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Abstract 
This work presents the complexity that emerges in a Bertrand duopoly be-
tween two companies in the Greek oil market, one of which is semi-public 
and the other is private. The game uses linear demand functions for differen-
tiated products from the existing literature and asymmetric cost functions 
that arose after approaches using the published financial reports of the two oil 
companies (Hellenic Petroleum and Motor Oil). The game is based on the 
assumption of homogeneous players who are characterized by bounded ra-
tionality and follow an adjustment mechanism. The players’ decisions for each 
time period are expressed by two difference equations. A dynamical analysis 
of the game’s discrete dynamical system is made by finding the equilibrium 
positions and studying their stability. Numerical simulations include bifurca-
tion diagrams and strange attractors. Lyapunov numbers’ graphs and sensi-
tivity analysis in initial conditions prove the algebraic results and reveal the 
complexity and chaotic behavior of the system focusing on the two parame-
ters k1 and k2 (speed of adjustment for each player). The d-Backtest method is 
applied through which an attempt is made to control the chaos that appears 
outside the stability space in order to return to the locally asymptotically sta-
ble Nash equilibrium for the system. 
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1. Introduction 

The Cournot’s game was modified in 1883 by the French mathematician Joseph 
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Louis Francois Bertrand. He suggested that the players (sellers) actually choose 
prices rather than the production quantities. The basic premise of the Bertrand 
model originally is that all players make decisions in a naive way so that in every 
step, each player assumes the last values were taken by the competitors without 
an estimation of their future reactions. However, such an assumption is very un-
likely under the conditions of the real market, since not all players share naive 
beliefs. Some of the authors proposed different approaches to firm behavior, 
considering duopolies under homogeneous expectations and found a variety of 
complex dynamics in their games, such as the appearance of strange attractors 
[1]-[11]. Also, models with heterogeneous agents were studied [2] [12]-[23]. 

The producers in the real market behave without knowing the entire demand 
function, though it is possible that they have a perfect knowledge of technology, 
represented by the cost function. Here it is more likely that firms employ some 
local estimate of the demand. This issue has been previously analyzed [24]-[31]. 
Bounded rational players (sellers) update their strategies based on discrete-time 
periods using a local estimate of the marginal profit. With such a local adjustment 
mechanism, the players are not requested to have a complete knowledge of the 
demand and cost functions [11] [13] [32] [33]. 

The present paper is a partial approach to the authors’ main ongoing research 
objective, which is the emergence of complexity in various oligopoly models as 
well as its control. In this study, the dynamics of a Bertrand-type duopoly game 
with differentiated goods where both firms behave with homogeneous expecta-
tion strategies with asymmetric cost functions that are resulted from the regres-
sion analysis using their published financial reports. In addition to the differen-
tiation of the cost functions for the two players, there is another assumption that 
the composition of two companies is different and more specifically that the first 
one is a private company and the second is public by a percentage (semi-public). It 
is shown that the model gives more complex, chaotic and unpredictable trajecto-
ries as a consequence of the change in the bounded rational players’ speed of ad-
justment (parameter k). The paper is organized as follows: in Section 2, the dy-
namics of the duopoly game with homogeneous expectations, differentiated prod-
ucts, linear demand and asymmetric cost functions for two players are analyzed. 
Both players are set as bounded rationality. The existence and the local stability 
of the equilibrium positions are studied; in Section 3, numerical simulations are 
used to verify the algebraic results of Section 2, we show the complex dynamics 
via graphing strange attractors, computing Lyapunov numbers, and sensitive de-
pendence on initial conditions. Finally, in Section 4, the application of the d-Back- 
test in this duopoly game is presented as an attempt to control the chaos of the 
discrete dynamical system that appears. 

2. The Game 
2.1. The Construction of the Game 

The game is based on the assumption that two homogeneous players participate 
in it and more specifically it is considered that they decide their products’ prices 
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in a rational way following an adjustment mechanism (bounded rational play-
ers). They produce differentiated goods and offer them on a common market at 
discrete time periods 1,2,t =  . At each period t, each company must form an 
expectation of the rival’s strategy in the next time period in order to determine 
the corresponding profit-maximizing prices for period t + 1. With q1, q2 are 
symbolized the production quantities of two players. It is considered that the 
preferences of consumers represented by the equation: 

( ) ( ) ( )2 2
1 2 1 2 1 2 1 1

1, 2
2

U q q q q q q d q qα= + − + + ⋅ ⋅ ⋅              (1) 

where α > 0 is a positive parameter which expresses the market size and 
( )1,1d ∈ −  is the parameter that reveals the differentiation degree between two 

players’ products. Explaining the values of the differentiation parameter d, when 
it takes the maximum positive value and d = 1, then each product is a substitute 
product for the other, since the products are homogeneous. It is understood that 
for positive values of the parameter d, the larger the value, the less diversification 
there is between two products. On the other hand, negative values of this para-
meter describe that both products are complimentary and when d = –1, then the 
phenomenon of full competition between the two companies is appeared. The 
inverse demand functions (as functions of quantities) coming from the max-
imizing of Equation (1) are given by the following equations: 

( )1 1 2 1 2,p q q q d qα= − − ⋅  and ( )2 1 2 2 1,p q q q d qα= − − ⋅         (2) 

Calculating the direct demand functions (as functions of prices p1 and p2) it 
gives the equations: 

( ) ( ) 1 2
1 1 2 2

1
,

1
d p d p

q p p
d

α − − + ⋅
=

−
 and ( ) ( ) 2 1

2 1 2 2

1
,

1
d p d p

q p p
d

α − − + ⋅
=

−
 (3) 

In this work, data were collected from the financial reports of two companies. 
The data related to sales quantities in thousands of metric tons (k∙MT) and the 
total revenue in millions of euro (m∙€) for each quarter of the years from 2011 to 
2020. With this data and using regression analysis an attempt is made to ap-
proach the form of the cost function of each company. According to this analysis 
it can be assumed that the cost function of the first player is quadratic and of the 
second player is linear1. The cost functions approaches are shown in Figure 1 
(Motor Oil Group) and Figure 2 (Hellenic Petroleum Group).  

It is supposed that the cost function of the first player (Motor Oil Group) is: 

( ) 2
1 1 1 1 2 1 3C q c q c q c= ⋅ + ⋅ +                    (4) 

with 1 2 30, 0, 0c c c> ≥ ≥  and 2
2 1 34c c c≤ ⋅ ⋅  (quadratic cost’s conditions) and 

the cost function of the second player (Hellenic Petroleum Group) is supposed 
as linear: 

 

 

1The coefficients of determination of the regressions are relatively small 0.51 and 0.39 respectively. 
This is due to the fact that the cost functions of the companies depend on many unpublished factors. 
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Figure 1. Quadratic cost function approaching of the player 1 (motor oil group). 

 

 
Figure 2. Linear cost function approaching of the player 2 (Hellenic petroleum group). 

 

( )2 2 4 2 5C q c q c= ⋅ +                      (5) 

where 4 0c >  and 5 0c ≥  (linear cost’s conditions). 
With these assumptions the profits of the two firms are given by: 

( ) ( )

( ) ( ) ( )
1 1 2 1 1 1 1

2
1 2 1 2

1 2 1 32 2

,

1 1
1 1

p p p q C q

d p d p d p d p
p c c c

d d
α α

Π = ⋅ −

− − + ⋅ − − + ⋅ 
= − ⋅ − ⋅ − − − 

   (6) 

and: 

( ) ( ) ( ) ( ) 2 1
2 1 2 2 2 2 2 2 4 52

1
,

1
d p d p

p p p q C q p c c
d

α − − + ⋅
Π = ⋅ − = − ⋅ −

−
   (7) 

Then the marginal profits at the point of the strategy space are given by: 

( )
( ) ( ) ( )

( ) ( )

2 21
1 2221

2 2
1 1 1 2

1 1 1 2 1
1

2 1 1 2

d d c c d
p d

d c p d d c p

α
∂Π = ⋅ − ⋅ − + + −∂ −

− − + ⋅ + ⋅ − + ⋅ 

          (8) 

and: 

( ) 4 2 12
2

2

1 2
1

d c p d p
p d

α ⋅ − + − + ⋅∂Π
=

∂ −
                (9) 

The Consumer Surplus (CS) is calculated, because it is contained in the social 
welfare that the second player cares about a percentage of it and it is given by the 
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equation: 

( )2 2
1 2 1 1 2 2 1 2 1 2

1 1( , ) 1
2 2

CS U q q p q p q q q d q q= − ⋅ − ⋅ = + + + ⋅ ⋅       (10) 

The social welfare (W) is given by: 

( )1 2 1 2,W q q CS= +Π +Π                     (11) 

The second player the Hellenic Petroleum Group (semi-public firm) cares 
about the maximization of a function that contains a percentage combination 
between the social welfare and his profit function (generalized relative profit 
function). This utility function V2 is described by the following equation: 

( ) ( ) ( ) ( )2 1 2 1 2 2 1 2, , 1 ,V q q s W q q s q q= ⋅ + − ⋅Π             (12) 

where [ ]0,1s∈  and the marginal function of V2 is given by: 

( ) ( )
( )

( ) ( )
( )

( )

( )

2 1 2

2 2 2 2

1 2
1 22

2 1 1 22
2 22

4 2 1
2

1
1 2

1

1
1

11

1 2
1

V CSs
p p p p

d p d p
s c d

d

d p d p d p c
d d

dd

d c p d p
d

α

α

α

 ∂ ∂Π ∂Π∂
= ⋅ + + ∂ ∂ ∂ ∂ 

 ⋅ − − + ⋅= ⋅ − + ⋅ ⋅
 −

⋅ − − + ⋅ ⋅ − + + − ⋅ +
−− 

⋅ − + − + ⋅
+

−

     (13) 

The following substitutions are defined to simplify the mathematical calcula-
tions: 
 ( ) ( ) ( )2 2

1 21 1 2 1A d d c c dα= ⋅ − ⋅ − + + ⋅ −  
 ( )2

12 1B d c= − +  
 ( )2

11 2C d d c= ⋅ − +  
 ( ) ( ) ( ) ( ) ( ) ( )2 2

4 2 11 1 1 1 2 1D d d s d c s c d s d d cα α= − ⋅ − ⋅ − + − ⋅ − ⋅ ⋅ − ⋅ − ⋅ ⋅  
 ( ) ( ) ( )2 2

11 2 1E s d d c d s d= ⋅ ⋅ − + + − ⋅ +  
 ( ) ( )2 2

12 1 2F s c d d s= ⋅ ⋅ + − ⋅ +  
Taking into account these assumptions the partial derivatives of Π1 and V2 

take the following forms: 

( )
1 1 2

221 1

A B p C p
p d

∂Π − ⋅ + ⋅
=

∂ −
 and 

( )
2 1 2

222 1

V D E p F p
p d

∂ + ⋅ − ⋅
=

∂ −
 

Both players follow the same strategy to decide their production quantities 
(homogeneous players) and they are characterized as bounded rational players. 
According to the existing literature it means that the first private company de-
cides its price following a mechanism that is described by the equation: 

( ) ( )
( )

1 1 1
1

1 1

1p t p t
k

p t p
+ − ∂Π

= ⋅
∂

                   (14) 
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and the second player (semi-public company) who is also a bounded rational 
player following a similar mechanism that is given by the equation: 

( ) ( )
( )

2 2 2
2

2 2

1p t p t Vk
p t p
+ − ∂

= ⋅
∂

                   (15) 

Through this mechanism each player increases his level of adaptation when 
his marginal utility is positive or decreases his level when his marginal utility is 
negative, where k is considered as the speed of adjustment for two players. The 
parameter ki is positive (ki > 0 with i = 1, 2) and gives the extend variation price 
of each i player is following a given signal. The dynamical system of the players 
is described by: 

( ) ( ) ( )

( ) ( ) ( )

1
1 1 1 1

1

2
2 2 2 2

2

1

1

p t p t k p t
p
Vp t p t k p t
p

∂Π + = + ⋅ ⋅ ∂
 ∂ + = + ⋅ ⋅
 ∂

              (16) 

The dynamical analysis of this system Equation (16) that is contained at the 
next sub-section is focusing on the parameters k1 and k2. 

2.2. Dynamical Analysis 

The dynamical analysis of the discrete dynamical system of Equation (16) in-
volves the finding of equilibrium positions and the studying their stability. The 
ultimate goal of this algebraic study is to formulate a proposition that will be the 
stability condition of the Nash Equilibrium position. These algebraic results are 
verified and visualized doing some numerical simulations using the program of 
Mathematica. 

2.2.1. The Equilibrium Positions 
The equilibrium positions of the dynamical system Equation (16) are the non-
negative solutions of the following algebraic system: 

* 1
1

1

* 2
2

2

0

0

p
p
Vp
p

∂Π ⋅ = ∂
 ∂ ⋅ =
 ∂

                            (17) 

which is obtained by setting: ( ) ( ) *1i i ip t p t p+ = =  for i = 1, 2. 
 If * *

1 2 0p p= = , then the equilibrium position is the point: 

( )0 0,0E =                              (18) 

 If *
1 0p =  and 2

2

0V
p
∂

=
∂

, then *
2

Dp
F

=  and the equilibrium position is the 

point: 

1 0, DE
F

 =  
 

                            (19) 

https://doi.org/10.4236/am.2021.1211070


G. Sarafopoulos et al. 
 

 

DOI: 10.4236/am.2021.1211070 1103 Applied Mathematics 
 

 If *
2 0p =  and 1

1

0
p

∂Π
=

∂
, then *

1
Ap
B

=  and the equilibrium position is the 

point: 

2 ,0AE
B

 =  
 

                           (20) 

 If then the following system is obtained: 
* *
1 2
* *
1 2

0

0

A B p C p

D E p F p

 − ⋅ + ⋅ =


+ ⋅ − ⋅ =
                       (21) 

and the nonnegative solution of this algebraic gives the Nash Equilibrium posi-
tion ( )* *

* 1 2,E p p=  where: 

*
1

A E B Dp
B F C E
⋅ + ⋅

=
⋅ − ⋅

                         (22) 

and: 

( )
( )

*
2

C A E B DAp
B B B F C E

⋅ ⋅ + ⋅
= +

⋅ ⋅ − ⋅
                     (23) 

From the three equilibrium positions E1, E2 and *E , whereas A, B, C, D, E, 
F > 0 and * *

1 2, 0p p > , the following conditions arise: 
0A E B D⋅ + ⋅ >                          (24) 
0B F C E⋅ − ⋅ >                          (25) 

2.2.2. Stability of Equilibrium Positions 
To study the stability of the equilibrium positions the Jacobian matrix of the dy-
namical system Equation (16) is needed, which is the matrix: 

( ) 1 2

1 2

* *
1 2, p p

p p

f f
J p p

g g
 

=  
  

                     (26) 

where: 

( )

( )

1
1 2 1 1 1

1

2
1 2 2 2 2

2

,

,

f p p p k p
p
Vg p p p k p
p

∂Π
= + ⋅ ⋅

∂
∂

= + ⋅ ⋅
∂

                   (27) 

and as a result the Jacobian matrix of game’s discrete dynamical system Equa-
tion (16) is the following matrix: 

( )

2 2
* *1 1 1

1 1 1 12
1 1 21* *

1 2 2 2
* *2 2 2

2 2 2 2 2
2 1 2 2

1
,

1

k p k p
p p pp

J p p
V Vk p k p

p p p p

  ∂Π ∂ Π ∂ Π
+ ⋅ + ⋅ ⋅ ⋅  

∂ ∂ ∂∂  =   ∂ ∂Π ∂ ⋅ ⋅ + ⋅ + ⋅  ∂ ∂ ∂ ∂  

    (28) 

For the E0 the Jacobian matrix becomes as: 

( )
( )

( ) ( )

( )1
1 0

1

2
2 0

2

1
11 0

1
0

12
2 0

2

1 0
0

00 1

G k E
p

V
H k E

p

k E
p G

J E
V Hk E
p

∂Π
= + ⋅

∂

∂
= + ⋅

∂

∂Π + ⋅ ∂   = =   ∂  + ⋅ ∂ 

    (29) 
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with Tr = G + H and Det = G ⋅ H. 
The characteristic equation of J(E0) is the following: 

( ) ( )2
0 0 0r TrJ E r DetJ E− ⋅ + =  

( ) ( ) ( )2 0 0r G H r G H r G r H⇔ − + ⋅ + ⋅ = ⇔ − ⋅ − =  

The eigenvalues of J(E0) are: 

( )1 1 22
1

1

Ar G k
d

= = + ⋅
−

 and 
( )2 2 22

1
1

Dr H k
d

= = + ⋅
−

 

As it is clearly seems that 1 2, 1r r > , because A, D > 0. It means that the equi-
librium position E0 can be characterized as unstable. 

For the position E1 the Jacobian matrix becomes as: 

( )
( )

( ) ( )

( )1
1 1

1

2
* 2

2 2 2
2

1
11 1

1
1 2 2

* *2 2 1
2 2 1 2 2 12

2 1 2

1 0
0

1

I k E
p

V
K k p

p

k E
p I

J E
J KV Vk p E k p E

p p p

∂Π
= + ⋅

∂

∂
= + ⋅ ⋅

∂

∂Π + ⋅ ∂   = =   ∂ ∂  ⋅ ⋅ + ⋅ ⋅ 
∂ ∂ ∂  

 (30) 

with Tr = I + K and Det = I ⋅ K. 
From the characteristic equation of J(E1), the nonnegative eigenvalues are 

found as: 

( )
*
2

1 1 22
1

1

A C pr I k
d

+ ⋅
= = + ⋅

−
 and 

*
2

2 2 21
1
F pr K k

d
⋅

= = − ⋅
−

 

Since, A, C > 0, it’s clearly seems that 1 1r >  and the E1 equilibrium position 
is unstable. 

For the position E2 the Jacobian matrix becomes as: 

( )
( ) ( )

( ) ( )

( )
2

* 1
1 1 22

1

2
2 2

2

2 2
* *1 1 11 1 2 1 1 22

1 21
2

12
2 2

2

1

0
0 1

L k p E
p

V
N k E

p

k p E k p E
L Mp pp

J E
NVk E

p

∂ Π
= + ⋅ ⋅

∂

∂
= + ⋅

∂

 ∂ Π ∂ Π
+ ⋅ ⋅ ⋅ ⋅ ∂ ∂∂   = =   ∂  + ⋅ 

∂  

(31) 

with Tr = L + N and Det = L ⋅ N. 
From the characteristic equation of J(E2), the nonnegative eigenvalues are 

found as: 

( )
*
1

1 1 22
1

1

B pr L k
d

⋅
= = − ⋅

−
 and 

( )
*
1

2 2 22
1

1

D E pr N k
d

+ ⋅
= = + ⋅

−
 

Since, D, E > 0, it’s clearly seems that 2 1r >  and the E2 equilibrium position 
is also unstable. 

For the Nash equilibrium *E  the Jacobian matrix becomes as: 

( )

2 2
* *1 1

1 1 1 12
1 21

* 2 2
* *2 2

2 2 2 2 2
2 1 2

1

1

k p k p
p pp

J E
V Vk p k p

p p p

 ∂ Π ∂ Π
+ ⋅ ⋅ ⋅ ⋅ ∂ ∂∂ =  ∂ ∂ ⋅ ⋅ + ⋅ ⋅

∂ ∂ ∂  

            (32) 
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with: 
2 2

* *1 2
1 1 2 22 2

1 2

2 VTr k p k p
p p

∂ Π ∂
= + ⋅ ⋅ + ⋅ ⋅

∂ ∂
                (33) 

and: 
2 2 2 2

* * * *1 2 1 2
1 1 2 2 1 2 1 22 2

1 2 2 11 2

1 1 V VDet k p k p k k p p
p p p pp p

  ∂ Π ∂ ∂ Π ∂
= + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅  

∂ ∂ ∂ ∂∂ ∂  
 (34) 

To study the stability of Nash equilibrium three conditions are used that the 
equilibrium position is locally asymptotically stable when they are satisfied si-
multaneously [34] [35]: 

(i) 1 0
(ii)   1 0
(iii) 1 0

Det
Tr Det
Tr Det

− >
− + >
+ + >

                       (35) 

It’s easy to find that the first inequality (i) becomes as: 

( ) ( ) ( )2* * * * 2
1 2 1 2 1 1 2 2

1 0

1 0

Det

k k p p B F C E k p B k p F d

− >

⇔ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ − <
  (36) 

Also, the inequality (ii) gives: 

( )
* *

1 2 1 1 42

1 0

0
1

Tr Det
B F C Ek k p p

d

− + >
⋅ − ⋅

⇔ ⋅ ⋅ ⋅ ⋅ >
−

                  (37) 

and it’s always satisfied because of Equation (22). 
Finally, the inequality (iii) becomes as: 

( ) ( ) ( )
( )

2* * * * 2
1 2 1 2 1 1 2 2

42

1 0

2 1

4 1 0

Tr Det

k k p p B F C E k p B k p F d

d

+ + >

⇔ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ −

+ − >

  (38) 

Proposition: 
The Nash equilibrium of the discrete dynamical system Equation (16) is lo-

cally asymptotically stable if: 

( ) ( ) ( )2* * * * 2
1 2 1 2 1 1 2 2 1 0k k p p B F C E k p B k p F d⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ − <  

and: 

( ) ( ) ( )
( )

2* * * * 2
1 2 1 2 1 1 2 2

42

2 1

4 1 0

k k p p B F C E k p B k p F d

d

⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ −

+ − >
 

where: 

*
1

A E B Dp
B F C E
⋅ + ⋅

=
⋅ − ⋅

 and 
( )
( )

*
2

C A E B DAp
B B B F C E

⋅ ⋅ + ⋅
= +

⋅ ⋅ − ⋅
 

3. Numerical Simulations 

In this section the previous algebraic results are verified and the chaotic trajecto-
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ries that appear when the parameters k1 and k2 take values outside the stability 
space are visualized. At first the stability region between the parameters k1 and k2 
when all other game’s parameters take fixed values is plotted. Numerical simula-
tions are made for the common speed of adjustment of two players (k1 = k2). 
Plotting the bifurcation diagrams of p1 and p2 with respect to the common pa-
rameter k (speed of adjustment), the stability interval is verified and the chaotic 
evolution through period doubling is highlighted. Strange attractors and Lya-
punov numbers’ graphs reveal the chaotic behavior of the system when the pa-
rameter k takes larger values making the system unpredictable. Also, the sensi-
tivity analysis in initial conditions [36] is made for these large values of the pa-
rameter k showing that only a small change on the coordinates of the system’s 
initial conditions can cause large differences in system’s behavior giving an evi-
dence for chaos.  

3.1. Stability Space between k1 and k2 

The stability space between the two parameters k1 and k2 setting fixed values to 
the other parameters can created using the stability conditions of Proposition. 
These two inequalities Equation (36) and Equation (38) depend on the parame-
ters α, c1, c2, c4, d and s. Specific values are needed to be chosen for these para-
meters. For example the values of the parameters α = 5, c1 = 1, c2 = 0.5, c4 = 1 
and d = 0.5 are chosen. Taking into account that the percentage of the Greek 
State that participates in the Hellenic Petroleum Group is 35.5% it is necessary to 
set the value of 0.355 to the parameter s, which expresses this percentage. As a 
result the stability conditions take the following more specific forms: 

1 2 1 232.69 4.21 3.18 0k k k k⋅ ⋅ − ⋅ − ⋅ <                (39) 

1 2 1 232.69 8.42 6.36 1.266 0k k k k⋅ ⋅ − ⋅ − ⋅ + >             (40) 

Figure 3 shows the stability region between the parameters k1 and k2 as a re-
sult of Equation (39) and Equation (40). 
 

 
Figure 3. Stability region between the parameters k1 (horizontal axis) and k2 (vertical 
axis) for α = 5, c1 = 1, c2 = 0.5, c4 = 1, d = 0.5 and s = 0.355. 
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3.2. Focusing on the Common Speed of Adjustment k (k1 = k2) 

At first, setting the previous specific values of the parameters α = 5, c1 = 1, c2 = 
0.5, c4 = 1, d = 0.5 and s = 0.355 the Nash Equilibrium becomes as: 

*
1 2.14p   and *

2 2.91p   ( ) ( )* *
* 1 2 *, 2.14,2.91E p p E⇒ ≡       (41) 

and for the stability conditions it means that the parameter k must take values 
into the interval: 

( )0,0.097k ∈                         (42) 

This algebraic result is verified by the bifurcation diagrams of p1 and p2 with 
respect to the parameter k (Figure 4 and Figure 5). As it seems there is a locally 
asymptotically stable orbit until the value of 0.097 for the parameter k and for 
larger values of the parameter k the system’s behavior becomes chaotic and un-
predictable. 
 

 
(a) 

 
(b) 

Figure 4. Bifurcation diagrams with respect to the parameter k against the variables p1 (a) 
and p2 (b) with 400 iterations of the map Equation (16) for α = 5, c1 = 1, c2 = 0.5, c4 = 1, d 
= 0.5 and s = 0.355. 

https://doi.org/10.4236/am.2021.1211070


G. Sarafopoulos et al. 
 

 

DOI: 10.4236/am.2021.1211070 1108 Applied Mathematics 
 

This chaotic trajectory can create strange attractors (Figure 6) for higher val-
ues of the parameter k like k = 0.14 (outside the stability space). Also, computing 
the Lyapunov numbers (Figure 7) for this value of the parameter k (k = 0.14) 
and setting the same fixed values for the other parameters, it seems that they are 
getting over the value of 1 as an evidence for the chaotic trajectory.  

As it is known a characteristic property of chaotic trajectory is that the system 
becomes sensitive in initial conditions, which allows only a small change on the 
coordinates of initial conditions to change completely the system’s behavior. For 
example, choosing two different initial conditions (0.1, 0.1) and (0.101, 0.1) after 
a small change at the p1—coordinate and plotting the time series of the system 
(Figure 8 and Figure 9) it seems that at the beginning the time series are indis-
tinguishable, but after a number of iterations, the difference between them builds 
up rapidly. 
 

 
Figure 5. The two bifurcation diagrams of Figure 4 in one. 

 

 
Figure 6. Phase portrait (strange attractor) of the orbit of (0.1, 0.1) with 8000 iterations of 
the map Equation (16) for α = 5, c1 = 1, c2 = 0.5, c4 = 1, d = 0.5, s = 0.355 and k = 0.14. 
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Figure 7. Lyapunov numbers of the orbit of (0.1, 0.1) with 8000 iterations of the map 
Equation (16) for α = 5, c1 = 1, c2 = 0.5, c4 = 1, d = 0.5, s = 0.355 and k = 0.14. 
 

 
(a) 

 
(b) 

Figure 8. Sensitive dependence on initial conditions for p1—coordinate plotted against 
the time: the orbit of (0.1, 0.1) (a) and the orbit of (0.101, 0.1) (b) of the system Equation 
(16) for α = 5, c1 = 1, c2 = 0.5, c4 = 1, d = 0.5, s = 0.355 and k = 0.14. 
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Figure 9. The two bifurcation diagrams of Figure 8 in one. 

4. Chaos Control Applying the d-Backtest Method 

The d-Backtest is a parameters’ optimization method developed initially for fi-
nancial applications [37] [38] [39], further more it has also been utilized in the 
research of the chaotic behavior of a duopoly, too [40]. In both cases the method 
attempts to identify backtesting periods that are optimal for parameter selection 
for a future period. for this application, the method utilizes various length veri-
fication periods and fixed length validation periods for the evaluation of the 
backtesting periods, using various methods that look into metrics such as profit 
factors, profits, extended profit margin and more [39]. This research uses the 
d-Backtest method for selecting values for k, dynamically for each player [40]. 

4.1. The Application of the d-Backtest Method 

In this research the d-Backtest method is used for selecting values of the para-
meter k, dynamically and separately for each player [40]. Each player’s goal is to 
decrease the deviation in prices by choosing appropriate values for ki in each 
step with the help of the d-Backtest method. In this case the system’s difference 
equations were different as the second player takes into account a percentage of 
the social welfare that it is containing in his utility function. Apart from the above 
differentiation, the use of d-Backtest remains the same with the metric being the 
root mean square deviation of the prices over a period: 

( )2
1

1

n
ii x x

RMSD
n

=
−

=
−

∑                     (43) 

This metric of variability is used for evaluating groups of backtesting periods 
by two families of methods, a simple average and an exponential average me-
thod. Each method family contains variations were the occurrences of backtest-
ing periods are taken into account or the verification periods are longer than 1 
and 2 steps or a combination of these two variations. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. (a) Price values with initial k = 0.147 for each player, (b) k values chosen by 
d-Backtest with initial k = 0.147 for each player, (c) Backtesting periods selecting by the 
d-Backtest method with initial k = 0.147 for each player, (d) Phase diagram of price val-
ues with initial k = 0.147 for each player. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. (a) Price values with initial k = 0.3 for each player, (b) k values chosen by 
d-Backtest with initial k = 0.3 for each player, (c) Backtesting periods selecting by the 
d-Backtest method with initial k = 0.3 for each player, (d) Phase diagram of price values 
with initial k = 0.3 for each player. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. (a) Price values with initial k = 0.7 for each player, (b) k values chosen by 
d-Backtest with initial k = 0.7 for each player, (c) Backtesting periods selecting by the 
d-Backtest method with initial k = 0.7 for each player, (d) Phase diagram of price values 
with initial k = 0.7 for each player. 
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Each player calculates the backtesting prices separately from each other, using 
the others’ past prices in the formulas calculating their prices over past periods. 
The prices have to be bound to a lowest value of 0.001 so that no negative prices 
appear. For each step each player calculates the prices for all 30 backtesting pe-
riods and all possible ki values in [0.001, 1.0] with a step of 0.001. Then, they 
compute the variability metric for each period and ki value and provide the data 
to the d-Backtesting method that will choose the right method for sorting the 
baktesting periods, then the right baktesting period and then the right ki value 
for the next step. Each player starts the game with an initial price of 0.1 and a 
value of 0.1 for the parameter k for the first 10 steps, until there are enough data 
for the d-Backtest method to work with after that.  

4.2. The d-Backtest Method’s Results 

Games for initial values of k as 0.147 (Figure 10), 0.3 (Figure 11) and 0.7 
(Figure 12) and 500 steps for each one were ran. The results are shown in price 
values, k values and backtesting periods through the following figures:  

The results resemble to those of Sarafopoulos et al. [40]. In every game the 
price manage to get closer to the theoretical equilibrium regardless of the initial 
values of k. this also happens regardless of the fact that the values chosen for k 
are not always in the stability zone or most of the time not in stability zone. The 
k values for the second player are more diverse than those of the first player, 
with the value of 0.5 appearing often as the d-Backtest method chooses the mid-
dle value when there is not different in the value space examined. The backtest-
ing periods are mostly chosen with values of 1 or 2 which happens because the 
calculated variability is usually lower in small backtesting periods. 

5. Conclusion 

In this paper, the dynamics of a differentiated Bertrand duopoly with homoge-
neous expectations, linear demand and asymmetric cost functions (regression 
analysis) are analyzed. The different cases, in which one of the players is not a 
completely private company and care about a percentage of the social welfare 
due to the participation of the public capital into it, are studied. By assuming that 
at each time period, each firm maximizes its expected utility function Π1 (for the 
first player) or V2 (for the second player) under bounded rationality expectation, 
a discrete dynamic system was obtained. The existence and stability of equilibrium 
of this system are studied. It is numerically shown that the model gives chaotic 
and unpredictable trajectories. The main result is that higher values of the speed 
of adjustment may destabilize the Bertrand-Nash equilibrium. Finally, in cases 
where the players choose these values of the parameter k for which, as algebrai-
cally and graphically proved, the discrete dynamical system of the Bertrand-type 
model behaves chaotically, the d-Backtest method was applied, giving dynamic 
values for the k parameter to each player for each time period, through which 
the system returns in locally asymptotically stable Nash Equilibrium. 

https://doi.org/10.4236/am.2021.1211070


G. Sarafopoulos et al. 
 

 

DOI: 10.4236/am.2021.1211070 1115 Applied Mathematics 
 

Acknowledgements 

The authors thank the anonymous reviewers for interesting remarks and useful 
suggestions. 

Funding 

This research is carried out/funded in the context of the project “Nonlinear Dy-
namics in an Oligopoly Market: Chaotic Behavior, Complexity Control Using 
Machine Learning and Application in an Oligopoly of the Greek Market” (MIS 
5049905) under the call for proposals “researchers’ support with an emphasis on 
young researchers—2nd cycle”. The project is co-financed by Greece and the Euro-
pean Union (European Social Fund—ESF) by the Operational Programme “Hu-
man Resources Development, Education and Lifelong Learning 2014-2020”. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Agiza, H.N. (1999) On the Analysis of Stability, Bifurcation, Chaos and Chaos Con-

trol of Kopel Map. Chaos, Solitons & Fractals, 10, 1909-1916.  
https://doi.org/10.1016/S0960-0779(98)00210-0 

[2] Agiza, H.N., Hegazi, A.S. and Elsadany, A.A. (2002) Complex Dynamics and Syn-
chronization of Duopoly Game with Bounded Rationality. Mathematics and Com-
puters in Simulation, 58, 133-146. https://doi.org/10.1016/S0378-4754(01)00347-0 

[3] Agliar, A., Gardini, L. and Puu, T. (2005) Some Global Bifurcations Related to the 
Appearance of Closed Invariant Curves. Mathematics and Computers in Simula-
tion, 68, 201-219. https://doi.org/10.1016/j.matcom.2004.12.003 

[4] Agliari, A., Gardini, L. and Puu, T. (2006) Global Bifurcations in Duopoly When the 
Cournot Point Is Destabilized via a Subcritical Neimark Bifurcation. International 
Game Theory Review, 8, 1-20. https://doi.org/10.1142/S0219198906000758 

[5] Bishi, G.I. and Kopel, M. (2001) Equilibrium Selection in a Nonlinear Duopoly Game 
with Adaptive Expectations. Journal of Economic Behavior & Organization, 46, 73-100.  
https://doi.org/10.1016/S0167-2681(01)00188-3 

[6] Kopel, M. (1996) Simple and Complex Adjustment Dynamics in Cournot Duopoly 
Models. Chaos, Solitons & Fractals, 7, 2031-2048.  
https://doi.org/10.1016/S0960-0779(96)00070-7 

[7] Puu, T. (1998) The Chaotic Duopolists Revisited. Journal of Economic Beahavior & 
Organization, 33, 385-394. https://doi.org/10.1016/S0167-2681(97)00064-4 

[8] Puu, T. (2005) Complex Oligopoly Dynamics. In: Lines, M., Ed., Nonlinear Dynami-
cal Systems in Economics, Springer, New York, 165-186.  
https://doi.org/10.1007/3-211-38043-4_6 

[9] Sarafopoulos, G. (2015) On the Dynamics of a Duopoly Game with Differentiated 
Goods. Procedia Economics and Finance, 19, 146-153.  
https://doi.org/10.1016/S2212-5671(15)00016-7 

[10] Sarafopoulos, G. (2015) Complexity in a Duopoly Game with Homogeneous Play-

https://doi.org/10.4236/am.2021.1211070
https://doi.org/10.1016/S0960-0779(98)00210-0
https://doi.org/10.1016/S0378-4754(01)00347-0
https://doi.org/10.1016/j.matcom.2004.12.003
https://doi.org/10.1142/S0219198906000758
https://doi.org/10.1016/S0167-2681(01)00188-3
https://doi.org/10.1016/S0960-0779(96)00070-7
https://doi.org/10.1016/S0167-2681(97)00064-4
https://doi.org/10.1007/3-211-38043-4_6
https://doi.org/10.1016/S2212-5671(15)00016-7


G. Sarafopoulos et al. 
 

 

DOI: 10.4236/am.2021.1211070 1116 Applied Mathematics 
 

ers, Convex, Log-Linear Demand and Quadratic Cost Functions. Procedia Economics 
and Finance, 33, 358-366. https://doi.org/10.1016/S2212-5671(15)01720-7 

[11] Zhang, J., Da, Q. and Wang, Y. (2009) The Dynamics of Bertrand Model with Bounded 
Rationality. Chaos, Solitons and Fractals, 39, 2048-2055.  
https://doi.org/10.1016/j.chaos.2007.06.056 

[12] Agiza, H.N. and Elsadany, A.A. (2003) Nonlinear Dynamics in the Cournot Duopoly 
Game with Heterogeneous Players. Physica A, 320, 512-524.  
https://doi.org/10.1016/S0378-4371(02)01648-5 

[13] Agiza, H.N. and Elsadany, A.A. (2004) Chaotic Dynamics in Nonlinear Duopoly 
Game with Heterogenous Players. Applied Mathematics and Computation, 149, 
843-860. https://doi.org/10.1016/S0096-3003(03)00190-5 

[14] Haan, W.J.D. (2001) The Importance of the Number of Different Agents in a Hete-
rogeneous Asset—Pricing Model. Journal of Economic Dynamic and Control, 25, 
721-746. https://doi.org/10.1016/S0165-1889(00)00038-5 

[15] Hommes, C.H. (2006) Heterogeneous Agent Models in Economics and Finance. In: 
Tesfatsion, L. and Judd, K.L., Eds., Handbook of Computational Economics, Agent- 
Based Computational Economics, Vol. 2, Elsevier Science B.V., Amsterdam, 1109-1186.  
https://doi.org/10.1016/S1574-0021(05)02023-X 

[16] Fanti, L. and Gori, L. (2012) The Dynamics of a Differentiated Duopoly with Quan-
tity Competition. Economic Modelling, 29, 421-427.  
https://doi.org/10.1016/j.econmod.2011.11.010 

[17] Gao, Y. (2009) Complex Dynamics in Two Dimensional Noninvertible Map. Chaos 
Solitons & Fractals, 39, 1798-1810. https://doi.org/10.1016/j.chaos.2007.06.051 

[18] Sarafopoulos, G. and Papadopoulos, K. (2017) On a Cournot Duopoly Game with 
Differentiated Goods, Heterogeneous Expectations and a Cost Function Including 
Emission Costs. Scientific Bulletin—Economic Science, 16, 11-22.  
https://econpapers.repec.org/article/ptsjournl/y_3a2017_3ai_3a1_3ap_3a11-22.htm  

[19] Sarafopoulos, G. and Papadopoulos, K. (2019) Complexity in a Bertrand Duopoly 
Game with Heterogeneous Players and Differentiated Goods. In: Sykianakis, N., 
Polychronidou, P. and Karasavvoglou, A., Eds., Economic and Financial Challenges 
for Eastern Europe, Springer, Berlin, 15-26.  
https://doi.org/10.1007/978-3-030-12169-3_2 

[20] Sarafopoulos, G. and Papadopoulos, K. (2020) On a Bertrand Dynamic Game with 
Differentiated Goods, Heterogeneous Expectations and Asymmetric Cost Func-
tions. In: Janowicz-Lomott, M., Łyskawa, K. and Polychronidou, P, Eds., Economic 
and Financial Challenges for Balkan and Eastern European Countries, Springer, 
Berlin, 223-241. https://doi.org/10.1007/978-3-030-39927-6_14 

[21] Tramontana, F. (2010) Heterogeneous Duopoly with Isoelastic Demand Function. 
Economic Modelling, 27, 350-357. https://doi.org/10.1016/j.econmod.2009.09.014 

[22] Zhang, J., Da, Q. and Wang, Y. (2007) Analysis of Nonlinear Duopoly Game with 
Heterogeneous Players. Economic Modelling, 24, 138-148.  
https://doi.org/10.1016/j.econmod.2006.06.007 

[23] Wu, W., Chen, Z. and Ip, W.H. (2010) Complex Nonlinear Dynamics and Control-
ling Chaos in a Cournot Duopoly Economic Model. Nonlinear Analysis: Real World 
Applications, 11, 4363-4377. https://doi.org/10.1016/j.nonrwa.2010.05.022 

[24] Baumol, W.J. and Quandt, R.E. (1964) Rules of Thumb and Optimally Imperfect De-
cisions. American Economic Review, 54, 23-46.  
https://www.jstor.org/stable/1810896  

[25] Singh, N. and Vives, X. (1984) Price and Quantity Competition in a Differentiated 

https://doi.org/10.4236/am.2021.1211070
https://doi.org/10.1016/S2212-5671(15)01720-7
https://doi.org/10.1016/j.chaos.2007.06.056
https://doi.org/10.1016/S0378-4371(02)01648-5
https://doi.org/10.1016/S0096-3003(03)00190-5
https://doi.org/10.1016/S0165-1889(00)00038-5
https://doi.org/10.1016/S1574-0021(05)02023-X
https://doi.org/10.1016/j.econmod.2011.11.010
https://doi.org/10.1016/j.chaos.2007.06.051
https://econpapers.repec.org/article/ptsjournl/y_3a2017_3ai_3a1_3ap_3a11-22.htm
https://doi.org/10.1007/978-3-030-12169-3_2
https://doi.org/10.1007/978-3-030-39927-6_14
https://doi.org/10.1016/j.econmod.2009.09.014
https://doi.org/10.1016/j.econmod.2006.06.007
https://doi.org/10.1016/j.nonrwa.2010.05.022
https://www.jstor.org/stable/1810896


G. Sarafopoulos et al. 
 

 

DOI: 10.4236/am.2021.1211070 1117 Applied Mathematics 
 

Duopoly. The RAND Journal of Economics, 15, 546-554.  
https://doi.org/10.2307/2555525 

[26] Puu, T. (1991) Chaos in Duopoly Pricing. Chaos, Solitons & Fractals, 1, 573-581.  
https://doi.org/10.1016/0960-0779(91)90045-B 

[27] Puu, T. (1995) The Chaotic Monopolist. Chaos, Solitons & Fractals, 5, 35-44.  
https://doi.org/10.1016/0960-0779(94)00206-6 

[28] Westerhoff, F. (2006) Nonlinear Expectation Formation, Endogenous Business Cycles 
and Stylized Facts. Studies in Nonlinear Dynamics and Econometrics, 10, Article 
No. 4. https://doi.org/10.2202/1558-3708.1324 

[29] Naimzada, A.K. and Ricchiuti, G. (2008) Complex Dynamics in a Monopoly with a 
Rule of Thumb. Applied Mathematics and Computation, 203, 921-925.  
https://doi.org/10.1016/j.amc.2008.04.020 

[30] Asksar, S.S. (2013) On Complex Dynamics of Monopoly Market. Economic Model-
ling, 31, 586-589. https://doi.org/10.1016/j.econmod.2012.12.025 

[31] Askar, S.S. (2014) Complex Dynamic Properties of Cournot Duopoly Games with 
Convex and Log-Concave Demand Function. Operations Research Letters, 42, 85-90.  
https://doi.org/10.1016/j.orl.2013.12.006 

[32] Elsadany, A. and Awad, A.M. (2016) Nonlinear Dynamics of Cournot Duopoly Game 
with Social Welfare. Electronic Journal of Mathematician Analysis and Applica-
tions, 4, 173-191.  
http://math-frac.org/Journals/EJMAA/Vol4(2)_July_2016/Vol4(2)_Papers/16_EJM
AA_Vol4(2)_July_2016_pp_173-191.pdf  

[33] Naimzada, A.K. and Sbragia, L. (2006) Oilgopoly Games with Nonlinear Demand 
and Cost Functions: Two Boundedly Rational Adjustment Processes. Chaos, Soli-
tons & Fractals, 29, 707-722. https://doi.org/10.1016/j.chaos.2005.08.103 

[34] Gandolfo, G. (1997) Economic Dynamics. Springer, Berlin.  
https://www.springer.com/gp/book/9783642038624  

[35] Elaydi, S. (2005) An Introduction to Difference Equations. 3rd Edition, Springer-Verlag, 
New York. 

[36] Kulenovic, M. and Merino, O. (2002) Discrete Dynamical Systems and Difference 
Equations with Mathematica. Chapman & Hall/CRC, London.  
https://doi.org/10.1201/9781420035353 

[37] Vezeris, D., Schinas, C. and Papaschinopoulos, G. (2018) Profitability Edge by Dy-
namic Back Testing Optimal Period Selection Technical Parameters Optimization 
in Trading Systems with Forecasting. Computational Economics, 51, 761-807.  
https://doi.org/10.1007/s10614-016-9640-x 

[38] Vezeris, D., Schinas, C., Kyrgos, T., Bizergianidou, V. and Karkanis, I. (2019) Opti-
mizations of Backtesting Techniques in Automated High Frequency Trading Sys-
tems Using the d-Backtest PS Method. Computational Economics, 56, 975-1054.  
https://doi.org/10.1007/s10614-019-09956-1 

[39] Vezeris, D., Kyrgos, T., Karkanis, I. and Bizergianidou, V. (2020) Automated Trad-
ing Systems’ Evaluation Using d-Backtest PS Method and WM Ranking in Financial 
Markets. Investment Management and Financial Innovations, 17, 198-215.  
https://doi.org/10.21511/imfi.17(2).2020.16 

[40] Sarafopoulos, G., Drimpetas, E., Papadopoulos, K. and Vezeris, D. (2021) Chaotic 
Behavior in Duopoly Market and Application of the d-Backtest Method. 14th Chao-
tic Modeling and Simulation International Conference CHAOS 2021, Athens, 8-11 
June 2021. 

 

https://doi.org/10.4236/am.2021.1211070
https://doi.org/10.2307/2555525
https://doi.org/10.1016/0960-0779(91)90045-B
https://doi.org/10.1016/0960-0779(94)00206-6
https://doi.org/10.2202/1558-3708.1324
https://doi.org/10.1016/j.amc.2008.04.020
https://doi.org/10.1016/j.econmod.2012.12.025
https://doi.org/10.1016/j.orl.2013.12.006
http://math-frac.org/Journals/EJMAA/Vol4(2)_July_2016/Vol4(2)_Papers/16_EJMAA_Vol4(2)_July_2016_pp_173-191.pdf
http://math-frac.org/Journals/EJMAA/Vol4(2)_July_2016/Vol4(2)_Papers/16_EJMAA_Vol4(2)_July_2016_pp_173-191.pdf
https://doi.org/10.1016/j.chaos.2005.08.103
https://www.springer.com/gp/book/9783642038624
https://doi.org/10.1201/9781420035353
https://doi.org/10.1007/s10614-016-9640-x
https://doi.org/10.1007/s10614-019-09956-1
https://doi.org/10.21511/imfi.17(2).2020.16

	Dynamics of a Bertrand Duopoly Game of the Greek Oil Market and Application of the d-Backtest Method
	Abstract
	Keywords
	1. Introduction
	2. The Game
	2.1. The Construction of the Game
	2.2. Dynamical Analysis
	2.2.1. The Equilibrium Positions
	2.2.2. Stability of Equilibrium Positions


	3. Numerical Simulations
	3.1. Stability Space between k1 and k2
	3.2. Focusing on the Common Speed of Adjustment k (k1 = k2)

	4. Chaos Control Applying the d-Backtest Method
	4.1. The Application of the d-Backtest Method
	4.2. The d-Backtest Method’s Results

	5. Conclusion
	Acknowledgements
	Funding
	Conflicts of Interest
	References

