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Abstract 
In order to obtain with simplicity the known and new properties of linear 
canonical transformations (LCTs), we show that any relation between a couple 
of operators ( ),A B  having commutator identical to unity, called dual couple 
in this work, is valuable for any other dual couple, so that from the known 
translation operator ( )exp xa∂  one may obtain the explicit form and proper-
ties of a category of linear and linear canonical transformations in 2N-phase 
spaces. Moreover, other forms of LCTs are also obtained in this work as so as 
the transforms by them of functions by integrations as so as by derivations. In 
this way, different kinds of LCTs such as Fast Fourier, Fourier, Laplace, Xin 
Ma and Rhodes, Baker-Campbell-Haussdorf, Bargman transforms are found 
again. 
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1. Introduction 

Linear canonical transforms (LCTs), probably first studied by Moshinsky and 
Quesne in 1971 [1], are the transformations in a 2N-dimensional phase space 
which leave invariant the Hamiltonian and the Poisson brackets of coordinates 
and momenta. Their studies permit to calculate the unitary representations of  

each of these transformations, realizing by a parametrized operator 
A B

S
C D
 

≡  
 

  

where BA AB≡� � , CD DC≡ �� , DA CB I− ≡� � , then calculate the transform by S of 
a wavefunction into a new one. Afterward there are the works of Stern [2], Wolf 
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[3], etc. The method utilized in [1] [3] for studying LCTs is based on the me-
thods of symplectic group and the “2 + 1” Lorentz group which are not very 
well-known by many readers. This work, following a recent work [4] on the role 
of the Fourier transform, which is a special case of LCTs, in quantum mechanics, 
proposes another approach for studying LCTs based on the fundamental law of 
operator calculus [5] saying that any relation between a said dual couple of op-
erators ( ),A B , i.e., operators such that [ ],A B AB BA I≡ − ≡� � , is valuable also for 
any other dual couple. With this law, from the translation operator e xa∂  which 
transforms x into ( )x a+  we arrive to get the dilatation operator e BAλ  which 
transforms ( ),A B  into ( )e ,eI IA Bλ λ−  then a LCT which transforms the dual 
couple ( ),A B  into the dual couple ( ),aA bB cA dB+ +  if ac ca=� � , bd db=� � , 
ad cb I− ≡� � . We obtain also that products of three operators of the forms 
e ,e ,eA A B B A BΦ Φ Φ� ��

 form different types of LCTs. To get the transforms of func-
tions by integration as so as by differentiation we firstly search for a method for 
obtaining the Gaussian transforms of Dirac delta and unity functions. This may 
be done departing from the common definition of the Fourier transform. By this 
method we arrive to find again known results on different kinds of LCTs such as 
Fast Fourier, Fourier, Laplace, Xin Ma and Rhodes, Baker-Campbell-Haussdorf, 
Bargman transforms. Details of reasoning and calculations in this work are pre-
sented in the following paragraphs. Section 2 exposed the method of operator 
calculus. Section 3 illustrated the special case of generalized translations. Section 
4 discussed the LCTs in 2N-phase spaces formed by products of three Gaussian 
operators. Section 5 devoted to the research of a method leaned on the Fourier 
transform for calculating the LCT transforms of functions. Section 6 presented 
the way we calculate the transforms of functions by integrations. Section 7 ex-
posed some cases of LCTs. Section 8 showed how to calculate the LCT trans-
forms of functions by differentiations. 

2. Method of Operator Calculus  
2.1. The Fundamental Law  

In a one-dimensional space of functions, consider the derivative operator xD  

( ) ( )xD f x f x′=                          (1) 

and the Eckaert operator X̂  which consists in “multiply by the variable x” [6] 

( ) ( )X̂ f x x f x=                         (2) 

we get the identity  

ˆ ˆ
x xD X XD I≡ +                           (3) 

by applying both members of it on any derivable function ( )f x , I being the 
unitary operator. 

More generally, let A and B be two operators constructed from xD  and X̂  
respecting the following condition that we will be called duality in this work 
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[ ],A B AB BA I≡ − ≡                          (4) 

From (4) we deduce that  
1m m mA B BA mA −≡ +                          (5) 

( )1 1 1m m mA B BA m A+ +≡ + +                       (6) 

so that let 

( )
0

m
m

m
f x a x

∞

=

= ∑                           (7) 

be an entire function and ( )f x′  its derivative function then because 

( )
0

m
m

m
f A a A

∞

=

= ∑                          (8) 

we get from (5) the identity in Operator Calculus [5]  

( ) ( ) ( )f A B B f A f A′≡ +  

( ) ( ) ( ) ( )1 1f A B f A B f A f A− −′≡ +                   (9) 

which shows the way that ( )f A  transforms B if ( ),A B  formed a dual couple.  
We remark that as the identity (9) applies for any couple of dual operators 

then consequently from one known relation between a dual couple of operators 
( ),A B  we may deduce another relation simply by replacing ( ),A B  with 
another dual couple. We dare say that this affirmation is a fundamental law in 
operator calculus because it gives us a powerful tool in mathematics and quan-
tum mechanics as we may see in this work. 

2.2. The Simplest Transforms of Operators 

From (9) we deduce the identities  

• e eaA aAB B aI− ≡ +                          (10) 

which means that the operator eaA  transforms or more precisely translates the 
operator B into ( )B aI+ .  

For curiosity we remark that the translation operator may be obtained from 
and at the same time leads to the Newton’s binomial formula 

( ) ( )
0 0

1 e
!

x
n nn naDm n m m m n n

x
m m

n
x a a x a D x x x a

m m
−

= =

 
+ = = = = + 

 
∑ ∑    (11) 

The formula (10) may be generalized by replacing the dual couple ( )ˆ,xD X  

with the dual couple ( )1 ˆ ˆ,
2 x xD X D X− +  for example  

( ) ( ) ( ) ( )
ˆ ˆ

2 2ˆ ˆe e 2
x xD X D X

x xD X D X I
α α

α
− − −

+ ≡ + +  

and so all. 

• 
2 2

e e 2aA aAB B aA− ≡ +                      (12) 

Association of (10), (12) generate the very interesting formula 
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( ) ( )22 2 22 1 2e e e e e e e e e e e eB aA a AaA B aA B B aA B a aA B+ − −− − −≡ ≡ ≡  

( ) ( )22 2 2
2 2 2 2e e e e e e e e e
a a a aA A A A bbB aA bB bB bB bBb b b b

− − −+ −≡ ≡  

• ( )
1 1
2 2e e e e e e e

ab abaA bB aA bB bB aA−+ ≡ ≡                (13) 

Identity (13) was proven by Stone-von Neumann in 1930’s utilizing the Bak-
er-Campbell-Hausdorff formula as we can find easily on the net. From (13) we 
see that within a scalar factor the operator e xaD  permute with the operator ˆebX  
and that the exponential of creation and annihilation operators in quantum me-
chanics may each be disentangled into two simple operators 

• 
( ) 1 1

4 4
1 1 1 1 1ˆ ˆ ˆ
2 2 2 2 2e e e e e e e e

x x xD X D X X D
a

±± +
≡ ≡ ≡

∓∓ ∓ ∓
       (14) 

3. Operators Realizing Linear Transforms in Phase Spaces 
3.1. In one Dimensional Space 

Joint (11) with the evident identity 
2 2aA aAA AA A− ≡  

we may write down the important properties of the linear transforms 
2

eaA  and 
2

ebB  under matrix forms where an element of the phase space is presented by  

the matrix 
x
p

 
 
 

 instead of the vector ( ),x p  as in [1]  

• 
2 2

2 2

2 2

e e
e e

2e e

aA aA
aA aA

aA aA

A A A
B B aAB

−
−

−

     ≡ ≡     +    
 

i.e. 
2 2 1 0

e e
2

 
1

aA aAA A
B a B

−    
≡    

    
                 (15) 

• 
2 2 1 2

 e e
0 1

bB bBA b A
B B

− −    
≡    

    
                (16) 

Moreover, because of the fact  

ˆ ˆ ˆ ˆ ˆ ˆ, ln , ln , lnx x xXD X X D X X X D I     ≡ + ≡                 (17) 

we get miraculously from (10)  
ˆ ˆˆ ˆe ln e lnx xaXD aXDX X aI− ≡ +  

ˆ ˆ ˆlnˆ ˆe e e ex xaXD aXD X aI aIX X− +≡ ≡                  (18) 

and, if the couple ( ),A B  is a dual couple as is ( )ˆ,xD X , the remarkable iden-
tity 

• e e eaBA aBA aB B− ≡                       (19)  

Afterward, by substituting in (19) the dual couple ( ),A B  with another dual 
couple ( ),B A−   

e e eaBA aBA aA A− ≡                      (20) 
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we arrive to get the very interesting realization of the dilatation by a hyperdiffe-
rential operator written under the proposed matrix form 

• e e e
e e

e e e

aBA aBA a
aBA aBA

aBA aBA a

A A A
B B B

− −
−

−

    
≡ ≡    

     
 

i.e. e 0
e e

0 e

aI
aBA aBA

aI

A A
B B

−
−     

≡     
    

               (21) 

Combining (15) and (16) we may write down the matrix formula for products of 
exponential operators 

• 
2 2 2 2 2 2 1 0 1 2 1 0

e e e e e e
2 1 0 1 2 1

cA bB aA aA bB cAA b A
B a c B

− − − −      
≡      

      
 

2 2 2 2 2 2 1 4 2
e e e e e e

2 8 2 1 4
cA bB aA aA bB cAA bc b A

B a abc c ab B
− − − − −    

≡    − + −    
   (22) 

Equivalently, with  

1 4bcα = − , 2bβ = − , 1 4ab δ− = , 1αδ βγ− =          (23) 

2 2 2 22 2
2

1 1 1 1
2 2 2 22e e e e e e

A A A AB BA A
B B

α δ δ αβ β
β β β β α β

γ δ

− −
−

−
− − −    

≡    
    

      (24) 

The formula (24) means that in a phase space within a multiplicative constant λ 
the hyperdifferential operator 

( )
2 221 1

222e e e, , ,
A AB

S
α δβ
β βα β γ δ λ
− −

−
≡                  (25) 

realizes the linear transformation of a dual couple of operators ( ),A B  into the 
dual couple ( ),A B A Bα β γ δ+ + .  

Hereinlater we will extend the theorem (25) for 2N-dimensional phases spac-
es. 

3.2. In a Two-Dimensional Phase Space  

In the case where the operator A is a set of two operators 1 2,A A  and B of two 
operators 1 2,B B  we may write for examples  

1 1 1 11 1 1

2 2

e ea A a AB B a I
B B

− +   
≡   

   
                   (26) 

1 1 1 11 1 1

2 2

e ea B a BA A a I
A A

− −   
≡   

   
                   (27) 

1 1 2 2 2 2 1 11 1 1

2 2 2

e ea A a A a A a AB B a I
B B a I

+ − − +   
≡   +   

               (28) 

2 2 2 2
1 1 2 2 2 2 1 1

1 11

2 22

1 1

2 2

1 0 2 0
0 1 0 2

e e
0 0 1 0
0 0 0 1

b B b B b B b B

A Ab
A Ab
B B
B B

+ − −

−    
    −    ≡
    
    

    

       (29) 
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( )
( )

( )
( )

1 1 1 2 2 2 2 2 2 1 1 1

1 1 1

2 2 2

1 1 1

2 2 2

exp 0 0 0
0 exp 0 0

e e
0 0 exp 0
0 0 0 exp

a B A a B A a B A a B A

A a A
A a A
B a B
B a B

+ − −

 −    
    −    ≡     
         

(30) 

3.3. In a 2N-Dimensional Phase Space  

With bold letters ,A B  designed Nx1 column matrices, Φ  a N N×  matrix 
and tilde sign the transposition of a matrix, we have from the operational rela-
tions (15), (16), (21) the following formulae  

• 
0

e e
2 2

A A A AA A I I A
B B A I B

Φ − Φ      
≡ ≡      + Φ Φ      

� �           (31) 

• 
2 2

e e
0

B B B BA A B I A
B B I B

Φ − Φ − Φ − Φ      
≡ ≡      

      

� �           (32) 

• e e 0
e e

e 0 e
A B A BA AA

B BB

−Φ −Φ
Φ − Φ

Φ Φ

      
≡ ≡      

      

� �             (33) 

where for simplicity we suppose that Φ  is a N N×  symmetric matrix, i.e., 
Φ ≡ Φ� .  

3.4. Case Study of Linear Transformations Deriving from  
Translations 

Let us define the duality of a couple of operators ( ),A B  in a multidimensional 
space by the identity 

[ ],A B AB BA I≡ − ≡� �                      (34) 

As  

  
[ ]

( ) ( ) ( ) ( )
,aA bB cA dB

A ac ca A B bd db B A ad cb B B bc da A

+ +

≡ − + − + − + −� � � �� �� �� � � �
     (35) 

we may affirm that if  

ac ca≡� � , bd db≡� � , ad cb I− ≡� �                  (36) 

then 

[ ] [ ], ,aA bB cA dB A B+ + ≡  

i.e., that ( ),aA bB cA dB+ +  is a dual couple as being ( ),A B . 
In this case we may write, according to the fundamental property of operator 

calculus saying that any identity between a dual couple of operators is valuable 
for any other dual couple, 

• ( ) ( ) ( ) ( ) e 0
e e

0 e
Aa Bb cA dB Aa Bb cA dBaA bB aA bB

cA dB cA dB

−Φ
+ Φ + − + Φ +

Φ

+ +    
≡     + +    

� �� �� �� �  

i.e., ( ) ( ) ( ) ( )
1

e 0
e e

0 e
Aa Bb cA dB Aa Bb cA dBA a b a b A

B c d c d B

− −Φ
+ Φ + − + Φ +

Φ

       
≡        

       

� �� �� �� �
(37) 
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• In the cases where the set ( ), , ,a b c d  does not verify the condition  
ad cb I− ≡� �  we introduce the matrix 

ad cbΦ ≡ −� �                             (38)  

which leads if 0Φ ≠  to  
1 1 1ad cb I− − −Φ − Φ ≡ ΦΦ ≡� �                     (39) 

and see that the set ( )1 1, , ,a b c d− −Φ Φ  verifies the said condition.  
We can then write, in accordance with (36), (37) 

( ) ( ) ( ) ( )1 1 1 1

11 1

1

11 1

1

e e

e 0
0 e

e e
e e

Aa B b cA d B Aa B b cA d BA
B

AI a bd b
BI c dc a

Aa bd b
Bc dc a

A
B

α β
γ δ

− − − −+ Φ Φ + Φ − + Φ Φ + Φ

−Φ −− −

Φ −

−Φ −Φ −− −

Φ Φ −

 
 
 

   Φ  Φ −Φ
≡     Φ−     
  Φ  Φ −Φ

≡    Φ−    
  

≡   
  

� �� �� �� �� �

� �� �

� �

� �� �

� �

          (40) 

1 1 1 1 1 1

1 1

e e e e

e e e e

d a b c d b b d

c a a c c b a d

α β
γ δ

− −Φ − Φ − −Φ − − Φ −

−Φ Φ −Φ − Φ −

 Φ −Φ Φ Φ −Φ Φ 
≡     − + − Φ + Φ   

� � �

� �

� � � �� � � � �

� � � �
   (41) 

It is easy to verify that in (41) we indeed have the relation Iαδ βγ− ≡� � . 
As example consider the case 

• 
2

a b i Iθ
≡ − ≡ , c d I≡ ≡ , i Iθ⇒ Φ ≡            (42) 

We have according to (41) 

( )( ) ( )( )

( ) ( )

( ) ( )

ˆ ˆ ˆ ˆ
2 2

11 1

1

e eˆ ˆ

e 0
0 e

1 1e e e e
2 2

1e e e e
2 2

x x x xi D X D X i D X D Xx x

i i i i

i i i i

D D

X X

AI a bd b
BI c dc a

I I I I
i

i I I I I

θ θ

θ θ θ θ

θ θ θ θ

α β
γ δ

θ
θ

− + − − +

−Φ −− −

Φ −

− −

− −

    
≡           

   Φ  Φ −Φ
≡     Φ−     
 + − + 
 ≡
 − + + 
 

� �� �

� �
 

so that   

( ) ( )2 2 2 2 1ˆ ˆ
2 2 cos sin

e eˆ ˆsin cos
x xi D X i D Xx xD DI I

I IX X

θ θ θ θ θ
θ θ θ

−− − −    
≡       −    

      (43) 

In the circumstance that  

• cb bc≡ ��                            (44) 

we may replace (39) with 
1 1 1ad bc I− − −Φ − Φ ≡ ΦΦ ≡��                        (45) 

and see that (43) becomes    
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( )( ) ( )( )ˆ ˆ ˆ ˆ
2 2

1

1 11

e eˆ ˆ

e 0
0 e

x x x xi D X D X i D X D Xx xD D

X X

a b AId b
c d BIc a

θ θ α β
γ δ

− + − − +

−Φ−

− −Φ−

    
≡           

    Φ −
≡     Φ Φ−Φ     

� ��
� � �

 

( ) ( )

( ) ( )

1 1e e e e cos sin2 2
1 1 sin cose e e e
2 2

i i i i

i i i i

I I I I I i I
i I II I I I

θ θ θ θ

θ θ θ θ

α β θ θ
γ δ θ θ

− −

− −

 + − +    
≡ ≡    
    − + + 
 

 (46a) 

We have to remark that if cb bc≡ ��  then (43) and (46a) are all valuable. This, we 
think, may explain the difference between parameters in the integral representa-
tion of LCTs of Wolf [3] versus that of de Bruijn [7]. 

Formula (46a) shows that ( )2 2ˆexp
2 xi D Xθ

−  realizes the Fractional Fourier 

transform. 

We find again also the result of Wolf [8] showing that ( )2 2ˆexp
4 xi D X−
π  

realizes the Fourier transformation. 
Another example is  

• 
2

a c Iθ
= = , b d bθ= − ⇒ Φ = −  

ˆ ˆ ˆ ˆ
2 2 2 2

11 1

1

e eˆ ˆ

e 0
ˆ0 e

x x x xD bX D bX D bX D bXx x

x

D D

X X

DI a bd b
I c dc a X

θ θ θ θ α β
γ δ

     + − − + −     
     

−Φ −− −

Φ −

    
≡           
    ΦΦ −Φ

≡      Φ−      

� �� �

� �

 

( ) ( )

( ) ( )

2 2

2 2

1 1 2e e e e cos sin
2

1e e e e sin cos
4 2 2

ib ib ib ib

ib ib ib ib

ib b

i b b

θ θ θ θ

θ θ θ θ

θ θα β θ θ
γ δ θ θ θ θ

− −

− −

   + −        ⇒ ≡ ≡ 
     − +   
   

(46b)  

The second solution according to (46a) is 
1

1 11

e 0
0 e

A a b AId b
B c d BIc a

α β
γ δ

−Φ−

− −Φ−

       Φ −
≡        Φ Φ−Φ       

� ��
� � �

 

1

1

cosh 2 sinh

sinh cosh
2

b b b

b b b

θ θ θα β
θγ δ θ θ

−

−

 −   ≡   −   
 

           (46c) 

and is found to correspond to the multimode squeeze operators of Xin Ma and 
Rhodes [8] who work with the dual couple ( ),a a+  that as we have seen may be 
generalized for any other dual couple. 

4. General Linear Transforms of Operators in Phase Spaces  

Apart from the operators realizing one category of linear transforms in phase 
space developed in (41) we have also the followings. 
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4.1. The General Cases 

In the 2N-dimensional phase space scanned by ˆ
xD

X
 
  
 

 or 
r̂
∇ 
 
 

 we have from 

the formulae (31), (32), (33)        

• 
3 31 2 2 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2 2 2 2 2 2e e e e e eˆ ˆ
x x x xX X D D X X X X D D X Xx xD D

X X
α β
γ δ

Φ ΦΦ Φ Φ Φ
− − −    

≡           

� � � �� �
 (47a)  

with   

2 1 1 3 3 2 1,Iα β= −Φ Φ = −Φ −Φ +Φ Φ Φ  

2 3 2, Iγ δ= Φ = −Φ Φ  

• 

3 31 2 2 1

2

2

2 2 2

2 2

ˆ ˆ ˆ ˆ ˆ ˆ
2 2 2 2 2 2

3

1

3 1 3

1

e e e e e eˆ

0e 0
ˆ0 0 e

e e e
ˆe e

x x x x x xD D D X X X X X D X D Dx

x

x

D

X

DI II I
II I I X

D

X

Φ ΦΦ Φ Φ Φ
− − −

−Φ

Φ

−Φ Φ Φ

Φ Φ

 
  
 

 −Φ    
≡       Φ      

  −Φ Φ −Φ
≡    Φ  

� �� � � �

        (47b)   

• 

3 31 2 2 1

2 2 2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 2 2 2 2 2

1 3

e e e e e eˆ

e e e
ˆ0 e

x xX X D X X X X X D X X Xx

x

D

X

D

X

Φ ΦΦ Φ Φ Φ
− − −

−Φ −Φ Φ

Φ

 
  
 

  − Φ −Φ
≡      

� � � �� �

          (47c) 

4.2. Study Case on One Type of Linear Transforms of Operators in  
Phase Space 

The identity (44) and the relation (45) lead to the conclusion “In a 2N-dimens-  

ional phase space ˆ
xD

X
 
  
 

 or 
r̂
∇ 
 
 

, within a scalar factor λ , the hyperdifferen-

tial operator  

( )
31 2ˆ ˆ ˆ ˆ

2 2 2, , , e e ex xX X D D X XNS α β γ δ λ
ΦΦ Φ

≡
� ��

               (48) 

with   

Iαδ βγ− ≡� �  

( ) ( )1 1
1 2 3, ,I Iγ α γ γ δ− −Φ ≡ − Φ ≡ Φ ≡ −              (49) 

realizes the linear transformation of 

ˆ
xD

X
 
  
 

 into ˆ
xD

X
α β
γ δ

  
     

”                  (50) 

Thanks to the following formula coming from (49) 

0
0
I I
I I

α β δ β
γ δ γ α

   −  
≡    −    

� �

� �
 

we get   
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( ) ( ), , , , , ,S S Iα β γ δ δ β γ α− − ≡�                 (51) 

and see that the inverse of ( ), , ,S α β γ δ  is 

( )
3 2 1ˆ ˆ ˆ ˆ

2 2 2, , , e e ex xX X D D X X
S δ β γ α

−Φ −Φ −Φ

− − ≡
� ��

             (52) 

It is foreseen that there are equivalent theorems concerning other forms of 
transforms shown in (47a), (47b). 

5. Roles of Fourier and Gauss Transforms in LCTs  

As we shall see the Gauss transforms are related to the Fourier transformation as 
discussed hereafter.  

5.1. Useful Properties of the Fourier Transform 

Let us adopt the convention that the Fourier transform of a function, if it exists, 
in one dimensional space has the definition  

( ) ( ) ( )0
0 0

1 e d
2

ixxF x FTf x f x x
+∞ −

−∞
=

π
≡ ∫                (53) 

with this choice we obtain the properties 

( ) 1
2

FT xδ =
π

                         (54) 

( ) ( )xFTxf x iD FTf x=                       (55) 

( ) ( )FTf x ixFTf x′ =                        (56) 

and conclude that FT transforms the operator xD  into the operator ˆiX  and 
vice-versa X̂  into xiD  

1 ˆ
xFTD FT iX− ≡                         (57) 

1ˆ
xFTXFT iD− ≡                         (58) 

According to (15), (16) we see that the operator 
2 2 2ˆ ˆ

2 2 2e e ex
i i iX D X− −

                        (59) 

has these properties as shown hereinafter 

( ) ( )

2 2 2 2 2 2 2 2 2 2

2 2

ˆ ˆ ˆ ˆ ˆ ˆ
2 2 2 2 2 2 2 2 2 2

ˆ ˆ
2 2

ˆ ˆe e e e e e e e e e

ˆ ˆ ˆe e

x x x x
i i i i i i i i i iX D X X D X X D D X

i iX X

x x x

X X

X iD X i D iX iD

− − − − −

−

     
≡     

     

≡ + ≡ + + ≡

 

2 2 2 2 2 2ˆ ˆ ˆ ˆ
2 2 2 2 2 2 ˆe e e e e ex x
i i i i i iX D X X D X

xD iX
− − −   

≡      
   

 

so that we may write 
2 2 2ˆ ˆ

2 2 2e e ex
i i iX D X

FT λ
− −

≡                    (60) 
2 2ˆ

2 2e e
i ix X

FT λ
−

=                       (61) 
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Remarking now that because  

( )
2ˆ

2ˆ e 0
i X

xD iX± =
∓

                      (62)  

( ) ( )
2 2ˆ ˆ

2 2ˆ ˆe e 0
i iX X

x xFT D iX i D iX FT
− +

+ = − − =           (63) 

we get 
2 2ˆ ˆ

2 2e e
i iX X

FT C
−

−=                       (64)   

2 2ˆ ˆ
2 2e e
i iX X

FT C
−

+=                       (65) 

so that     
2 2ˆ ˆ

2 2e e 1
i iX X

FTFT C C C C
− −

+ − + −= ⇒ =                (66) 

Combination of (64) with the property 

( ) ( )( )
2 2 2

2 2 2e e e
i i ix x x

FTf x F x FT C C
∗

−∗∗ ∗
+ +

 
= − ⇒ = =  

 
       (67) 

gives the relation 

4e
i

C C
±∗

+ −

π

= =  

In this work we adopt the choice 

4e
i

C C∗
+ −

π

= =                         (68) 

although the other choice is equally valuable as seemingly affirmed Moshinsky 
and Quesne [1]. 

On the other hand, by comparing (61) with (68) 
2 2 2 2 2 2 2

2 2 2 2 2 2 2e e e e e e ex
i i i i i i ix x D x x x x

FT Cλ λ
− − − −

−= = =          (69) 

we get finally the waited value of λ  

4e
i

Cλ
π

−= =                          (70) 

with this choice we get the hyperdifferential realization of the Fourier transfor-
mation 

2 2 2ˆ ˆ
4 2 2 2e e e ex

i i ii X D X
FT

−
π

−
≡                     (71) 

The above formula together with the formula 

( )2 2ˆ
4 2e e x

ii D X
FT

π
−

≡                       (72)   

was obtained by Wolf by another method [9].  
It is interesting to note that the Fourier transform of itself is itself  

1FTFTFT FT− ≡  

so that it has another hyperdifferential realization    
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2 2 2ˆ
4 2 2 2e e e ex x

i i ii D X D
FT

π
−

≡                       (73) 

From the formula (54) we may calculate the FT  of the unity function as fol-
lowed 

( ) ( ) ( )1
2

FTFT x FT x xδ δ δ
π

= = − =  

( )1 2FT xδ= π                         (74) 

5.2. The Gaussian Transformation in One-Dimensional Space 

From the equation 

 ( ) 2ˆˆ2 e 0aX
xD aX± =∓                       (75)  

and the properties (57), (58) of the Fourier transformation we get                    

( ) ( )2 2ˆ ˆˆ ˆ2 e 2 e 0aX aX
x xFT D aX i aD X FT− −+ = + =  

( )
22

1
4e e , 0

xax aFT C a a
−− = >                  (76) 

Similarly 

( ) ( )
2 21 1ˆ ˆ

4 4ˆ ˆ2 e 2 e 0
X X

a a
x xFT aD X i D aX FT

− −
+ = + =  

2 2
1

4 1e e
4

x axaFT C
a

− − =  
 

                   (77) 

so that 

( ) ( ) ( )1 1 2
4

mC a C C a a
a

−  = ⇒ = 
 

               (78) 

Now, because  

( ) ( ) ( )

2

2 2
2

2
4

24 2 4

1 10 0 0 0

e
4e elim e lim lim lim 0 1

2 2 2 2 2

x a
x a x a

ax
m m ma a a a

x
a xFT m

a m a m a

−
− −

−
− +→ → → →

 
 
 = = = = ⇒ = −  

we obtain that  

( )
22

1
1 4e 2 e

xax aFT a
−−− =                    (79) 

( )
232

1
ˆ 1 4e 1 e 1 2 ex

xaDaX aFT FT a
−−− = =  

( )
22

1
4e e 4 , 0x

xaD a a x aδ
−− π= >                (80) 

Concerning Gaussians with imaginary parameter a we utilize the definition 
formula of FT  and get 

( ) ( )
2 2ˆ

4 2 2 1e e e
2

x
i ii X D

FT x xδ δ
−

π
−

≡ =
π

             (81) 

( )
2 2

2 2e e 2x
i iD x

i xδ= π  
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( )
22

4e e 2x

i xiaD a ia xδ− = π                      (82) 

Joining (80) and (82) we get the Gaussian transform of the corresponding Gaus-
sian function 

( )
22

1
4e e 4 , 0 orx

xaD a a x a a iδ θ
−− = =π >              (83) 

and inversely of the Dirac delta function                           

( )
22

1
41e e , 0 or

4
x

xaD ax a a i
a

δ θ
−

= > =
π               (84) 

5.3. Gaussian Transforms in 2N-Dimensional Phase Space  

In this case we have  

ˆ ˆ ˆ ˆ
4 2 2 2e e e e

i i iiN r r r r
FT

− ∇ ∇ −
π

≡
� ��

                     (85) 

and, according to the generalization of (84) for the dual couple 
1 1
2 2, r

− 
Φ ∇ Φ  
 

� , 

the formula   

( ) ( )
1

1 22 22e 2 e
r rNrδ

−Φ Φ
∇ ∇ −− −Φ π=
� �

                (86) 

In purpose to calculate ( )1 2rδ −Φ  let us propose that there exists a function 
( )Γ Φ  such that 

( ) ( ) ( )r rδ δΦ = Γ Φ                       (87) 

Under this hypothesis we have 

     ( ) ( ) ( ) ( )r rδ δΦΨ = Γ Φ Γ Ψ                    (88) 

so that for a matrix Φ  diagonalizable into the diagonal matrix ∆  
1U U −Φ = ∆                          (89) 

we have the relation 

( ) ( ) ( )1r U U r rδ δ δ−Φ = Φ = ∆                 (90) 

which leads to  

( ) ( )Γ Φ = Γ ∆                        (91) 

But between Φ  and ∆  the only relation is 

   det detΦ = ∆                        (92) 

so that we can take for Φ  real  

( ) ( ) det detΓ Φ = Γ ∆ = ∆ = Φ                 (93) 

and get from (86) and the property ( ) ( )r rδ δ− =  the generalization 

• ( ) ( )
1

2 2 1 22e e 2 detNr r
rδ

−Φ Φ
−∇ ∇ −

= Φπ
� �

             (94) 

From (94) we deduce that 
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• ( ) ( ) ( )( )
( )

( )
( )

1 1

11

11

2 2 2

1 21 2

1

2 2

1 22 2

122

e e e e e

2 det 2 det e

det e ,

r r r r

N N r r

r r
I

− −

−−

−−

′ ′ ′ ′Φ Φ Φ−Φ Φ Φ
−∇ ∇ − −∇ ∇ −∇ ∇ −

′Φ−Φ
− −

′Φ−Φ

−

− −

−

=

′π ′= Φ − Φ −Φ

′ ′= −Φ Φ Φ ≠ Φ

π

� � �� �

�

�

   (95) 

• ( )
( ) 11

1 2 122 2e e det e ,
ii r r r r

i I

−−′Φ
−

−Φ′ΦΦ
−−∇ ∇ −′ ′= −Φ Φ Φ ≠ Φ

� � �
      (96) 

5.4. Gaussian Transforms of Functions  

Consider the differential equation of Hermite polynomials  

( )2 2 2 0x xD xD n y− + =                      (97) 

Thank to (10) we may write     

( )2 24 4ˆ ˆe 2 2 ex xD D
xX X D≡ +  

( ) ( )2 24 42e 2 2 2 2 e 0x xD D
x x xD xD n y xD n y− + = − + =  

and get 

( )
2 4e xD n

n ny H x c x−= =                      (98) 

On the other hand, from the factorizations of a linear operator in ( )ˆ,xD X   

( ) ( )
2 2 2 21 1 1 1ˆ ˆ

4 4 4 4ˆ ˆ2 e 2 e e ex xn nD D X Xn
x xD X X D

− −
− ≡ − ≡          (99) 

we get the Rodrigues formula for Hermite polynomials 

( ) ( ) 2 24 41 e en x n x
n xH x D −= −                  (100) 

which leads to the formula 

( ) ( )
2 4e 2x nD

nH x x−=                    (101) 

From (101) we see that the Gaussian transform of an entire function ( )f x  
may be put under the symbolic form 

( ) ( )
2 24 4

0 0

1e e :
22

x xD D n
n n nn

n n

Hf x f x f H x f
∞ ∞

− −

= =

 = = =  
 

∑ ∑       (102) 

where nH  is replaced with ( )nH x .  

6. Integral Realization of Linear and Linear Canonical  
Transforms 

Consider the hyperdifferential operator realizing a linear transformation in a 
2N-phase space  

( )
31 2ˆ ˆ ˆ ˆ

2 2 2, , , e e e
r r r r

S α β γ δ
ΦΦ Φ

∇ ∇
≡

� ��

 

or, by (49)    
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( ) ( )1 1
ˆ ˆ ˆ ˆ

2 2 2e e e
I I

r r r r
γ α γ δγ− −− −

∇ ∇
≡

� ��

                  (103) 

Remarking that in the case 2 0IΦ ≡ , ( ), , ,S α β γ δ  is reduced to 
1 3ˆ ˆ

2e
r r
Φ +Φ�

 so 
that in the following we suppose that 2 0IγΦ ≡ ≠ . 

We may write  

( ) ( ) ( ) ( ) ( )0 0 0, , , , , , d
NR

S f r S f r r r rα β γ δ α β γ δ δ= −∫         (104) 

But thanks to (95)                

( ) ( ) ( )

( )

( ) ( ) ( )

31 2

3 1 2
0 0

1
3 1 2

0 0 0 0

ˆ ˆ ˆ ˆ
2 2 2

0 0

ˆ ˆ ˆ ˆ
2 2 2

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 2 2

2
2 1 2

, , , e e e

e e e

2 det e e e

r r r r

r r r r

r r r r r r r rN

S r r r r

r r

α β γ δ δ δ

δ
−

ΦΦ Φ
∇ ∇

Φ Φ Φ
∇ ∇

Φ Φ Φ
− − −− −

− = −

= −

= Φπ

� ��

� � �

� � � �

   (105) 

so that    

( ) ( ) ( ) ( ) ( ) ( )1 111 2 0 2 3 02 0

1 1ˆ ˆ ˆ ˆˆ ˆ2 2
2

1 22
0 0, , , 2 det e e e d

N

r r r rr rN

R

S f r f r rα β γ δ
− −−−− Φ −Φ − Φ −ΦΦΦπ= ∫

� � (106) 

From the relations coming from (49)   

( ) ( )1 1
1 2 3, ,I Iγ α γ δ γ− −Φ = − Φ = Φ = −  

1 1 1 1 1 1
1 2 3 2 2 3 3 2, , ,αγ δγ γ δ− − − − − −Φ −Φ ≡ − Φ −Φ ≡ − Φ ≡ Φ = Φ −Φ  

we may also write 

( ) ( ) ( ) ( ) ( )1 1 1
0 0 01 2

1 ˆ ˆ ˆ ˆ ˆ ˆ2
2

0
2

0, , , 2 det e d
N

N r r r r r r

R

S f r f r r
αγ γ δγ

α β γ δ γ
− − −−− −− +

= π ∫
� � �

 (107) 

From (103) we see that  

• 

( ) ( )
( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

1 1

1
1 1

0 0 0

1 1 1
0 0 0

ˆ ˆ ˆ ˆ
2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ2
2 2

0 0

ˆ ˆ ˆ ˆ ˆ ˆ

1 22

1 2
2

0
2

0
2

, , , e e e

2 det e e d

2 det e d

N

N

i iir r r r

i ir r r r r r

R

N

i r r r r r r

R

N

S i i f r f r

i f r r

i f r r

β δ β αβ

δβ β αβ

δβ β αβ

δ γ β α

β

β

− −

−
− −

− − −

−

−−

Ι− − Ι−
∇ ∇

− −

− +−−

− =

=

=

π

π

∫

∫

� ��

� � �

� � �

      (108) 

In one-dimensional space the formula (108) is identical with the formula on the 
integral representation of a canonical transform given by Wolf [3] in his work 
“A Top-Down Account of Linear Canonical Transforms” as so as with that of 
Stern [2].  

Resuming the results, we may state that: 
Principal Theorem on LCT: The linear canonical transformation represented 

by the hyperdifferential operator  

( ) ( )
( ) ( )1 1

ˆ ˆ ˆ ˆ
2 2 2

canonical , , , , , , e e e
i I i Iir r r r

S S i i
β δ β αβ

α β γ δ δ γ β α
− −− − − −

∇ ∇
≡ − ≡

� ��
  (109) 

transforms operators as followed 
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r̂
i
 
 ∇ 

 into 
r̂

i
α β
γ δ
  
  ∇  

, i.e., 
r̂
∇ 
 
 

 into 
ˆ

i
i r
δ γ
β α

− ∇  
  
  

 

and transforms functions according to the integral formula 

( ) ( ) ( ) ( )

( ) ( )
1 1

1 0 00

canonical

ˆ ˆ ˆ ˆˆ ˆ2 212
0

2
0

, , , , , ,

2 det e e e d
N

N
ir r r i rir r

R

S f r S i i f r

i f r r
δβ αβ

β

α β γ δ δ γ β α

β
− −

−−−−π

= −

= ∫
� ��        (110)   

or, equivalently, according to a Gaussian function multiplied with a Gaussian 
transform of a Fourier transform  

( ) ( )

( ) ( )

( )

1
1

0

1

1 22

1 2

canonical

ˆ ˆ ˆ ˆ2 2
0 0

ˆ ˆ 12 2

, , ,

2 det e e e d

e det e

N

ir r i ir r

R

i r i

N

r

S f r

i f r r

f r

δβ αβ
β

δβ αβ

α β γ δ

β

β β

−
−

−

− − ∇ ∇ −

− ∇ ∇ −

−

−

= π

=

∫
� � �

� �
�

        (111) 

7. Examples of Canonical Transforms 
7.1. The Fractional Fourier Transform 

Consider the case  

cos , sin , sin , cosI i I i I Iα θ β θ γ θ θ= = = =           (112)  

Thank to (49) 

( )1
1 1 cos tan

sin 2
I i I

i
θθ

θ
Φ = − = −  

2 sini IθΦ =
 

( )3
1 1 cos tan

sin 2
I i I

i
θθ

θ
Φ = − = −

 

we see that this case corresponds to 
The Fractional Fourier transformation 

( ) ˆ ˆ ˆ ˆtan sin tan
4 2 2 2 2 2e e e e
i i i iN r r r r

FT
θ θθθ − − ∇ ∇ −

π

≡
� ��

             (113)   

which transforms  

r̂
∇ 
 
 

 into 
cos sin

ˆsin cos
I i I

i I I r
θ θ
θ θ

∇  
  
  

             (114) 

and canonically transforms          

r̂
i
 
 ∇ 

 into 
ˆcos sin

sin cos
I I r
I I i

θ θ
θ θ

  
  − ∇  

            (115) 

It is seen that the special case 2θ = π  corresponds to the Fourier transforma-
tion.  

7.2. The Laplace Transformation LT 

We know that in a Laplace transformation ( ) ( )xf x D f x′ =  is transformed into 
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( ) ( )ˆ 0XF x f−  

( ) ( )X̂f x xf x=  is transformed into ( )( )xD F x−         (116) 

so that in the space of homogeneous derivable functions we have 

0
0
I

I
α β
γ δ
   

=   −   
, 1 2 3, ,

2 2 2
I I I

Φ = − Φ = − Φ = −        (117) 

and see that the Laplace transformation is realized by Nλ  times the operator  

( )
1 1 1ˆˆ ˆˆ
2 2 2, , , e e e

rr rr
S α β γ δ

− − ∇∇ −
≡

� ��

                  (118) 

which transforms  

r̂
∇ 
 
 

 into 
0

ˆ0
I

I r
∇  

  −  
 

and canonically  

r̂
i
 
 ∇ 

 into 
ˆ0

0
iI r

iI i
  
  ∇  

                  (119) 

8. Obtaining Canonical Transforms of Functions 

For calculating the transform of a function by the operator ( ), , ,S α β γ δ  we 
write 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1ˆ, , , , , , , , , , , ,
ˆ , , ,

S f r S f r S S I

f r S I

α β γ δ α β γ δ α β γ δ α β γ δ

γ δ α β γ δ

−=

= ∇ +
 (120) 

and see that we must calculate firstly that of the unity function ( )u r I=   

 ( )
31 2

2 2 2, , , e e e
r r r r

S I Iα β γ δ
ΦΦ Φ

∇ ∇
≡

�� �
               (121) 

and afterward utilize the formulae coming from (14)  

( ) ( ) ( )
1 1 1 1

ˆ ˆ ˆ ˆ
2 2 2 2ˆ e e e e

r r r r
f r f r f

γδ γδ γ δ γ δ

δ γ δ γ
− − − −

∇ ∇ −∇ ∇ −
∇ + ≡ ≡ ∇

� �� �
      (122) 

8.1. Obtaining ( )S I, , ,α β γ δ  

Concerning the transform 

• ( )
31 2ˆ ˆ ˆ ˆ ˆ

2 2 2
1 , , , e e e

r r r r r
S I Iα β γ δ

ΦΦ Φ
∇

=
� ��

                (123) 

we get immediately according to (21)  

  ( )
2 2

31 22 2ˆ ˆ ˆ ˆe e
2 2 2

1 , , , e e e
r r r r

S Iα β γ δ

Φ Φ
ΦΦ Φ

=

�

� �

               (124) 

As for 

• ( )
31 2ˆ ˆ ˆ ˆ

2 2 2, , , e e e
r r r r

S I Iα β γ δ
ΦΦ Φ

∇ ∇
=

� ��

               (125) 

we utilize the formulae (92), (94) as so as (49) to get 

( ) ( )1 1
1 2 3, ,I Iγ α γ δ γ− −Φ = − Φ = Φ = −  
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( )
1

132 3 31ˆ ˆ ˆ2 22 2 2, , , e e e e
r r r r

S I Iα β γ δ

−
− ΦΦ Φ ΦΦ  ∇ − ∇ ∇ ∇ 

 =
�� ���

 

( )
1

32
1ˆ ˆ 2 22e e

r r
rδ

− ΦΦΦ  ∇ − ∇
 
 =
��

 

( ) ( ) ( ) ( )
1

32
1 ˆ ˆˆ ˆ 2 22 12 23 3

1 21
2

2
2 det e 2 det e

r rNr rN

− ΦΦΦ  − −
 − −− −  π π= −Φ Φ −Φ
��

 

( )
( ) 11

1 2 3
ˆ ˆ

2
3 2

1 2
det e

r r
I

−−

−
Φ −Φ +Φ

= −Φ Φ
�

 
1

1 3
1 2

ˆ ˆ
2det e

r r
δ

δ

− Φ + Φ
−


 
 =
�

 if 1
2 3

−Φ ≠ Φ                      (126) 

( ) ( ) ( )12
1 2

2 det
N

rγ δ−
−

= −π  if 1
2 3

−Φ = Φ                 (127) 

8.2. Obtaining ( ) ( )S f r, , ,α β γ δ  by Gaussian Transforms 

According to (120) and (49) we have  

( ) ( ) ( ) ( )

( )
1

1 1 1 3ˆ ˆ
22 2 1 2

ˆ, , , , , ,

e e det e , 0
r r

S f r f r S I

f r
δγδ γδ

α β γ δ γ δ α β γ δ

δ δ δ

−
− −  Φ + Φ 

∇ ∇ −∇ ∇  
 −

= ∇ +

= ≠
�

� �
 

• ( ) ( ) ( )
1 1 1 1 1

ˆ ˆ
2 2 21 2, , , e e det e

r r
S f r f r

γδ γδ γ α δ γ

α β γ δ δ δ
− − − − −−

∇ ∇ −∇ ∇ −−=
�� �

 

and, by (93)       

( ) ( )

( ) ( )( )
( )

111 1 1 1
1

ˆ ˆ1
1

2
2

12

, , ,

e det e
r r

S f r

f r I
γδ γ α δ γ

γδ

α β γ δ

δ δ δγ αγ δ

−−− − − −
−

 
− − 

 ∇ ∇ − −
−

= − −
��

  (128) 

• In the case where αγ γα=  and αδ δα=  we have the formula 

( ) ( ) ( ) ( )
( ) 11 11

ˆ1 2 ˆ12 2, , , e det e
r r

S f r f r
γδ β δγδ

α β γ δ δ δ βγδ

−− −− −
−∇ ∇ −= −

��
  (129) 

For example 
• For the dual couple 

( )
( )

( )1 2

1 ˆ ˆ, ,
2

x xA B D iX D iX
i

≡ − +                (130) 

we get from (32) 

( ) ( )2 2 2 21 1ˆ ˆ
2 2 e 0

e eˆ ˆ0 e
x xD X D Xx xi i

D DI iI I iII I
I iI I iII IX X

θθ θ

θ

−+ − +   − −    
≡                   

( ) ( )2 2 2 21 1 2ˆ ˆ

2

2 2 e 0
e eˆ ˆ2 2 0 e

x xD X D Xx xi i
D DI I I iII I

iI iI I iII IX X

θθ θ

θ

−+ − +   −    
≡          −       

 

( ) ( )2 2 2 2ˆ ˆ cos2 sin 2
e eˆ ˆsin 2 cos2

x xD X D Xx xD DI I
I IX X

θ θ θ θ
θ θ

+ − +   − 
≡           

      (131) 
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and from (129)  

( ) ( ) ( )
2 22 2 1 1tg2 sin 4

2 41 2e cos 2 e cos 2 exD xD X
f x f x

θ θθ
θ θ

+
=         (132) 

 ( ) ( ) ( )
2 2 2 21 1

1 48 2 1 42e 2 e 2 exD X D x
f x f x

π
+ − −=              (133) 

The formulae (129), (130) are the Baker-Campbell-Hausdorff and Bargman 
formulae that we can find in [9]. 

8.3. Obtaining ( ) ( )S f r, , ,α β γ δ  by Differentiation 

According to (120) and (49) we have  

( ) ( ) ( ) ( )ˆ, , , , , ,S f r f r S Iα β γ δ γ δ α β γ δ= ∇ +  

( ) ( )1 1
1 2 3, ,I Iγ α γ γ δ− −Φ ≡ − Φ ≡ Φ ≡ −  

so that by (126), (127) 
● For 0γ ≠  and 1

2 3 0γ δ−≡ Φ ≠ Φ ⇒ ≠  

( ) ( ) ( )

( )
( ) ( )

11 1
1 3

1 1 11

ˆ ˆ ˆ ˆ ˆ ˆ
2 2 2

ˆ ˆ ˆ ˆ
2 2

1 2

1 2

, , , e e det e

e det e

r r r r r r

I I
r r r r

S f r f

f

δγ δ γ δ

γ α δ δ γ δγ δ

α β γ δ γ δ

γ δ

−− −

− − −−

Φ + Φ
− −

+
−

− + −
−

= ∇

= ∇

� � �

� �
 (134) 

● For 0γ ≠  and 1
2 3γ −≡ Φ ≡ Φ  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1

ˆ ˆ ˆ1 2

1

ˆ1 2 22

ˆ2 ˆ1 22

, , , 2 det e e

2 det e

N r r r r

N r r

S f r f r

f r

γ δ γ δ

γ δ

α β γ δ γ γ δ

γ γ δ

− −

−

−

−

−−

−−

= − ∇

=

π

π − ∇

� �

�
(135) 

The Fourier transform corresponds to this case. 

9. Remarks and Conclusions 

Firstly, we think that this work is interesting by its simplicity because no know-
ledge of Lie groups’ method is necessary. Is necessary only the use of couples of 
dual operators ( ),A B  obeying ( )AB BA I− ≡� �  such as ( )ˆ, r∇ , ( )ˆ,xD X , 

( ),a a+ , ( )ˆ ˆ, lnxXD X , etc. together with the fundamental law affirming that any 
relation between two dual operators is applicable to any other dual couple. Se-
condly from the Newtonian formula for a binomial ( )nx a+  we get imme-
diately the translation operator ( )exp xaD  then, thanks to the said fundamental 
law, the dilatation operator ( )ˆexp xaXD , is not yet well-known until now. Al-
ways from the fundamental law, we get then the precious operator  

( )( )( )ˆ ˆexp x xaD bX cD dX+ +  which transforms the dual couple ( )ˆ,xD X  into 

( )ˆ ˆ,x xD X D Xα β γ δ+ +  where ( ), , ,α β γ δ  is easily calculable from ( ), , ,a b c d . 
Thirdly, by taking the products of three operators having the forms ( )ˆ ˆexp X XΦ� ,

( )ˆexp xD XΦ� , ( )exp x xD DΦ�  we obtain other operators realizing linear and li-
near canonical transforms. From these we may calculate the linear transforms 
and LCTs of operators and of functions by an integral as so as by Gaussian 
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transformation. From the formula representing the said integral realization we 
get a clear relation between linear and linear canonical transforms. Many exam-
ples of LCTs are given for showing the simplicity of the method. 

We are conscientious that the approach for studying LCTs in this work is too 
simple with respect to the work of Wolf [3]. Nevertheless, we think that it may 
be a useful initiation to the subject. Closing this work on LCTs we predict as 
Quesne [1] that a similar study on nonlinear canonical transforms is conceivable 
if we utilize couples of dual operators ( ),A B  of order higher than two such as 

2 1ˆ ˆ,xX D X I− − ≡  , etc. 
We hope that in the future we may study the properties of LCTs and NLCTs 

and their applications in quantum mechanics, signal processing, optics and me-
chanics, etc., following the present work, for comparison in simplicity with those 
given by Bastiaans, Alieva [10] and Ranaivoson et al. [11] etc. utilizing group 
methods. 
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