y"
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1
- Oy D ~1
G 2 73 - O PO
rlfv[z ZJVV:*Vr—:*r
e €

-r

N/2 g2 P N . 2 [%2723}
= (2n)" [det(~®,)[ e 2" (2n) z‘det(cD3 —ch)‘ e

—1 -1
_(mrmz +®3 )

=|det(1-@0,) e 2
Dy +5 g

=|det5|”2e[ ’ ] if ®,%d;!

det(—)

(126)
= (21‘()%

s(r) if ®,=0; (127)

8.2. Obtaining S(a,B,7,6) f(r) by Gaussian Transforms

According to (120) and (49) we have
S(a,B.7,6)f(r)=f(yV+5F)S(a, B,7,6)]

1,
sl Dy +0 D3
vy

g )
—e 2 f(or)e 7 |deto]el * ) 520

1

* S(afro)f(r)= N (5r)ej&;V |det5*]/2|e7?ﬁa_fflflf
and, by (93)
S(a, p,7,6)f(r)
= o e a2
—e 2 f(5r)‘d6t(5—(5y’layx—|)571) o .

o In the case where ay =ya and a8 =d6a we have the formula
o2 e
S(a.B.7.8)f(r)=e 7 f(or)|det(6-p) e (129)
For example

« For the dual couple

(D, -iX,D, +iX) (130)

we get from (32)

o{oi+x?) (1 —il\(D,) -o1(oz+x2) (el 01 )(1 il D,
¢ (I il j[x]e Z(m e"J(l 1 j{x}
0%(03922) D, —9%(D3+>22) /2 1/2\(e?1 o0l I —il\( D,
° (xJe [iI/Z —iI/Zj{ ol eng(l il j(xJ
o(02+x2)( Dy} —o(pz+%?) _(cos261 —sin261)( D,
° ( Je :(sin 201  cos20I j( X J (13D
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and from (129)

x%sin46

1
f (xcos20)e (132)

o(D2+x?) D2tg260
e

1
f (x) =|cos 20|]/2 g2

1

1p2 1e
f(x)=2"e2"f (Z’sz)e“ (133)

%(D2+X2)
e

The formulae (129), (130) are the Baker-Campbell-Hausdorff and Bargman
formulae that we can find in [9].

8.3. Obtaining S(a,B,7,6) f(r) by Differentiation
According to (120) and (49) we have
S(a,B,y,6)f(r)=1(yV+5F)S(a,B.,7.6)l
O, =y (l-a),®,=y,®,=y"(1-5)

so that by (126), (127)
e For y#0 and y=®,#d;' =50

_ﬁLl"} ;ﬁf |;<D1+6’1q>3 .
S(a.B.70)t(r)=e 7 f(yV)e 7 |deto|™e 7
e, F771(|7a+5)+571y71(l—5)f (134)
—e 2 f(yV)|dets| e 2
e For y#0 and yzcbzzq);l
N 2 #0 70,
S(@ B,7,6) f(r)=(2n)z |det(— ) e 2 F(yV)e 7 8(r)
135
12 il (139)

= (275)% ‘det (—7/’1)

The Fourier transform corresponds to this case.

e 2 f(yv)s(r)

9, Remarks and Conclusions

Firstly, we think that this work is interesting by its simplicity because no know-
ledge of Lie groups” method is necessary. Is necessary only the use of couples of
dual operators (A, B) obeying (AB - L5:A) =l such as (V, f) , (DX, X ) ,
(a, a*) , ()2DX In X ) , etc. together with the fundamental law affirming that any
relation between two dual operators is applicable to any other dual couple. Se-
condly from the Newtonian formula for a binomial (x+a)" we get imme-
diately the translation operator exp(aDX) then, thanks to the said fundamental
law, the dilatation operator exp(a)?Dx), is not yet well-known until now. Al-
ways from the fundamental law, we get then the precious operator

exp ((an +bX )(CDX +dX )) which transforms the dual couple (Dx, )Z) into
(ozDX +BX,yD, +5)2) where (a,,7,6) is easily calculable from (a, b%C,dA).
Thirdly, by taking the products of three operators having the forms exp| X®X |,
eXp(IjXCD)z) , exp(DXCDDX) we obtain other operators realizing linear and li-
near canonical transforms. From these we may calculate the linear transforms

and LCTs of operators and of functions by an integral as so as by Gaussian
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transformation. From the formula representing the said integral realization we
get a clear relation between linear and linear canonical transforms. Many exam-
ples of LCT's are given for showing the simplicity of the method.

We are conscientious that the approach for studying LCTs in this work is too
simple with respect to the work of Wolf [3]. Nevertheless, we think that it may
be a useful initiation to the subject. Closing this work on LCTs we predict as
Quesne [1] that a similar study on nonlinear canonical transforms is conceivable
if we utilize couples of dual operators (A, B) of order higher than two such as
[—)ZZDX, )2’1 =1, etc.

We hope that in the future we may study the properties of LCTs and NLCT's
and their applications in quantum mechanics, signal processing, optics and me-
chanics, etc., following the present work, for comparison in simplicity with those
given by Bastiaans, Alieva [10] and Ranaivoson et al [11] etc. utilizing group
methods.
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