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Abstract 
k-ary trees are one of the most basic data structures in Computer Science. A 
new method is presented to determine how many there are with n nodes. 
This method gives additional insight into their structure and provides a new 
algorithm to efficiently generate such a tree randomly. 
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1. Introduction 

The number, ,bn k , of k-ary trees with n nodes is well known and given in [1] 
as ( ) ( )( ), 1 1C kn n k n− +  where ( ),C n k  denotes the number of ways to choose 
k places from n places, which is ( )! ! !n k n k− . This paper generalizes the results 
from [2] on binary trees with n nodes to k-ary trees with n nodes by providing a 
simple direct approach to finding ,bn k  and a new method to generate a ran-
dom k-ary tree with n nodes efficiently. The direct approach here to finding 

,bn k  relies on the detailed structure of the trees developed here rather than the 
standard recursive description of the tree and solving the resultant recurrence 
relations. Another approach for the random generation is given in [3]. The nu-
meration of k-ary trees is done in [4]. The generation of binary and k-ary trees 
has been and continues to be of interest [5] [6] [7] [8].  

2. Representation of k-Ary Trees with n Nodes 

For any n > 0, a k-ary tree with n nodes can be uniquely represented by a se-
quence of n k-tuples of 0’s and 1’s, one k-tuple for each node. In a node’s k-tuple, 
the ith entry specifies whether the node’s ith child is non-null or null: 1 for non- 
null and 0 for null. The k-tuples appear in the order in which the nodes are ac-
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cessed in a preorder traversal of the tree. The sequence for the 3-ary tree      
 

 
 

Define node i of a k-ary tree as the ith node accessed in a preorder traversal of 
the tree. The ith tuple corresponds to node i of the tree. The numbers are shown 
to indicate the node corresponding to each tuple, but only the sequence of n 
tuples is used to represent the tree. The tuples are written vertically rather than 
horizontally.  

3. Construction Procedure 

The unique k-ary tree that generated this sequence of tuples can easily be con-
structed by processing the tuples from left to right, effectively building the tree 
as it is being preorder traversed. This procedure builds the tree as shown below: 
 

 
 

We will call these spines 1 to 7 of the tree, where spine i contains nodes 1 to i 
and its branches. The number of unused branches in spine i is the number of 
branches—(i − 1). 

4. Valid Sequences 

Each node of an n node k-ary tree, except for the root, has a unique branch 
coming into it. Since each branch corresponds to a unique 1 in the tree’s n node 
k-ary sequence there must be 1n −  1’s in the sequence. Each of the tree’s null 
subtrees corresponds to a unique one of the ( )1 1k n− +  0’s in the sequence. 
There are ( ), 1C kn n −  of these sequences of n k-tuples, one for each way the 

1n −  1’s can be assigned to the kn places. Not all of these allow our procedure to 
construct an n node k-ary tree. Those that do we call valid sequences and the 
others invalid. 

5. A Look Ahead 

The approach here is to confirm two facts. First, that our construction procedure 
to generate a tree from a valid sequence establishes a 1-1 correspondence be-
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tween n node k-ary trees and valid sequences. 
Secondly, every invalid sequence is one of the distinct n − 1 rotations gener-

ated from a unique valid sequence, and each is also distinct from the valid se-
quence. Thus, each invalid sequence can be associated with a unique tree. It 
must then be the case that 

( ) ( ), 1 , , 1bn k n bn k C kn n+ − = − , 

since the number of valid plus the number of invalid sequences equals the total 
number of sequences. Solving for ,bn k  we obtain  

( ) ( ) ( )( ), , 1 , 1 1bn k C kn n n C kn n k n= − = − + . 

Rotation i of a valid sequence is obtained by shifting its first i tuples from the 
front to the rear of the sequence. For our example, rotation 3 is: 
 

 
 

Applying our construction algorithm to rotation 3 produces:   
 

 
 

Notice that the last, and incomplete tree is spine 3 of the original tree. If the 
first subtree is added to the first available branch of the spine and the second to 
the second available branch the original tree is obtained. We will see that our 
construction applied to rotation i of a tree will always produce r subtrees fol-
lowed by spine i and adding subtree j to the jth available branch for 1 ≤ j ≤ r 
produces the original tree. 

6. Excess Sequences and Valid Sequences Are the Same 

Let Ni be the number of 1’s in the first i k tuples of any n node k-tuple sequence. 
If ( )1Ni i> −  for all i < n and ( )1Nn n= −  we say the sequence is an excess 
sequence. In general, spine i + 1 is produced from spine i when node i + 1 is 
processed and added to spine i. When node i + 1 is processed it becomes the 
child of the first available branch encountered in the preorder traversal starting 
from node i. This branch must be available since the first i nodes used the first i 
− 1 available branches encountered and Ni was greater than (i − 1). Since this is 
true for each 1i n< −  the first n − 1 spines can be built. Since 1 2Nn n− > −  a 
branch is available for node n to be added to spine n − 1. However, since  

1Nn n= −  all the branches will then have been used and a tree has been con-
structed. This shows that an excess sequence is a valid sequence. 
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A valid sequence must have an unused branch to add node i+1 to in the con-
struction procedure. The first i nodes used i − 1 of the branches. So Ni must 
have been greater than (i − 1) for each i < n. When i is n, 1Nn n= −  so after the 
nth node is added all the n − 1 branches have been used. Consequently, a valid 
sequence is an excess sequence.  

7. Every Invalid Sequence Is One of the n − 1 Rotations of a  
Valid Sequence 

If a sequence, s, is not an excess sequence it must be an invalid sequence. All n 
node k-ary sequences satisfy ( )1Nn n= −  so for s to fail to be an excess sequence 
there must be a smallest n1 < n such that ( )1 1 1Nn n= −  with 1Ni i> −  for i < 
n1. Thus, the first n1 tuples of s must be an excess sequence and so represent an 
n1 node k-ary tree. In fact, the sequence must look like: 
 

 
 

just r consecutive excess sequences of lengths 1, 2, ,n n nr  with a last sequence 
of length ( )1 2n n n nr− + + + .   

Each of the first r sequences then has ni − 1 1’s, i ≤ i ≤ r, and represents an ni 
node tree and the last sequence must have  

( ) ( )1 1 1 2 1 1 1 2 1n n n nr n n n nr r− − − + − + + − = − + + + − +   1’s and has no 
head which is an excess sequence. Its length, N, is then ( )1 2n n n nr− + + +  
and we will refer to its nodes as node 1 to N. Now 1 2n n nr+ + +  cannot be n 
since, if it were, r must be 1 and n1 would contain all the nodes and be an excess 
sequence and would be the original invalid sequence. Also, r cannot be n, other-
wise each ni, 1 ≤ i ≤ r, must be 1 so 1 2n n nr+ + +  would be n, which we 
know cannot happen.    

Lemma. The construction procedure applied to a last sequence L produces 
spine N of a tree with r unused branches. 

Proof. Number the nodes of N from 1 to N and let ti be the number of 1’s in 
tuple i, 1 ≤ i ≤ N. After processing the first i nodes of L, the construction proce-
dure creates spine i of a tree with ( )1 2 1t t ti i+ + + − −  unused branches with 

1 2Mi t t ti= + + +  the number of 1’s in spine i. As long as each Mi is greater 
than (i − 1) node i can be added to the spine. If any Mi becomes equal to (i − 1) 
then nodes 1 to i are a head of L consisting of its first i tuples. Since L cannot 
have such a head, this cannot happen. So, spine N is produced and has  

( )1 2 1t t tN N r+ + + − − = , unused branches.   
Each of the nj sequences represent a subtree, 1 < j < r, and the first node of the 

jth subtree can be made the node to which the jth unused branch in spine N 
comes into. This effectively “hangs” the jth subtree from the jth unused branch, 
in preorder order. This means that the original invalid sequence was rotation r 
of the tree just created. Hence, every invalid sequence is one of the n − 1 rota-
tions of a valid sequence. 
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8. There Is a One-to-One Correspondence between n Node  
k-Ary Trees and Valid Sequences 

Spine i is generated by rotation i for 1 < i < n and these spines are all distinct. 
Consequently, the rotations that generated them must be distinct. Since each of 
the n − 1 spines is distinct, the n − 1 rotations that generated them must be dis-
tinct. A valid sequence generates spine n, which is the tree itself so each tree’s 
spine n must be distinct. This establishes a one-to-one correspondence between 
n node k-ary trees and valid sequences.  

9. Conclusions 

This confirms the two facts referred to earlier. The procedure described in the 
lemma allows us to construct the n node k-ary tree corresponding to any n node 
k-ary sequence and to do it in O(nk) time. 

To generate an n node k-ary tree at random, merely modify the algorithm in 
[9] so n − 1 integers are selected in step 1, let them determine where the n − 1 1’s 
are placed in the n k-tuples to give an n node k-ary sequence, and use our con-
struction specified in the lemma to find the unique tree it produces. Since all the 
sequences are equally likely to be produced in step 2 and each tree will be pro-
duced by an equal number of sequences, this modification generates an n node 
k-ary tree at random. It takes O(nk) time and uses integers no larger than kn. 
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