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Abstract 
With the help of today’s computers, it is always relatively easy to find maxi-
mum-likelihood estimators of one or more parameters of any specific statis-
tical distribution, and use these to construct the corresponding approximate 
confidence interval/region, facilitated by the well-known asymptotic proper-
ties of the likelihood function. The purpose of this article is to make this ap-
proximation substantially more accurate by extending the Taylor expansion 
of the corresponding probability density function to include quadratic and 
cubic terms in several centralized sample means, and thus finding the cor-

responding 1
n

-proportional correction to the original algorithm. We then 

demonstrate the new procedure’s usage, both for constructing confidence re-
gions and for testing hypotheses, emphasizing that incorporating this correc-
tion carries minimal computational and programming cost. In our final chap-
ter, we present two examples to indicate how significantly the new approxima-
tion improves the procedure’s accuracy. 
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1. Introduction 

Using the likelihood function to find an approximate confidence region for sev-
eral parameters (often only one, in which case we speak of a confidence interval) 
of a specific distribution goes back to the classic publication of Kendall and 
Stuart [1]. To understand the rest of our article, it is necessary to briefly review 
their main result, summarized by 

Theorem 1. Assuming a case of regular (meaning the distribution’s support 
is not a function of any of the distribution’s parameters) estimation, the follow-
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ing random variable 

 ( ) ( )0
ˆ2 ln ; 2 ln ;L L−X Xθ θ                       (1) 

has approximately the chi-square distribution with K degrees of freedom, where 
K is the number of parameters to be estimated, X  is the set of n observations 
(allowing for the possibility of a multivariate distribution), ( );L X θ  denotes 
the corresponding likelihood function, θ̂  is the vector of the resulting ML es-
timates, and 0θ  represents the true (but unknown) values of the parameters.  

Proof. Realizing that 

 ( ) ( )
1

ln ; : ln ;
n

i
i

L f
=

= ∑X xθ θ                     (2) 

where ix  are the individual observations, then differentiating the RHS with re-
spect to θ  and setting each component of the answer to 0 yields 

 
( )

1

ln ;n
i

i

f

=

∂
=

∂∑
x

0
θ

θ
                       (3) 

where ∂
∂θ

 implies differentiating ( )ln ;if x θ  with respect to each parameter; 

the result is thus a vector with K components. 
To solve the corresponding set of equations, we expand the LHS of (3) at 

0=θ θ , thus getting 

 
( ) ( ) ( )

0 0

2

02
1 1

ln ; ln ;n n
i i

i i

f f

= == =

∂ ∂
+ − + =

∂ ∂∑ ∑
x x

0�
θ θ θ θ

θ θ
θ θ

θ θ
     (4) 

where the second derivative of ( )ln ;if x θ  is a symmetric K by K matrix. Di-
viding each side of the last equation by n, we solve it for 0−θ θ  getting, to the 
first-order accuracy  

 1
0 2

ˆ µ−− − Yθ θ                          (5) 

where 

 
( )

0
1

ln ;1:
n

i

i

f
n = =

∂
=
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x

Y
θ θ

θ
θ

                    (6) 

 
( )

0

2

2 2

ln ;
:

f
µ

=

 ∂ =
 ∂
 

X


θ θ

θ
θ

                   (7) 

Note that the expected value of Y  is 0 , since 

 
( ) ( ) ( ) ( )

All All 

ln ; ;
; d d 1

f f
f

∂ ∂ ∂
= = =

∂ ∂ ∂∫ ∫x x

x x
x x x 0

θ θ
θ

θ θ θ
      (8) 

and its variance-covariance matrix equals to 2 nµ− , due to  

 
( ) ( ) 2 11All 

ln ;d ; d
d

f
f µ µ

∂
= + =

∂∫ x

x
x x 

θ
θ

θ θ
           (9) 

where  
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( ) ( )

0

11

ln ; ln ;
:

f f
µ

=

 ∂ ∂
 =
 ∂ ∂ 

X X
�

θ θ

θ θ
θ θ

              (10) 

is the variance-covariance matrix of 
( )

0

ln ;f

=

∂
∂

X

θ θ

θ
θ

 (the small circle implies 

direct product of the two vectors), and   is the zero matrix. 
Similarly expanding (1) and utilizing (5) we get, to the same level of accuracy 

 ( ) ( ) ( )T T 1
0 0 2 0 2

ˆ ˆ ˆ2n n nµ µ−− + − − = −Y Y Yθ θ θ θ θ θ          (11) 

resulting in the following simple approximation to (1) 

 T 1
2n nµ−− Y Y                        (12) 

where nY  has (due to Central Limit Theorem) a K-variate Normal distri-
bution with the mean of 0  and the variance-covariance matrix of 2µ− . In-
troducing n=Z Y , the moment generating function of (12) is then computed 
by 

 

( ) ( )

( ) ( )

( ) ( )

1T
12 T

2

2
2

1 22
2

exp d
2

2 det

det 1 2
1 2

K

K

t

t
t

µ
µ

µ

µ
µ

−
∞ −

−∞

− −

π

 −
 − + −
 
 

−

− = − = − − 

∫
z z

z z z

             (13) 

easily identified as the MGF of 2
Kχ  distribution.                        ■ 

The result then leads to a simple (we call it basic) algorithm of constructing 
the corresponding confidence region based on a random independent sample of 
n observations. 

Examples 

From the last theorem it follows that an approximate confidence region is found 
by following these steps: 
● Using sample values drawn from the distribution, maximize its likelihood 

function, thus getting the ML estimates of all parameters; 
● Choose a confidence level (denoted τ ) and make (1) (where θ̂  represents 

the ML estimates, but 0θ  are now variables to be solved for) equal to the 
corresponding critical value of the 2

Kχ  distribution; 
● Solve for 0θ , resulting in two limits of the corresponding confidence interval 

when 1K = , a closed curve when 2K = , a closed surface when 3K = , etc.; 
this means that, beyond a one-parameter case, the resulting region can be 
displayed only graphically (a trivial task for today’s computers).  

The following Mathematica program shows how it is done, first using a Geo-
metric distribution with a (computer generated) sample of 40 and confidence 
level of 90%, then a Gamma distribution with a sample of 60 and confidence lev-
el of 95%. 
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The last line of the program has produced the following 95% confidence re-
gion (see Figure 1) for α (horizontal scale) and β (vertical scale). 

A three-parameter estimation can be done in a similar manner, only the call 
to “ContourPlot” needs to be replaced by “ContourPlot3D”. Visualizing a confi-
dence region for more than three parameters would require slicing it into a se-
quence of cross-sections. 

 

 
Figure 1. Confidence region for α and β. 
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The error of this procedure depends on the sample size, decreasing with n in  

the 1O
n

 
 
 

 manner; it can reach several percent for small samples. The purpose  

of the next section is to show how to substantially reduce this error, making it 
rather insignificant in all practical situations. 

2. High-Accuracy Extension 

There have been many attempts at improving the accuracy of this approxima-
tion, starting with Bartlett [2], followed by [3] and many others, all concentrat-
ing on higher moments of the approximately Normal distribution of ML esti-
mators. Our approach is different: we aim at finding an appropriate correction 
to the 2χ  distribution of the Likelihood function. The technique we use is not 
unlike that of [4], in spite of diverging objectives. 

It has been shown in previous publications [5] and [6] that the distribution of 
(1) is more accurately described by the following probability density function 

 ( )2 1 1K
A uu
n K

χ   + ⋅ −  
  

                      (14) 

where ( )2
K uχ  is the chi-square PDF of the original theorem, A is a quantity 

(often a simple constant) specific to the sampled distribution, and K is the num-
ber of parameters to be estimated. In terms of the corresponding CDF, this be-
comes 

 

22, exp
2 2 2 21

2

KK u A u u
nK

K

     Γ + −     
     −

 Γ 
 

                (15) 

(the two-argument Γ  denotes the incomplete Gamma function) or, more ex-
plicitly 

2 exp
2 2
u A u uerf

n
   − −     π  

 

when 1K = , and  

 1 1 exp
2 2
Au u

n
   − + −   
   

                    (16) 

when 2K =  (the two most important cases). 

Note that the expected value of distribution (14) is 2AK
n

+ ; similarly expanding  

(1) then yields the formula for computing A, given the PDF of the sampled dis-
tribution. 

Leaving out less important details, we now indicate the individual steps of 
such derivation. 
● Extend the LHS of (4) by two more terms of the corresponding expansion, 

namely by 
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( ) ( ) ( ) ( )

0 0

3 4
2 3

0 03 4
1 1

ln ; ln ;1 1
2 6
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f f

= == =

∂ ∂
+ − + − +

∂ ∂
∑ ∑

x x
�

θ θ θ θ

θ θ
θ θ θ θ

θ θ
 (17) 

Note that the third and fourth derivatives of ( )ln ;if x θ  constitute fully sym-
metric tensors of ranks 3 and 4 respectively; each is further multiplied by the 
corresponding power (one less than the derivative’s order) of 0−θ θ . The mul-
tiplication is carried out by taking the dot product along one of the tensor’s in-
dices with vector 0−θ θ , and repeating as many times as the power of 0−θ θ  
indicates; the result is thus always a vector with one remaining index. 
● Solve the resulting equation (iteratively) for 0

ˆ −θ θ , to the same order of ac-
curacy. This extends our existing solution (5), which we denote 1Θ , by the 
following quadratic term 

 1
2 2 2 2 3 1 1

1
2

µ µ µ−  = − − + 
 

YΘ Θ Θ                   (18) 

and a cubic term, given by 

 ( ) ( )1 2 3
3 2 3 3 1 3 2 1 4 1 2 2 2

1 1
2 6

µ µ µ µ µ−  = − − + + + − 
 

Y YΘ Θ Θ Θ Θ Θ     (19) 

where 
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                   (20) 

 
( )

0

ln ;
:

f
µ

=

 ∂ =
 ∂
 

X�

� �
θ θ

θ
θ

                   (21) 

(we have already explained how to multiply a symmetric tensor by a power or a 
product of vectors). 
● Similarly expand (1); further divided by the sample size n, this results in the 

following scalar expression 

 

( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

1 3 2 3 4
3 1 3 3 2 1 3 3 1 4 1

1 2 3 3 2 2
2 2 1 3 1 3 3 1 3 1 3 1

4 2
4 1 3 1 2 2 1 2 2 1

1 1 1 1
6 2 6 12

1 1 1
3 3 4

1
12

µ µ µ µ

µ µ µ µ µ

µ µ µ µ

+ − + − − − − +

= + − + + − + ×

+ + + − × − +

�

�

2Y Y Y Y

Y Y Y

Y Y

Θ Θ Θ Θ Θ Θ Θ Θ

Θ Θ Θ Θ Θ Θ

Θ Θ Θ Θ

(22) 

where the × symbol between two vectors (not used beyond this formula) implies 
an operation we call contraction of the two vectors, carried out by  

 1
1 2 1 2 2: µ−× = −V V V V                        (23) 

This is also how we perform a contraction of two specific indices of a tensor 
(required shortly); e.g. contracting the first two indices of 3µ  would be done 
(and denoted) by 

 ( ) ( )1
3 23 , , ,, 1

:
K

i j n i ji j
µ µ−

=

= −∑�µ                     (24) 

resulting in a vector. 
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● Finally, take the expected value of (22) to get 2

2K A
n n
+ +� . 

This yields (term by term) 

 

3 33 111 31 3 3211 4
2 2 2 2 2

3 21 21 21 21 21 21 223
2

2
3 4 4

2

KK
n n n n n n

K
n

++
+ + + + +

+ + + + −
+

� � � �

� �

�

µ µ µ µµ µ µµ µ

µ µ µ µ µ µ µ µ µ
        (25) 

where  

 
( ) ( )

0

2

21 2

ln ; ln ;
:

f f
µ

=

 ∂ ∂ =
 ∂∂
 

X X
�

θ θ

θ θ
θθ

            (26) 

with 211 111 22, ,µ µ µ  and 31µ  defined analogously. Bold-face notation indicates 
that each term of (25) has been contracted in all of its indices, resulting in a sca-
lar. For some of these terms, there are several possibilities to carry out such a 
contraction (e.g. the six indices of 21 21µ µ  can be contracted in altogether five 
non-equivalent ways, only two of which we actually need); it is thus very impor-
tant to indicate (in the ambiguous cases only; note that all pair-wise contractions 
of 4µ , and also of 31µ , yield the same answer) the proper way of doing it. 

A dot implies contraction of two of the indicated indices ( 3�µ  thus making the 
result into a vector, while 211µ  implies, by the absence of a dot over 2, that the 
first two indices have been contracted with the third and fourth index, rather 
than with each other); similarly, two circles indicate that the corresponding two 
indices are to be contracted: 21 21

� �µ µ  thus makes the first index of 21
� �µ  contract 

with its last index, returning a vector yet to be contracted with the first index of 

21µ  (due to the lack of a dot over 2); similarly 21 21
� �µ µ  indicates contracting the 

last index of 21
�µ  with the first index of 21

�µ , while the remaining two indices 
of 21

�µ  are contracted with the remaining two indices of 21
�µ . 

Since 3 111 3 3 3 212= − −µ µ µ µ µ µ , which can be verified in a manner of (9), the 
final formula for 2A then reads 

 211 31 22 4 3 3 21 3 21 21 21 21 213 3 3
1 1 1
4 4 6

+ + + + + + + + +� � � �� � �µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ  (27) 

when 1K = , the formula simplifies to 

 
( ) ( )

2 2
211 31 22 4 3 3 21 21

2 3
2 2

1 5 2 2
4 12

2 2
A

µ µ µ µ µ µ µ µ

µ µ

+ + + + +
= +

− −
           (28) 

We should mention that, in principle, the 1
n

-proportional correction in (14) 

has two more terms of increasing complexity (see [5]), namely 

 

( ) ( )

( )( ) ( )

2
2

3 2

21 1 1
2

3 3 1
2 4 2

K
A u B u uu
n K n K K K

C u u u
n K K K K K K

χ
   + ⋅ − + ⋅ − +      +   

 
+ ⋅ − + −   + + + 

            (29) 
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where the B and C coefficients can be found in a manner very similar to how we 
have just established the value of A; most surprisingly, both B and C then turn 
out to be equal to zero. 

2.1. Location and Scaling Parameters 

An important feature of the last two formulas is the fact that A may be a func-
tion of shape parameters (if any) of the sampled distribution, but not of a loca-
tion or a scaling parameter, as these always cancel out from the resulting expres-
sion. To understand why, consider 

 ( ) ( )0
0; , :

xf f y
f x

µ
σµ σ
σ σ

− 
 
 = =                 (30) 

This enables us to simplify the two derivatives of ( )ln ; ,f x µ σ  thus  

 
( )( ) ( )

( )
0 0

0

ln lnf y f y
f y

σ
µ σ

∂ − ′
= −

∂
                 (31) 

 
( )( ) ( )

( )
0 0

0

ln ln 1f y yf y
f y

σ
σ σ σ

∂ − ′
= − −

∂
               (32) 

from which it is clear that each further differentiation (whether with respect to 
µ  or σ ) yields a function of y, divided by an extra power of σ . Taking the 
expected value of any product of such derivatives amounts to further multiply-
ing by ( )0f y dy  and integrating over all possible values of y, leaving us with a 
number divided by power (equal to the derivative’s total order) of σ . These 
powers of σ  then always cancel out from (27). 

This implies that, for distributions having only location and/or scaling para-
meters, A will turn out to be a constant. 

2.2. Examples 

Values of A are summarized in Table 1 for some of the most common distribu-
tions.  

For Gamma and Beta distributions, A is a complicated function of its first 
(Gamma) and both (Beta) parameter(s); yet, under the indicated constrains (see 
the above table), the value of A remains fairly constant. 

For Gamma distribution (to illustrate the complexity of A as a function of a 
shape parameter), the full formula reads 

( ) ( ) ( )
( )

22 2 3 3 2
1 2 1 1 1 2 3 2 1 3

6
1

12 16 9 2 6 3 5 3

288 1
A

ψ α ψ ψ α ψ ψ ψ ψ α ψ ψ ψ

αψ

 + − + − + + − =
−

(33) 

where iψ  is the st1i +  derivative of the natural logarithm of the ( )αΓ  func-
tion, evaluated at α . Yet, by plotting the last expression as a function of α , we 
can confirm that, with the exception of only the smallest (say < 0.5) values of α ,  

A is nearly a constant, quickly approaching its α →∞  limit of 121
72

. We can  
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Table 1. Value of A for various distributions. 

PDF/PMF Distribution A 

exp x
β

β

 
− 
   

Exponential 
1

12
 

( )2

2exp
2

2

x µ
σ

σ

 −
−  
 

π
 

Normal 
11
12

 

2

exp

1 exp

x

x

µ
σ

µσ
σ

− − 
 

 − + −  
  

 Logistic 0.75866 

( )( )2 2x
σ

µ σ− +π
 Cauchy 1 

exp exp x xµ µ
σ σ

σ

 − − − − −  
    

Gumbel 0.98915 

( )

1 exp xxα

α

β
α β

−  
− 
 

Γ
 Gamma 

121
72

 ( 0.5α > ) 

( ) ( )
( ) ( )

11 1x xαα β
α β

−−Γ + ⋅ −
Γ Γ

 Beta 
11
12

 ( , 0.05α β > ) 

2

exp
2
xx
θ

θ

 
− 
   

Rayleigh 
1

12
 

( )

2 2

1 2 1 2

1 2 1 2
2

2
1 2

2
exp

2 1

2 1

x y x yµ µ µ µρ
σ σ σ σ

ρ

σ σ ρ

       − − − − + −      
       − − 
 
 

−π
 

Bi-normal 
37
12

 

( )1 xp p−  Geometric ( )
1

12 1 12
p

p
−

−
 

 
make similar conclusion in the case of Beta distribution, as mentioned already. 
Note that, in the case of bivariate Normal distribution, A is a constant, free not 
only of the two location and the two scaling parameters, but also of the shape 
parameter ρ . 

Incorporating the A-related correction requires only a trivial modification of 
the previous program; in the Geometric example, we need to replace the “CL 
= ...” line by the following two lines: 
 

 
 

Note that, to compute A, instead of using the true but unknown value of p, we 
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had to use its point estimate instead. 
In the Gamma example (since the α  estimate was bigger than 0.5), we can 

use the large-α  limit of A; the “CI = ...” line now has to be replaced by 
 

 

3. Hypotheses Testing 

The same formulas can be utilized for high-accuracy testing of a null hypothesis, 
claiming that parameters of distribution have specific values. Thus, for example, 
when the distribution has two parameters, we first need to find their ML esti-
mates (based on a random independent sample of size n); using these we then 
evaluate (1), where 0θ  now stands for the parameter values as specified by the 
null hypothesis, and substitute the result for u in (16); this yields the confidence 
level of rejecting the null hypothesis—subtracting this from 1 then returns the 
corresponding P-value. 

The following Mathematica program illustrates how it is done, using the 
Cauchy distribution and testing whether its two parameters (m and s, say) have 
true values equal to 0 and 1 respectively (our random sample of 40 independent 
observations has been generated using 0.3m =  and 0.8s = ). 
 

 
 

Based on the resulting P value, the null hypothesis would be rejected at 1% 
level of significance. 

In our second example, we test whether parameters of a bivariate Normal dis-
tribution have the following values: 1 2 0µ µ= = , 1 2 1σ σ= =  and 0.5ρ =  
(these are also the values we used to generate the sample of 100 bivariate obser-
vations). 
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The resulting P value would lead to accepting the null hypothesis at any prac-
tical level of significance. 

4. Accuracy Improvement 

To investigate the accuracy of the new approximation, we need to be able to 
compute the level of confidence of the resulting region exactly. This can be done 
only in a few situations, such as the Exponential and Normal distributions. Ex-
ploring these two cases will give us a good indication of the improvement 
achieved by incorporating the A correction in general. The details of computing 
the exact confidence level may be of only passing interest to most readers; it is 
the resulting error tables which are important. 

4.1. Exponential Case 

We know that the ML estimator of the β parameter is given by the sample mean 
X  whose exact distribution is Gamma(n, β/n). Since 

 ( ) 1; ln
n

ii X
L nβ β

β
== − −∑X                    (34) 

then 

 ( ) ( )2 ; 2 ; 2 1 ln X XL X L nβ
β β

 
− = − + − 

 
X X             (35) 

(note that this expression is always non-negative, reaching a minimum value of 
zero when X β= ). The limits of the confidence interval of the basic technique 
are found by making (35) equal to a critical value of the 2

1χ  distribution (let us 
call it Cτ , where τ  is the corresponding level of confidence) and solving for 
X β  (and then, trivially, for β ). 

One can show that the two real solutions are given by 

 0 1exp 1 and exp 1
2 2
C C

W W
n n
τ τ

−

      − − − − − − − −      
      

       (36) 

where W is the Lambert (also called Omega, or “ProductLog” by Mathematica) 
function and the subscripts refer to its two real branches. To find the true confi-
dence level, we need to integrate the PDF of X β  between these two limits 
(our code utilizes the corresponding CDF instead); subtracting the result from 
τ  establishes the error of the basic algorithm. Further subtracting 

 
exp

2
6 2

CC

n

τ
τ

 − 
 
π

                      (37) 

then converts it into the error of our new formula (15). The following Mathema-
tica program does that in four simple lines. 
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Both errors (using various sample sizes) are displayed in Table 2, using 
95%τ = . 

The table demonstrates that, as n increases, the error decreases with the first  

power of 1
n

 for the basic approximation, and with the second power of 1
n

 for 

our new algorithm. 

4.2. Normal Case 

Similarly, it is well known that the ML estimators of µ  and 2σ  of the Normal 
distribution are X  and 2 2 2:s X X= −  respectively, that they are independent  

of each other, and that their respective distributions are ,N
n
σµ 

 
 

 and Gam-

ma( 21, 2
2

n σ− ). Since 

 ( ) ( )2
2 21

2; , ln ln 2
22

n
ii X nL n

µ
µ σ σ

σ
=

−
= − − π−∑X          (38) 

(1) then becomes 

 ( ) ( ) ( )2
2 2

2 2
2 2 22 ; , 2 ; , 1 ln

Xs sL X s L n
µ

µ σ
σ σ σ

 − − = − + − −
 
 

X X     (39) 

To get the exact confidence level of the basic algorithm, we need to made this 
expression less than the critical value (denoted Cτ , as in the previous example) of 
the 2

2χ  distribution, and integrate the joint PDF of 2 2s σ  and ( )n X µ σ−  
over the resulting region. Solving the equation of its boundary for 2 2s σ  in the 
manner of (35) now yields 

 
2 2

0 1exp 1 and exp 1
C Z C Z

W W
n n

τ τ
−

      − −
− − − − − − − −               

  (40) 

where Z stands for ( )n X µ σ− , having the standard Normal distribution.  
 
Table 2. Aproximation errors (Exponential case). 

n basic approximation with A correction 

3 0.63% −4.9 × 10−5 

10 1.9 × 10−3 1.5 × 10−7 

30 6.4 × 10−4 1.7 × 10−7 

100 4.9 × 10−5 2.0 × 10−8 

300 6.4 × 10−5 2.4 × 10−9 
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We then integrate the PDF of 2 2s σ  (having the 2
1nχ −  distribution) using 

these two limits (again, the program utilizes the corresponding CDF instead); 
finally, we multiply the answer by the PDF of Z and integrate over all marginal 
values of Z (i.e. from 0 to Cτ )—the last step is done numerically. This yields 
the true confidence level of the resulting confidence region; subtracting it from 
τ  then provides the corresponding error of the basic algorithm; further sub-
tracting 

 
exp

2
24

CC

n

τ
τ

 − 
                          (41) 

converts that into the error of the new algorithm. This is how it is done using 
Mathematica: 
 

 
 

Table 3 summarizes the results. 
 

Table 3. Approximation errors (Normal case). 

n basic approximation with A correction 

3 8.1% 3.6% 

10 1.6% 0.24% 

30 4.8 × 10−3 2.5 × 10−4 

100 1.4 × 10−3 2.2 × 10−5 

300 4.6 × 10−4 2.4 × 10−6 

 

Similarly to the previous example, one can clearly discern the 1
n

-proportional 

decrease of the basic error, and the more rapid 2

1
n

-proportional decrease 

achieved by our correction. 

5. Conclusion 

In this article, we have modified the traditional way (based on the corresponding 
likelihood function and a random independent sample of size n) of constructing 
a confidence region for distribution parameters, aiming to reduce its error. This 
has been achieved by adding, to the usual 2χ  distribution of the original tech-  
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nique, a simple, 1
n

-proportional correction whose coefficient is computed, for  

each specific distribution, using a rather complex formula; we have done the lat-
ter for many common distributions, summarizing the results in Table 1. We 
have also provided several examples of a Mathematica code, demonstrating the 
new algorithm and its simplicity (each computer program takes only a few lines); 
a practically identical approach can then be applied to the task of hypotheses 
testing. Finally, we have numerically investigated the improvement in accuracy 
thereby achieved, finding it rather substantial. It is worth emphasizing that, once 
the value of A has been established, incorporating the corresponding correction 
is extremely easy and done with a negligible computational cost. 

Future research will hopefully explain why are the B and C coefficients of (29) 
both equal to zero; so far we have been able to prove that only by a brute-force 
computation, but we believe that there is some more fundamental reason behind 
this result, which we have not been able to uncover. 
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