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Abstract 
Numerical diffusion and oscillatory behavior characteristics are averted ap-
plying numerical solutions of advection-diffusion equation are themselves im-
mensely sophisticated. In this paper, two numerical methods have been used 
to solve the advection diffusion equation. We use an explicit finite difference 
scheme for the advection diffusion equation and semi-discretization on the 
spatial variable for advection-diffusion equation yields a system of ordinary 
differential equations solved by Euler’s method. Numerical assessment has 
been executed with specified initial and boundary conditions, for which the 
exact solution is known. We compare the solutions of the advection diffusion 
equation as well as error analysis for both schemes. 
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1. Introduction 

The advection diffusion equation (ADE) is the model that can be used for simu-
lation natural processes. Two categories of the advection-diffusion equation: ad-
vection is first due to the movement of materials from one region to another; the 
second category is called diffusion which is due to the movement of materials 
from higher concentration to low concentration. This mathematical model has a 
wide range of applications in natural science and engineering. These applica-
tions include where simulation techniques are useful for transport of air, river 
water, adsorption of pollutants in soil, food processing, modeling of the biologi-
cal system, finance, electromagnetism, fluid mechanics structural dynamics, 
quantum physical process, etc. The analytical and numerical solutions along 
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with an initial and two boundary conditions help to comprehend pollutant con-
centration distribution behavior through an open medium like rivers, air, lakes, 
and porous medium. Various works have been appeared to solve and use this 
equation in their simulation using finite difference methods [1] [2] [3]. Numer-
ical Solution of the 1D advection-diffusion Equation solved using standard and 
nonstandard Finite Difference Schemes [4]. The significant application of the li-
near advection diffusion equation lies in fluid dynamics, heat transfer, and mass 
transfer [5]. Researchers examine numerical solution of Advection Diffusion 
Equation using operator splitting method [6]. These methods have been imple-
mented by a characteristic method with cubic spline interpolation (MOC-CS) 
and Crank-Nicolson (CN) finite difference scheme. Obtained results were com-
pared with analytical solutions. It is seen that the implemented method has low-
er error than other methods also produces accurate results even when the time 
steps are great. The linear advection diffusion equation (ADE) is a model which 
describes the contaminant transport due to the combined effect of advection and 
diffusion in a porous media [7]. In this study, the advection diffusion equation is 
solved by explicit finite difference schemes and investigates a different approach, 
the semi-discretization method: a spatial variable which yields a system of ODE 
with the temporal independent variable. We solve this system of ODE’s by Eu-
ler’s method and develop an algorithm of the Euler method for the system of 
ODE’s and implement it for the computation of the concentration ( ),u x t . 

2. Advection Diffusion Equation 

We consider the following partial differential equation, which has both an ad-
ventive and diffusive terms together. 

( ) ( ) ( ) ( ), , , ,t x xxu x t c x t u x t Du x t+ =                (1) 

with initial condition: 

( ) ( )0, ;u x t f x a x b= < < . 

And boundary conditions:    

( ) ( ) 0, ;au a t u t t T=   

( ) ( ) 0, ;bu b t u t t t T= < <  

where ,a bu u  are concentration values and ( ),u x t  is the unknown solution 
being investigated which indicates concentration, ( ),c x t  is the velocity of the 
medium in the x direction, ( ),D x t  is the diffusion coefficient. To introduce 
numerical scheme for Equation (1), an advection diffusion problem whose gen-
eral solution [8] [9] [10] is (Figure 1) 

( )
( )2

41, e
4

x ct
Dtu x t

Dt

−
−

=
π

                    (2) 

3. Numerical Methodology 

In mathematics, our goal is to approximate the solution of the differential equations.  
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Figure 1. The general solution of the advection diffusion equation. 

 
This gives a large algebraic system of equations to be solved in replace of the dif-
ferential equation, which can be easily solved [11] [12] on a computer by Matlab 
code. 

3.1. Computational Grid 

We consider some simple space discretization on a uniform grid. We divide the 
spatial interval [ ]0, L  into 1M +  equal sub-interval such that  

1 2 3x x x L< < < <  with ( )1 , 1,2,3, , 1mx m x m M= − ∆ = +  and Lx
M

∆ = .  

Approximations ( ) ( )0
,mu t u x t≈  are found by replacing the spatial derivatives by 

difference quotients. we also divide the time interval [ ]0,T  into 1N +  equal sub- 
interval such that 1 2 3t t t T< < < <  with ( )1 , 1,2,3, , 1nt n x n N= − ∆ = + ,  

and Tt
N

∆ = . For purpose of the notation x h∆ =  and t k∆ = . 

This gives a finite difference discretization in space. Setting  

( ) ( ) ( )( )T
1 , , mu t u t u t=  . 

Therefore, we get a system of ordinary difference equations (ODEs) of (1.1)       

( ) ( )( ) ( ) 0, , 0, 0u t F t u t t u u′ = > =                 (3) 

with a given initial value ( )0u .  

3.2. Discretization of Explicit Finite Difference Scheme (ECDS) 

To approximate the solution to Equation (1) using the Explicit Centered Differ-
ence Scheme, we use the following approximations  

( )
1

,
n n

n m m
t m

u u
u x t

t

+ −
≅

∆
                     (a) 

( ) 1 1,
2

n n
n m m

x m
u u

u x t
x

+ −−
≅

∆
                    (b) 

( )
( )

1
1 1

2

2
,

n n n
n m m m

xx m
u u u

u x t
x

+
+ −− +

≅
∆

                 (c) 

where x∆  is the spatial step, t∆  is the time step, m and n is spatial and temporal 
node respectively. Substituting Equation (a), (b), (c) in Equation (1) and solving  
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for unknown 1n
mu + . We obtain ( )1

1 11 2
2 2

n n n n
m m m mu u u uα αγ γ γ+

− +
   = + + − + −   
   

 

where c t
x

α∆
=

∆
 and 2

D t
x

γ∆
=

∆
. Stability condition 1c t

x
∆

≤
∆

 & 2

1
2

D t
x
∆

≤
∆

. 

3.3. Spatial Discretization Technique for ADE and Solved by Euler  
Method 

We consider the following figure for ADE (Advection Diffusion Equation). 
 

 
 

We draw vertical grid line as shown in the picture. These lines are parallel to 
the t-axis and cross the x-axis in mx x= , 1, , 1m M= + . mx m x= ×∆ ,  

1
1

x
M

∆ =
+

. 

In semi-discretization method (SDM), we assume that the PDE system with 
its boundary conditions has spatially discretized, and thus we focus on ODE sys-
tem ( ) ( )( ),u t F t u t′ = , representing semi-discrete advection-diffusion prob-
lems.  

This equation is same as Equation (2). Now Consider ADE (1) with 0c >  
and 0D > . 

We introduce the function of one variable: ( ) ( ),m mu t u t x≈ , 1, , 1m M= + . 
Now approximate the first derivative and second derivative x∂  and xx∂  re-

spectively as: 

( ) ( ) ( )1 1,
2

m m
x m

u t u t
u x t

x
+ −−

≅
∆

                      (d) 

( ) ( ) ( ) ( )
( )

1 1
2

2
, m m m

xx m

u t u t u t
u x t

x
+ −− +

≅
∆

                  (e) 

This gives the semi-discrete form of (1) 

( ) ( ) ( )
( )

( ) ( )
( ) ( )

( )

1 1 1 1
2

1 0

1 1

2

2d
d 2

2, , ; &
2

m m m m mm

M

u u u u uu t
t x x

u t f t

u t f t
c Dm M

x x

α γ

α γ

+ − − +

+

− + +
= − +

∆ ∆

=

=

= = =
∆ ∆



             (4) 

x1 x2 x3 xm xm+1

u1 =0  u2 u3 um um+1 =1
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Setting ( ) ( )0 , 2, ,m mu f x m M= =   
We get, ( ) ( ) ( ) T

2: , , mu t u t u t=   
  

2 2

2 1 1

1 1

0 1 0

1 0
d 0
d

0 1 0

1 0 1
2 1 0

1 2

0

2 1 0

1 2 1

M M

M M M

u u

t
u u

u u u

u u u

α

α γ

γ

α γ+ +

 
 
−    

    = −    
        

 − 
− 
 

−−       
      + + +      
       −−       

 − 

 

  

 

So, we obtain a linear system of ordinary differential equations (ODE’s) of the 
type. 

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

T
0 1

0

d , 0 , ,
d

, , 0 , where and , are vector

M

f t

uu t Au b t u u f x f x
t

u t F t u u u u F t u

= = + = =   

∴ = =








 

Now, we get with time step t∆  for the numerical solution  

( )
( )

1

1

,

,

n n
n

n

n n n
n

u u F t u
t

u u t F t u

+

+

−
=

∆
= + ∆

 

which is the semi discretization using Euler method of ( ) ( ),F t u Au b t= + . 

4. Numerical Result’s and Discussion 
4.1. Algorithm for the Semi Discretization of ADE Solved by Euler  

Method  

To approximate the solution to the partial differential equation  

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

2

02

0

0

0

, , , 0,  and 

Subject to the boundary condition

, ,

, ,

And Initial condition,

, ;

a

b

u u ux t c x t D x t a x b t t T
t x x

u a t u t t t T

u b t u t t t T

u x t f x a x b

∂ ∂ ∂
+ − = < < < <

∂ ∂ ∂

= < <

= < <

= < <

 

Input: dt, dx, constant co-efficient ,C D , 0t , the left and right end point ft  
of ( )0,T ; dx , the right end point of ( )0,b . 

Output: approximation mmu  to ( ), n
mu x t  for each 2, ,mm m=  ,  

1, ,n N=  . 
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Step 1: set 

0 0

2

; ;

,
2

xd x tf f
nx nt

dx dt
c D
dx dx

α λ

− −
= =

= − =
 

Step 2: for 2, ,m nx=   
( ) ( ),1

,1

Set     Initial value
       ;

m

m

u f x
un u

=

=
 

Step 3: 
( )
( )

1,

1,

Set,            left boundary condition
         ;    right boundary condition

n a

nx n b

u u
u u+

=
=

 

Step 4-Step 6: (solve a tri-diagonal linear system) 
Step 4: Construct matrix A and B 
Set, ( ) ( )1T A Bα β= ∗ + ∗  
( ) ( )
( ) ( )
1 1,1

1 ,1

b u

b nx u n

= 


− = 
 Boundary  

( )1unew un dt T un b= + ∗ +  (Unknown solution for first time step) 

Step 5: For 1, , 1n nt= +  
Set , ; ;mm nu unew un unew= =  

( )1unew un dt T un b= + ∗ + ; 
Output ( ),, m nx u ,  
Step 6: Stop (the procedure complete) 

4.2. Case Study 

Numerical implementation of Euler method [10] [11]: our solving equation (1): 

t x xxu cu Du+ =  initial condition: ( ) ( )0 , 0m mu f x u x t= = =  

Boundary condition: 
( ) ( )
( ) ( )

0 10,

,

n
n

n
b b n

u x t u f t

u x b t u f t

= = =

= = =
  

We will solve numerically for the concentration u using matrix system of equ-
ation. 

 

 
 

Suppose we use 4 grid points 1 2 3 4 1, , , mx x x x x +=  i.e. 3m =  in this example. 

We let, 2

3

n
n

n

u
u

u
 

=  
 

 , Solution for concentration vector nu  at time nt .  

The boundary condition gives  

( )1 0,n
nu u x t= =  and ( )1 4 ,n n

m bu u u x b t+ = = = . 

We can rewrite general nth term in Equation (4) to required Euler method of 
advection diffusion equation.

 1 2 2 2 1 1

3 3 3 4 4

0 1 2 1
1 0 1 2

n n n n n
n

n n n n n

A B

u u u u u
u

u u u u u
α λ α λ+          −   

= − + − +            − −            



 

 

1 0x a= = 2x 3x 4 1mx x b+= =
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( )

1 2 2 2 1 1

3 3 3 4 4

1 2
2

3

; ; &
2

n n n n n
n

n n n n n

P

n
n

n

u u u u u
u t A B

u u u u u

u c Du t P
xu x

α λ α λ

α λ

+

+

 
           = + ∆ − + − +          

         
  

 
= + ∆ = = 

∆ ∆ 









 

4.3. Semi Discretization Scheme for ADE Solved Using Euler  
Method 

For this case the time step is increased to 0.008t∆ = , 0.1x∆ = , and the para-

meter 0.2c =  and 0.02D = , c t
x

α∆
=

∆
 known as advection equation number 

and 
( )2

D t
x

γ∆
=

∆
 known as diffusion term. Regarding this application, (Figure 2) 

0.2 0.008 0.0160 1,
0.1

α ×
= = ≤  

2

0.02 0.008 0.0160 0.5
0.1

γ ×
= = ≤  

Summary of elapsed time for different temporal grid point present below:  
 

∆t ∆x nt nx ECDS (E.T. sec) Euler (E.T. sec) 

0.014 0.1 10,000 500 1.121698 20.768796 

0.010 0.1 14,000 500 1.495759 46.085011 

0.008 0.1 17,500 500 1.330302 34.216212 

0.0031 0.1 16,000 500 1.346320 31.355717 

0.001 0.1 140,000 500 5.814469 270.811288 

 

 
Figure 2. The concentration distribution for 0.1x∆ =  at different time of Euler and ECDS. 
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5. Error Analysis and Convergence 
5.1. Error Analysis 

The comparison of relative error for two finite difference schemes as a function 
of time is shown in Figure 3. Two different curves show relative error for Expli-
cit (red) and Euler (blue). We found the relative error for ECDS remains below 
0.0009 and the relative error for Euler remains below 0.0011.  

5.2. Convergence 

Figure 4 illustrates the convergence of relative error by the scheme FTCS tech-
niques. In this figure, numerical computation of ADE is presented by using ex-
plicit finite difference methods by FTCS and compared with an exact solution of  
 

 
Figure 3. Plot shows Relative error of ADE for both schemes. 
 

 
Figure 4. Plot shows Convergence of relative error for ECDS. 
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the ADE. A good agreement between the numerical solutions and the analytical 
solutions is obtained and the error becomes clear when using large size step for 
the time.  

Figure 5 presents the convergence of semi discretization by Euler for ADE 
with respect to time. It can be seen that, the relative error rate of the convergence 
curves for the Euler scheme with respect to time. This figure shows a very good 
rate of convergence. 

5.3. Problem Discussion  

Figure 6 describes the concentration distribution profile as a function of dis-
tance. Different curves represent concentration distribution profiles at different 
times starting from 10 sect =  to 50 sect = . The plot marked by “red curved”  
 

 
Figure 5. Plot shows error rate of convergence for Euler scheme. 
 

 
Figure 6. Plot shows concentration distribution at different time. 
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represents the concentration is high for 10 seconds and the green curve shows 
that concentration is decreased for 20 seconds. The curve marked by “blue” 
represents concentration is high for 30 seconds and. The plot marked by “yellow” 
represents concentration is high for 50 seconds we can see that when time is in-
creased concentration profile is decreasing. As can be seen in Figure 6, five 
curves show concentration distribution profiles for different times, advection, 
and diffusion parameter as a function of distance. 

Similarly, we observe the above figure with the concentration distribution pro-
file for different distances is decreased in a position with respect to time in Fig-
ure 7.  

Figure 8 represents the concentration profile for different velocities and dif-
ferent diffusion coefficients regarding distances. Different curves show concen-
tration profiles for different applied velocities and diffusion rates. If we vary  
 

 
Figure 7. Plot shows concentration distribution at different position. 

 

 
Figure 8. Plot demonstrated varying advection & diffusion rate a time 20 sect = .  
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Figure 9. The plot demonstrated varying diffusion rate a time 20 sect = . 

 
both velocity and diffusion coefficient at t = 20 secs, the solutions appeared 
which can be seen in Figure 8. 

Similarly, concentration profile by solving numerically at a different diffusion 
rate can be seen in Figure 9 where the maximum concentration profile is shown 
at time 20 sect = .  

6. Conclusion  

We present numerical solutions with exact solutions for the advection-diffusion 
equation with an initial condition and two boundary conditions by using ECDS 
and semi discretize method. A numerical study of the ADE has been presented 
graphically for two different schemes. The numerical solution of ADE by 
semi-discretization scheme shows a good agreement with the exact solution as 
well as for ECDS. Though, ECDS seems a more efficient scheme in terms of 
elapse timing; we compute the relative errors for two different schemes, both 
schemes show a very good rate of convergence. In comparison to Euler’s method, 
ECDS shows less error, which is obvious. Semi discretize methods have to deal 
with a large number of systems of ordinary differential equations in comparison 
with ECDS. In our next work, we would like to upgrade this work with high-
er-order accuracy. 
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