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Abstract 
The Riemann hypothesis is a well-known mathematical problem that has 
been in suspense for 162 years. Its difficulty lies in the fact that it is involved 
in an infinite integral which includes infinite series with complex variables. 
To detour this is in vain, since all the messages are hid in it. To unscramble 
them, there is a totally new idea, that is, the “periodicity”! By investigating the 
numerical approximate values of zero points, an explicit distribution law on 
the critical line was found. To accord with this, a periodic form for the real 
part of Xi function was constructed and rigidly proved. The Riemann hypo-
thesis can be divided into three progressive propositions. The first proposi-
tion (the number of zero points in the critical strip satisfies a certain estima-
tion) had been proved in 1905. The second proposition (the number of zero 
points on the critical line satisfies the same estimation as in the critical strip) 
is ever in suspense. It can be solved perfectly with the newly found “periodic-
ity”. The third proposition (all the nontrivial zero points are on the critical 
line), that is, the Riemann hypothesis, is also true. The proof is a combination 
of the symmetry, monotonicity, periodicity of the Xi function and the extre-
mum principle of the harmonic functions. It is the moment to draw full stop 
for this suspending problem. 
 

Keywords 
Riemann Hypothesis, Riemann Zeta Function, Distribution Law of Zero Point, 
Periodicity, Monotonicity, Extremum Principle 

 

1. Introduction 

The Riemann hypothesis is a well-known mathematical problem. It had ever 
been a global hot topic when British mathematician Michael F. Atiyah (1929- 
2019) reported his proof in Heidelberg Laureate Forum on Sep. 24, 2018. Un-
fortunately, his approach does not work and now this problem is still in sus-
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pense. To crack it, just as reported by New Scientist in [1], “unless with a totally 
new idea.” To read through the monographs in [2] [3] [4] and the popular read-
ings in [5] [6], one can find the difficulty of Riemann hypothesis lies in the com-
plexity of the Zeta function. Essentially, it is involved in an infinite integral which 
includes infinite series with complex variables. To detour this infinite integral is 
in vain, since all the messages are hid in it. To unscramble them, in my brain 
many ideas appeared and died during the past three years. Among them there is 
only one which survives and could be seen as “a totally new idea”. This is the 
“periodicity”! The proof will be a combination of the symmetry, monotonicity, 
periodicity and extremum principle. Notice that the present article may become 
the terminator of this problem, a whole story will be told. 

This problem was left by German mathematician Bernhard Riemann (1826- 
1866) in 1859 [4] [7] [8]. He found that the distribution of prime numbers among 
all natural numbers is very closely related to the analytic continuation of the fol-
lowing infinite series on complex plane  : 

( )
1

1 1 1 1
1 2 3s s s s

n
s

n
ζ

∞

=

= = + + +∑                    (1) 

with s itσ= + , which is usually called Riemann Zeta function. This series con-
verges only for the case 1σ > , so all the mentioned ( )sζ  below should be 
understood in the sense of analytic continuation. If there is a 0s  which satisfies 
( )0 0sζ = , then we call it one zero point of ( )sζ . This function has real zero 

points at the negative even integers 2, 4, 6,− − − 
 and one refers to them as the 

trivial zero points. Relatively, the other complex zero points of it are called the 
nontrivial zero points. 

Riemann hypothesis: All the nontrivial zero points of ( )sζ  have real part 
1 2σ = . 

Is it true? In the official millennium problem description [9], E. Bombieri had 
reviewed that, in 1986 the first 1.5 × 109 nontrivial zero points of ( )sζ  (ar-
ranged by increasing positive imaginary part) had been checked by J. Lune et al 
with numerical approach in [10], and the result showed that they are simple and 
all possess real part 1 2σ = . More zero points had been checked by the follow-
ers, the same thing occurred. Till now the known record was set by X. Gourdon 
in 2004 [11], 1013 zero points. So the Riemann hypothesis is very likely true. 
What lacks is the theoretical proof. 

The analytic continuation for 1
s

n n∞ −
=∑  (defined on 1σ > ) is not unique. 

Among them, the most popular one is given by: 

( ) ( )
( ) ( )

2

,
1 2 1

s s
s

s s
ξ

ζ
π

=
− Γ +

                    (2) 

which is meromorphic on   with a unique pole at 1s =  (its residual is 1) [2] 
[3] [4]. Here 

( ) 2
0

2 1 e ds xs x x
∞ −Γ + = ∫                      (3) 

with a default requirement 2 1 0σ + > . Its analytic continuation to the negative 
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direction is done by ( ) ( ) ( )2 2 1 2s s sΓ = Γ +  step by step. In this sense,  

2, 4, 6,− − − 
 are the zero points of ( )1 2 1sΓ + , and this is why they are the 

trivial zero points of ( )sζ . Naturally, the function ( )sξ  satisfies the inverse rela-
tion which was written down by Riemann: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( )

( ) ( )

2

2

11
2 2

1

11
2 2

1

1 2 1

1
2

2
1 1 d

2 1

11 d
2 2

s

s

s s

s s

s s s s

s s
s s

s s
x x x x

s s

s s
x x x x

ξ ζ

ζ

ψ

ψ

−

−

+
− −∞

+
− −∞

= − π Γ +

−
= π Γ

  −
= + +   −   

 −
= − +  

 

∫

∫

         (4) 

with ( ) 2

1e n x
nxψ ∞ −π
=

= ∑ , which satisfies a peculiar relation bellow (see the de-
duction in [12] [13]): 

( ) ( )1 2 12 1 2 1 .x x xψ ψ− − + = +                    (5) 

Notice that ( )xψ  is positive and exponentially decreasing on the interval  
[ )1,∞ , the integral in Equation (4) is finite and hence ( )sξ  is analytic on  . 
Particularly, the zero points of ( )sξ  coincide with the nontrivial zero points of 
( )sζ , and the exploring of Riemann hypothesis can be converted to considering 
( )sξ . To substitute s by 1 s−  the expression maintains unchanged, so  
( ) ( )1s sξ ξ= − . This symmetric property implies the most important relation 

between the function ( )sζ  and the critical line 1 2σ = . Correspondingly, the 
complex region with 0 1σ≤ ≤  is called the critical strip which includes all the 
zero points of ( )sξ . 

In fact, ( )sξ  has no zero points outside the critical strip. With the aid of 
Euler formula: 

( ) ( ) 1

1
1s s

n p
s n pζ

∞ −− −

=

= = −∑ ∏                    (6) 

(where the last expression is a product respect to all the prime numbers  
2,3,5,p =  ), one can easily checked that ( ) 0sζ ≠ , that is ( ) 0sξ ≠ , for the 

case 1σ >  (see [5]). Furthermore, the relation ( ) ( )1s sξ ξ= −  indicates that the 
same thing is true for 0σ < . 

We note that, as the critical strip concerned, the two lines 1σ =  and 0σ =  can 
be gotten rid of. As reviewed in [4] [13], the proof given by de la Vallée Poussion in 
1899 for this is very complex. Yet, as our approach concerned, it doesn’t matter. Any 
chosen strip with 1 2 1 2a aσ− ≤ ≤ +  and 1 2a ≥  can fulfil the request. 

To denote ( ) ( ) ( ), ,it U t iV tξ σ σ σ+ = + , then it follows from the well-known 
Reflection Principle ( ) ( )s sξ ξ=  of complex conjugate that  
( ) ( ) ( ) ( ), , , ,U t iV t U t iV tσ σ σ σ− = − + − . Meanwhile, the relation  

( ) = (1 )s sξ ξ −  yields ( ) ( ) ( ) ( ), , 1 , 1 ,U t iV t U t iV tσ σ σ σ+ = − − + − − . Based on 
these two relations, the symmetric properties of ( )sξ  are clarified as: 
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Lemma 1. To denote ( ) ( ) ( ), ,it U t iV tξ σ σ σ+ = + , then its real part and im-
aginary part separately satisfy the symmetries and anti-symmetries bellow: 

( ) ( ) ( ) ( ), , , , , ,U t U t V t V tσ σ σ σ− = − = −  
( ) ( ) ( ) ( )1 , , , 1 , , .U t U t V t V tσ σ σ σ− = − = −  

For the particular cases with 0t =  and 1 2σ = , the relations for V read  
( ) ( ),0 ,0V Vσ σ= −  and ( ) ( )1 2, 1 2,V t V t= − . So ( ) ( ),0 1 2, 0V V tσ = = . 

This indicates that the values of ( )itξ σ +  are real on the lines 0t =  and  
1 2σ = . This lemma can be understood as: U and V are symmetric and anti-sym- 

metric about the two lines 0t =  and 1 2σ = , respectively. That is why most of 
the arguments are about the upper quarter strip with 1 2 1σ≤ ≤  and 0t > . 
Particularly, due to the direct relationship with the Riemann hypothesis, the line 

1 2σ =  has drawn much attention. 
It is enlightening to divide Riemann hypothesis into three progressive propo-

sitions (see [5], pages 22-23): 
Proposition 1. In the region bounded by 0 1σ≤ ≤  and 0 t T< < , the num-

ber of zero points of ( )sξ  is about ( )2 log 2 eT Tπ π . 
Proposition 2. On the critical line 1 2σ =  with 0 t T< < , the number of ze-

ro points of ( )sξ  is also about ( )2 log 2 eT Tπ π . 
Proposition 3. All the zero points of ( )sξ  are on the critical line 1 2σ = . 
Till now only the first proposition had been proved. It was finished by Ger-

man mathematician Hans von Mangoldt in 1905 [4] [5] [14]. His estimation for 
the zero-points number of ( )sξ  is 

( ) ( )( )log log ,
2 2 e
T TN T O T= +
π π

                 (7) 

which is understood as taking the integer part. We note that, ( )( )logO T  does 
not imply the existence of a term ( )logC T  for some constant C. Its meaning is 
that ( ) ( ) ( ) ( )2 log 2 e logN T T T C T− π π ≤ . In fact, the previously mentioned 
checks are done according to this theoretical result, and the numerical approx-
imate values for the first four zero points are 

1 2 14.1347251 , 1 2 21.0220396 ,i i+ +  
1 2 25.0108575 , 1 2 30.4248761 .i i+ +  

On the aspect of theoretical study, in 1914 Hardy firstly proved that, there are 
infinitely many zero points of ( )sξ  on the critical line 1 2σ =  (see the re-
view in [3]). Due to the efforts of Selberg [15], Levinson [16] and Conrey [17], 
the ratio was lifted step by step. Now the known optimal estimation is that more 
than 40% of zero points of ( )sξ  are on the critical line 1 2σ =  (they are also 
simple ones). These indicate that Proposition 2 is far from settled. Our approach 
is a direct attack to it. In addition, as reviewed in [4], “All the zero points of 
( )sξ  are simple ones” already became an accompanying conjecture to Rie-

mann hypothesis. Yet, under our approach, this is not a thing. 
The above survey is about the known knowledge of Riemann hypothesis, and 

the next is about our new findings. We begin with investigating the distribution 
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law of zero points on the critical line 1 2σ =  in Section 2; The third section is 
about the main content, which includes 3 subsections. In the last subsection the 
periodicity of ( ),U tσ  is detailed illustrated. During the argument processes of 
periodicity, the monotonicity of the related functions become the preconditions. 
With the aid of explicit expression of ( ),U tσ , the distribution law of zero 
points is verified. This indicates Proposition 2 given by Riemann holds true. The 
proof of Proposition 3, that is the Riemann hypothesis, is given in Section 4. The 
conclusions and related remarks are given in the last. 

2. Distribution Law for the Zero Points on the Critical Line 

On the critical line 1 2σ = , the values of ( )sξ  are real (ensured by Lemma 
1), that is, only the real part ( )1 2,U t  of ( )1 2 itξ +  is left. To recall the ex-
pression of ( )sξ  in (4), it follows from [3] [4] that 

( ) ( ) ( )

( )

( ) ( )

2
1 2

2
2

1 2

1 2, 1 1
2

1 4
8 2

1e ,
2

s

s it

s

s it

i t

sU t s s

t s s

a t itϑ

ζ

ζ

ζ

−

= +

−

= +

 = − π Γ + 
 

+  = − π Γ 
 

 = − + 
 

              (8) 

where (ℜ  and ℑ  mean the taking of real and imaginary parts, respectively) 

( )
2

1 41 4 1 2exp log ,
8 4

t tia t −+  +  = π ℜ Γ    
              (9) 

( )

3

1 2log log
4 2

1 7log .
2 2 e 8 48 5760

ti tt

t t
t t

ϑ + = ℑ Γ − π 
 

π
= − + + +

π


             (10) 

Notice that ( ) 0a t > , the zero points on the critical line are only determined 
by the sign shift of ( ) ( ) ( )e 1 2i tZ t itϑ ζ= + . Furthermore, as reviewed in [4], the 
inverse expression can be employed to make the estimation [the zero points of 
( )1 2 itζ +  coincide with that of ( )1 2 itξ + ]: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 e cos sin .i tit Z t Z t t iZ t tϑζ ϑ ϑ−+ = = −        (11) 

According to this, for the first time, Gram calculated the first 15 zero points in 
1903. His method is an estimation approach based on ( )sin 0tϑ = , which yields 
the known Gram points at ( )kt kϑ = π  with an approximation: 

log , 1,2, .
2 2 e 8
k kt t

k kπ
− = π =

π


                (12) 

Certainly, to estimate the location of a zero point, the change of ( )Z t  should 
be also considered. This adds the complexity. By the way, 29 years later, the ap-
proximate approach for ( )Z t  was improved. That is the known Riemann-Siegel 
formula, which was discovered by Siegel in 1932 among Riemann’s private pa-
pers (see [4]). 

Though the method given by Gram is so rough, it is enlightening. The distri-
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bution of zero points on the critical line 1 2σ =  may possess some kind of pe-
riodicity. In fact, for some given t T= , the argument ( )Tϑ  obtained on the criti-
cal line and the zero-points number ( )N T  in the region 0 1σ≤ ≤  and  
0 t T< <  have close relationship: 

( ) log ,
2 2 e 8
T TTϑ π

= − +
π



 

( ) 7log .
2 2 e 8
T TN T = + +
π π



 
Exactly, as reviewed in [3] (page 132-134), in 1918 Backlund had revealed that, 

for all 2T ≥ , 

( ) ( )1 1 4.350 0.137 log 0.443log log .N T T T Tϑ−− π − < + +
 

Enlightened by this, we have a new idea. Proposition 2 holds true provided that 
( ) ( )1 2, 1 2U t itξ= +  can be expressed in the following form: 

( ) ( ) ( )1 2, sin log ,
2 2 e
t tU t A t tα ε = + + π 

            (13) 

where ( )A t , α  and ( )tε  are the amplitude (>0), initial phase angle and small 
perturbation function. Certainly, for the case with 2t = π  we have  
( ) ( )2 log 2 et t π = −π . Hence, a suitable phase angle α  should be chosen to ac-
cord with the fact that ( ) ( )1 2 2 1 2,2 0i Uξ + π = π >  (since  
( ) ( )0 0 1 2ξ ζ= − =  and there is no zero points for 0 14t≤ ≤ , see [3], page 31). 

If ( )1 2,U t  is indeed in such a periodic form, the thing becomes very simple. 
All the zero points on the critical line 1 2σ =  can be solved one by one with 
the following formula: 

( )log , 1,2, .
2 2 e
k k

k
t t

t k kα ε+ + = π =
π


             (14) 

By the way, to count the number of zero points it can be used in a reverse way, 
that is, 

( )
log ,

2 2 e
NN N tt t

N
εα

= + +
π π π π

 

which accords with Proposition 2. Relative to Gram's approximation in Equation 
(12), this formula is closer to the truth. In the following we give some numerical 
evidences for this. The theoretical proof will be given in the next sections. 

To neglect the perturbation term ( )ktε  and make fitting with the known nu-
merical approximate values *

kt  to the zero points (provided by Odlyzko in [18]), 
it leads to the results in Figure 1. The first 50 zero points fitting yields an optim-
al phase angle 4 3α = π , that is, the k -th zero point on the critical line is very 
close to the solution of 

4log , 1,2, .
2 2 e 3
k kt t

k k+ π = π =
π


                (15) 

We call this newly found formula as the distribution law of zero points. 
The check in Figure 2 with 10,000 zero points shows that the above distribution  
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Figure 1. The fitting curve with the known numerical approximate values *

kt  of the first 50 

zero points, according to the formula in Equation (14) for the case with ( ) 0ktε = . 

 

 
Figure 2. The variation of the error *

k kt t−  with respect to the first 10,000 zero points. 
 

law is also obeyed. The error is small. Though the value of *
kt  is up to 9877, except 

the 14-th and 64-th zero points, all the corresponding errors satisfy * 1k kt t− < . 
In addition to the perturbation term ( )ktε , these errors may also partly as-

cribe to the numerical scheme for *
kt , though its calculation accuracy is up to 10−9. 

Not forget that, essentially, the calculation of ( )sξ  is involved in an infinite 
integral which includes infinite series with complex variables. At least, the approx-
imate values for the 14-th and 64-th zero points are questionable. To take the 14-th 
zero as an example. *

14 60.831778525t = , *
15 65.112544048t =  and hence 

* * * *
15 15 14 14log log 43.5681 38.6353 4.9328 .
2 2 e 2 2 e
t t t t

− ≈ − = > π
π π

      (16) 

Yet, it follows from ( ) ( ) ( )1 2 log 2 eN T T T−≈ π π  that, to add one π means 
to add a zero point. This indicates that 4.9328 is a too big difference between two 
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adjacent zero points, it should be understood as a calculation error. With this 
understanding, the departure from the newly-found distribution law caused by 
the perturbation term ( )ktε  may be smaller than the difference of *

k kt t−  
depicted here. 

Further check is given in Figure 3. This law is also obeyed for the zero points 
numbered from 99,900 to 100,000. 

 

 
Figure 3. The comparison between the solutions of Equation (15) and the approximate 
values *

kt  of the zero points numbered from 99,900 to 100,000. 

3. To Prove the Periodicity of ( )U tσ ,  

Can ( ) ( )1 2, 1 2U t itξ= +  be expressed in the periodic form of Equation (13)? 
It needs a theoretical proof. Our theme is not limited by this, and in order to 
solve the Riemann hypothesis the periodicity of ( ),U tσ  with 1 2 1σ≤ ≤  and 

0t >  will be considered in a unified way. 
Firstly, the 2-terms expression for ( )sξ  in Equation (4) is awkward for use. 

In the following we adopt the derived form (see [3], pages 16-17): 

( ) ( ) ( )

( )

( )

( )

11
2 2

1

3 1
2 4

1

1 1 1 13 1 log log
2 2 2 22 4

1

1 13 1
2 22 4

1

11 d
2 2

1 14 cosh log d
2 2

14 e e d
2

2

s s

it x it x

s s
s x x x x

x x x s x x

x x x x

x x x x

σ σ

σ

ξ ψ

ψ

ψ

ψ

+
− −∞

−∞

   + − − + −−    ∞    

 −−  ∞  

 −
= − +  

 
′    ′= −       
′   

′= ⋅ +  
    

′ 
′=  

 

∫

∫

∫

∫

( )

1 1
2 2

1 1 1 13 1
2 2 2 22 4

1

cos log d
2

2 sin log d ,
2

tx x x

ti x x x x x x x

σ

σ σ
ψ

 − − 
 

   − − −−    ∞    

   +   
   

′     ′+ −    
     

∫
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here the superscript “ ' ” denotes the taking of conventional derivative. Hence, 

( ) ( )
1 1 1 13 1
2 2 2 22 4

1
, 2 cos log d ,

2
tU t x x x x x x x

σ σ
σ ψ

   − − −−    ∞    
′     ′= +    

     
∫

 

( ) ( )
1 1 1 13 1
2 2 2 22 4

1
, 2 sin log d .

2
tV t x x x x x x x

σ σ
σ ψ

   − − −−    ∞    
′     ′= −    

     
∫     (18) 

In the following we mainly concern the variation of ( ),U tσ . 
To denote 

( ) ( )
1 1 1 13 1
2 2 2 22 4, 2 ,f x x x x x x
σ σ

σ ψ
   − − −−    
   

′   
′= +  

      

( ) log ,
4 2 e 6
t ttθ π

= +
π

                     (19) 

with a substitution of 
1 2

32 e e ,tx y
t

−ππ =  
   

it follows from the first formula in Equation (18) that 

( ) ( )

1 2
3

1 2
3

1

1 2 1 2
3 3

e
2 e

1 2
3

1 2 1
3

e
2 e

, , cos log d
2

2 e 2 e, e e

2 ecos log e d
2

2 e 2 e, e

t

t

t t
t

t

t
t

tU t f x x x

f y
t t

t y y
t

f y
t t

σ σ

σ

σ

π

π

∞

∞ −π −π
 
 π 

−π

∞ −π
 
 π 

 =  
 

 π π   =     
     

  π  ⋅    
     
 π π   =     

     

∫

∫

∫

( )

( ) ( ) ( ) ( )

2
3

1 2

e

cos log d
2

2 , cos , sin ,

t

t y t y

I t t I t t
t

θ

σ θ σ θ

−π

 ⋅ −  

= +  

       (20) 

where, under another substitution 2e z ty = , 

( )

( )

( ) ( )( )

1 2
3

1 2 1 2
3 2 3

1 e
2 e

1 2 1 2
3 2 3 2

2 e 2 e, , e e e cos log d
2 2

2 e 2 e, e e e e cos d

, , cos d ,

t
t z t t

t

t z t t z t
t

t

t tI t f y y
t t

f z z
t t

F x z t z z

θ

θ

σ σ

σ

σ

π

∞ −π −π
 
 π 

∞ −π −π

∞

 π π     =       
       

 π π   =     
     

=

∫

∫

∫

(21) 

( )

( ) ( )( )

1 2
3

1 2 1 2
3 3

2 e
2 e

2 e 2 e, , e e sin log d
2 2

, , sin d ,

t
t t

t

t

t tI t f y y y
t t

F x z t z z
θ

σ σ

σ

π

∞ −π −π
 
 π 

∞

 π π     =       
       

=

∫

∫
 (22) 
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in which ( ) ( ), ,F x f x xσ σ=  with 

( )
1 2 1 2

3 3 22 e 2 e, e e e .t t z tx z t y
t t

−π −ππ π   = = ⋅   
     

3.1. To Prove the Monotonicity of ( )F xσ ,  about x  

To recall that ( ) 2

1e n x
nxψ ∞ −π
=

= ∑ , with a denotation ( )1 2 2δ σ= − , the defi-
nition of ( ),f xσ  in (19) leads to 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2 2

3 2 1 4

1/2 3 2 3 4

5 4

22 2 5 4

1 1

5 4

1

, 2

32
2
32
2
32 e e
2

32 e
2

n

n x n x

n n

a x
n n

n

F x x x x x x x

x x x x x x x

x x x x x x

n x n x x x

x x x a a x

δ δ

δ δ

δ δ

δ δ

δ δ

σ ψ

ψ ψ

ψ ψ

− −

−

−

∞ ∞
−π −π −

= =

∞
−−

=

′ ′= + ⋅ 
 ′ ′′= + +  
 ′ ′′= + +  
 = −π + −π +  

 = + − 
 

∑ ∑

∑

   (23) 

with 2
na n= π . Since 2 3 2 0n xπ − >  for 1n ≥  and 1x ≥ , we have  

( ), 0F xσ > . In addition, to recall that ( )1 2 2δ σ= − , we have 

( ) ( )log 0
2

xx x x xδ δ δ δ

σ
− −∂

+ = − ≥
∂  

for 1x ≥ , and hence ( ),F xσ  increases along with the increasing of σ  on  
[ ]1 2,1 . By the way, ( ), 0f xσ >  also holds and it follows from Equation (18) that 

( ) ( ) ( )
1

1 2 1 2,0 1 2, d 0,U f x xξ
∞

= = >∫  
which accords with the documented result ( ) ( )1 2 1 2 0ξ ζ= − >  in [3] (see page 
122). 

To take the partial derivative of ( ),F xσ  with respect to x , it yields 

( ) ( )

( )

( )

( )

9 4 5 4

1

1 1 9 4 5 4

1

5 4 1 4

1

2 9 4 5 4

1

3, 2 e
2
32 e
2

9 152 e
4 8

32 e
2

n

n

n

n

a x
x n n

n

a x
n n

n

a x
n n

n

a x
n n

n

F x a x x a x x
x

a x x a x x

a x x a x x

a x x a x x

δ δ

δ δ

δ δ

δ δ

σ

δ

∞
−−

=

∞
−− − −

=

∞
−−

=

∞
−−

=

∂   = + −  ∂   
 = − − 
 

 + + − 
 
 − + − 
 

∑

∑

∑

∑

 

( )

( )

( )

1 4

1

1 4 2 2

1

2
1 4 2 2

2
1

32 e
2

15 152 e
4 8

15 15 1 32 e
4 8 21

n

n

n

a x
n n

n

a x
n n n

n

a x
n n n n

n

x x x a a x

x x x a a x a x

xx x x a a x a x a x
x

δ δ

δ δ

δ
δ δ

δ

δ

δ

∞
−−

=

∞
−−

=

∞
−−

=

 = − − 
 
 + + − + − 
 

−  = + − + − + −   +  

∑

∑

∑
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( )

( )

1 4 2 2

1

1 4 2

1

15 152
4 8

1 1 3 e
4 1 1 2

12
8

29 3 27 e
8 16 16

n

n

n n n
n

a x
n

n n n
n

a x
n

x x x a a x a x

x a x

x x x a a a x

a x

δ δ

δ δ

∞
−

=

−

∞
−

=

−

≤ + − + −
−  + − +  

  = − + −   
 − − +    

∑

∑
                   (24) 

due to the fact that for 1x ≥ , 1n ≥  and 0 1 4δ≤ ≤  it holds  
23 2 3 2 0na x n x− = π − >  and 21 x xδ≤ ≤ . 

Let 

( ) 21 29 3 27, ,
8 8 16 16n n nh n x a a x a x   = − − − +   

     

to solve the equation ( ), 0h n x =  it yields two roots 

( )
( )1,2

29 8 3 16
,

2 1 8
n

n n

a
x

a a
− ± ∆  =
−  

in which 2x  stands for the bigger one. Here 

( )

229 3 1 274
8 16 8 16

1 9409 33 0,
64 4

n n n

n n

a a a

a a

   ∆ = − − − ⋅   
   

 = − + >    
due to the fact that 2409 33 409 33 0na n− = π − >  for 1n ≥ . 

For 1,2,3,n = 
, the values of 2x  are about 1.0047,0.2464,0.1091, . In 

view of 1x ≥ , we have ( ), 0h n x >  for 2n ≥ . In case 1n = , the inequality 
( )1, 0h x >  also holds for 2 1.0047x x> ≈ . On [ ]21, x , ( )1, 0h x ≤  and to en-

sure ( ), 0xF xσ <  it suffices to consider the variation of the summation on this 
interval. In fact, on this interval, 

2

1

3
2

1

1 29 3 27 e
8 8 16 16

1 29 3 27 e
8 8 16 16

n

n

a x
n n n n

n

a x
n n n n

n

a a a x a x

a a a x a x

∞
−

=

−

=

    − − − +        
    > − − − +        

∑

∑
 

whose value increases from 8.1862 × 10−17 to 0.0040. Hence, for all [ ]1 2,1σ ∈ , 
( ), 0xF xσ <  always holds and ( ),F xσ  is monotone decreasing about x  on 

[ )1,∞ . 

3.2. To Prove ( ) ( )II t t2 2
1 2, , 0σ σ+ >  and Estimate Its Upper Bound 

In order to combine the two terms ( ) ( ) ( ) ( )1 2, cos , sinI t t I t tσ θ σ θ+  into a sin-

gle periodic function, it requires ( ) ( )2 2
1 2, , 0I t I tσ σ+ > , that is  

( ) ( )2 2
1 2, , 0I t I tσ σ+ > . To split z into ( )*z z tθ= + , then 
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( ) ( )( )* *
1 2 1 2

23 2 3 22 e 2 e, e e e e e .
z t tt z t t z tx z t

t t
θ+−π −ππ π   = = =   

   
     (25) 

It follows from Equation (21) and Equation (22) that 

( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )

( )( )( ) ( )( )( ) ( )

2 2
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0 0
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, , , , cos d d
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σ θ σ θ

∞ ∞

∞ ∞

∞ ∞

∞ ∞

+

= ⋅

+ ⋅
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= + + −

∫ ∫

∫ ∫

∫ ∫

∫ ∫  

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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2 2 * * * *
0 0

2 * * 2 * *
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0 0
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0 0

, e ,e cos d d

,e cos d ,e cos d

,e sin d ,e sin d

,e cos d ,e sin d .

z t w t
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z t w t
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F F z w w z

F z z F w w

F z z F w w

F z z F z z

σ σ
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σ σ

∞ ∞

∞ ∞

∞ ∞

∞ ∞

= −

= ⋅

+ ⋅

   = +      

∫ ∫

∫ ∫

∫ ∫

∫ ∫

           (26) 

For a fixed ( )0t > , the variations of ( ) ( ) ( )2 2, e , , e cosz t z tF F zσ σ  and  

( ) ( )2, e sinz tF zσ  for the case with 1 2σ =  are simulated in Figure 4. 
Notice that ( ), 0xF xσ <  for 1x ≥  we have 

 

 

Figure 4. The variations of ( ) ( ) ( )2 2,e , ,e cosz t z tF F zσ σ  and ( ) ( )2,e sinz tF zσ  along 

with the increasing of z, for the case with 1 2σ =  and 100t = . 
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( )( ) ( ) ( ) 22, , ) , , e 0z t
x x

xF x z t F x F x
z z t

σ σ σ∂ ∂
= = <

∂ ∂  
for the case with 2e z tx = . Hence, for fixed 0t > , ( )2, e z tF σ  decreases along 
with the increasing of z (see Figure 4). In view of this, 
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2
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0
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0
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0
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F

σ

σ

σ
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∞

∞ + π

π
=

∞ π + π

=

∞ π + π + π+π

=

∞ π′ ′+ π + π+π

=

∞

=

=

 =  
 

    = −        

 = − 

=

∫

∑ ∫

∑ ∫

∑ ∫

∑ ∫

∑ ( )( ) ( )( )2 2 2 2, e ,e 0k kz k t z k tFσ σ′ ′+ π + π+π − > 

      (27) 

with 0 kz′≤ ≤ π , here the mean-value theorem of integrals is used. 
To combine Equation (26) and Equation (27) it leads to  
( ) ( )2 2

1 2, , 0I t I tσ σ+ > . The assertion is proved. In addition, ( ) ( )2 2
1 2, ,I t I tσ σ+  

is also upper bounded. 
In fact, on the one hand, it follows from Equation (27) that 

( ) ( )

( ) ( )( ) ( )( )
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2
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2
0
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∑      (28) 

with 
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1

31 4 e ,
2
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n
F a a

∞
−

=

 = − 
 

∑                   (29) 

which does not rely on σ  [see the expression in Equation (23)]. On the other 
hand, 
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∞
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   (30) 
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with 00 2z≤ ≤ π  and 0 kz′≤ ≤ π . Its upper bound is ( ) ( )02
0, e 1z tF Fσ ≤ , 

and lower bound is  
( ) ( )( ) ( ) ( ) ( ) ( )00 22

0, e 2 ,e ,e 2 ,e ,e 1z tz t t t tF F F F F Fσ σ σ σ σ′ +π π π π− ≥ − = − > − . 
Based on the above estimations, we have the final result: 

( ) ( ) ( ) ( ) ( )22 2 2
1 2 0 0 00 , , 1 2 1 5 1 .I t I t F F Fσ σ< + < + =         (31) 

3.3. Detailed Arguments on the Periodicity of ( )U tσ ,  

Since ( ) ( )2 2
1 2, ,I t I tσ σ+ , the real part of ( )itξ σ +  can be combined into a sin-

gle periodic one: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2
2, , cos , sin

2 , sin , cos cos , sin

2 , sin , ,

U t I t t I t t
t

A t t t t t
t

A t t t
t

σ σ θ σ θ

σ φ σ θ φ σ θ

σ φ σ θ

= +  

= +  

= +  

     (32) 

in which ( ) ( ) ( )2 2
1 2, , ,A t I t I tσ σ σ= + , ( ) ( ) ( )4 log 2 e 6t t tθ = π + π  and 

( ) ( )
( ) ( ) ( )

( )
1 2, ,

sin , , cos , .
, ,

I t I t
t t

A t A t
σ σ

φ σ φ σ
σ σ

= =            (33) 

Notice that ( ), 0A tσ > , their signs are determined by ( )1 ,I tσ  and ( )2 ,I tσ , 
respectively. In the following we take the first one as the research object. 

Firstly, we make certain the variation of ( ) ( ) ( )4 log 2 e 6t t tθ = π + π . As the 
function ( ) ( )4 log 2 et t π  concerned, in case 0 2 et< < π  it is negative; in case 

2 et > π  it is positive. To take the derivative of ( )tθ , it leads to a unique ex-
treme point at 2t = π . Notice that the first zero point of ( ) ( )1 2, 1 2U t itξ= +  
is at about 14.1347251t = , we only consider the case with [ )2 ,t∈ π ∞  on which 
( )tθ  is increasing with value ≥-π/3. 
There is a fact that, along with the increasing of ( )tθ , for every given  
[ ]1 2,1σ ∈ , the function ( )1 ,I tσ  oscillates in a periodic manner about t. Ex-

plicitly, for the case with ( ) 2 2mt mθ = π+ π  ( 0,1,2,m = 
), it follows from Eq-

uation (21), Equation (26) and Equation (27) that 

( ) ( ) ( )( )

( ) ( )

( ) ( )

( )

*

*

*

1

2 * *
0

2 * *
0

2 * *
0

, , , cos d

,e cos d

,e cos 2 2 d

,e sin d 0.

m

m

m

m

m mt

z t
m

z t

z t

I t F x z t z z

F z t z

F z m z

z z

θ
σ σ

σ θ

σ

σ

∞

∞

∞

∞

=

 = + 

= + π+ π

= − <

∫

∫

∫

∫









 



         (34) 

Similarly, we have ( )1
ˆ, 0mI tσ >  for the case with  

( ) ( )ˆ 2 2m mt t mθ θ= + π = π+ 3π  ( 0,1,2,m = 
). 

The above results accord with the fact that ( )sin , tφ σ  shifts its sign when  
( ), tφ σ  is added by π. This consistency implies that ( )tθ  contributes to the var-

iation of ( )sin , tφ σ , and is possibly the main part of ( ), tφ σ . In the following 
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we verify this by considering the detailed variation of ( )1 ,I tσ  on the interval 
ˆ,m mt t    (together with another half period 1

ˆ ,m mt t +   ). 
For any given ( )0 2t ≥ π , in case 0t t>  we have 

( ) ( )

( ) ( )( ) ( ) ( )( )

( )
( ) ( )( ) ( ) ( )( ) ( )( )

0

0

1 1 0

0

0 0

, ,

, , cos d , , cos d

, , cos d , , , , cos d .

t t

t

t t

I t I t

F x z t z z F x z t z z

F x z t z z F x z t F x z t z z

θ θ

θ

θ θ

σ σ

σ σ

σ σ σ

∞ ∞

∞

−

= −

 = − + − 

∫ ∫

∫ ∫

 (35) 

Relative to ( )0 2 2t mθ = π+ π  (for a given m ), to verify that ( )tθ  is the main 

part of ( ), tφ σ , it suffices to show that the monotone increasing term  

( )
( ) ( )( )

0
0, , cos d

t

t
F x z t z z

θ

θ
σ−∫  dominates the relative change of ( )1 ,I tσ  with re-

spect to ( ) [ ]2 2,2 2t m mθ ∈ π+ π π+ 3π  [that is, for ( )ˆ,m mt t t∈  ]. In other word, 

the contribution from the additional term is relatively small. In the following we 
estimate them in detail. 

For the first term, in view of the monotone decreasing of ( )( ), ,F x z tσ  about 
z, with a denotation ( ) ( )0t tθ θ θ∆ = −  and a substitution ( )*

0z z tθ= + , we have 

( )
( ) ( )( )

( ) ( )

( )

0

*
0

*
0

0

2 * *
0

2 * *
0

, , cos d

,e cos 2 2 d

,e sin d .

t

t

z t

z t

F x z t z z

F z m z

F z z

θ

θ

θ

θ

σ

σ

σ

∆

∆

−

= − + π+ π

=

∫

∫

∫

            (36) 

3.3.1. To Estimate the Additional Term 
The second term is an additional one which is very complex. We estimate it step 
by step. In the neighbourhood of 0t , to make the Taylor expansion of  

( )( ), ,F x z tσ  it leads to 

( )( ) ( )( ) ( )( )0 0, , , , , , ,tF x z t F x z t F x z t tσ σ σ= + ∆ +
 

where 0t t t∆ = − , the subscript “t” means the taking of partial derivative with 
respect to t. 

Recall that ( ) ( )1 2 3 2, 2 e e et z tx z t t −π= π , to replace z by  
( ) ( ) ( )* * 4 log 2 e 6z t z t tθ+ = + π + π , it leads to 

( )

( )( ) ( )( )

0
0

*

0

*
0

1 2
3 2

* 1 2
23

*
20

0 0

2 61 1 2 e e e
2

2 61 1 2 e e e
2

1 2 1 log e .
2 2

t z t
t t

t t

z t tt

t t

z t

zx
t t t t

z t

t t t

tz
t t

θθ

−π

=
=

+−π

=

− π ∂ π = − +   ∂   

 + − π π  = − +      
 

= − + π 

    (37) 

Furthermore, notice that ( ) ( )( ) *
02*

0 0 0, , e z tx z t x z t tθ= + = , to recall the ex-
pression of ( ),xF xσ  in Equation (24), we get 
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( )( )

( ) ( )

( )

*
0

0

0

2
2 2

2
1

*
1 4 0

0 0

, ,

,

15 15 1 3 e
4 8 21

1 2 12 log
2 2

n

t

x z z t
t t

a x
n n n n

n

F x z t

xF x
t

xa a x a x a x
x

tzx x x x
t t

θ

δ

δ

δ δ

σ

σ

δ

= +
=

∞
−

=

−

∂
= ⋅

∂

 −  = − + − + −  +   
  

⋅ + ⋅ − +  π   

∑

 

( )

( ) ( )

5 40

0

2
2 2

2
1

0
1 2

0 0

2 1log log
2 2

15 15 1 3 e
4 8 21

1 1: , log ,
2 2

na x
n n n n

n

t
x x x x

t

xa a x a x a x
x

t
G x G x

t t

δ δ

δ

δδ

σ σ

−

∞
−

=

 = + + π 

 −  ⋅ − + − −  +   

= +
π

∑         (38) 

with ( ) *
02*

0, e z tx z t = , 2
na n= π  and ( )1 2 2δ σ= − . 

It follows from the proofs in Section 3.1 that ( )*
02

1 , e 0z tG σ >  and  

( )*
02

2 , e 0z tG σ >  for * 0z ≥ , 0 2t ≥ π  and 1 2 1σ≤ ≤ . With respect to the 
single variable *

02w z t= , each of them has a unique extreme point (maximum 
one), say 1w  and 2w  respectively, which can be estimated by their dominate 
terms with 1n = . Due to the existence of strong decaying factor ee

w
na− , the ef-

fect from σ  is very small, see Figure 5. In the following we mainly consider 
the case with 1 2σ = . 

The approximate values for the maximum extreme points of ( )1 1 2,ewG  and  
 

 
Figure 5. The changes of ( )1 ,ewG σ  (only the first term), ( )2 ,ewG σ  (only the first term) 

and ( ),ewF σ  (only the first 3 terms) along with the increasing of w, for the cases with 

1 2σ =  and 1σ = . 
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( )2 1 2,ewG  are at about ( )0.6484,0.6957  and ( )0.4746,1.2304 , respectively. 
Explicitly, 1 0.6484w ≈  and 2 0.4746w ≈  satisfy separately the equations  

( )1 1 2,e 0wG w∂ ∂ =  and ( )2 1 2,e 0wG w∂ ∂ =  (for each of them only the first 
term is concerned), which read: 

3 2 21
1 1 1 1 1

165 75 15 157 log ,
16 32 4 8

yy y y y y  − + − = − +   π     
3 2
2 2 2

165 757 0
16 32

y y y− + − =
 

with 1
1 ewy = π  and 2

2 ewy = π . By the way, the maximum extreme point of  

( )1 2,ewF  is at about ( )0,0.8934  (to ensure the monotonicity, the first 3 terms 
are considered), which will be used in the related estimation. 

When σ  varies in [ ]1 2,1 , the locations of the maximum extreme points of  

( )1 , ewG σ  and ( )2 , ewG σ  have small shifts. Explicitly, when 1 2σ =  the loca-
tion of ( )1 , ewG σ  is at about ( )0.6484,0.6957 , and along with the increasing of 
σ  its value increases a little. At the right end 1σ = , the location is shifted to about 
( )0.6538,0.6967 . Similarly, that of ( )2 , ewG σ  is shifted from about  
( )0.4746,1.2304  to about ( )0.4820,1.2237 . These indicate that the effect of  
σ  to the maximum values of 1G  and 2G  can be neglected, yet the effects of 
σ  to the horizontal shifting can not be neglected, since *

1 0 2z w t=  and  
*

2 0 2z w t=  may magnify the small differences along with the increasing of 0t  
and result in considerable impacts to the corresponding integrals. By the way, we 
note that 1w  and 2w  depend on the variable σ , and should be in the forms  

( )1w σ  and ( )2w σ , to neglect the variable is just for simplicity. 
Based on the above analysis, we estimate the second term of Equation (35) in 

the following: 

( ) ( )( ) ( )( )

( ) ( )( )

( )( )( ) ( )( )

( ) ( ) ( )

( )

* *
0 0

*
0

0

0

* * *
0 0 0

2 2 * *0
1 2

0 0

2 2* * 0
1 2

0 0

, , , , cos d

, , cos d

, , cos d

1 1,e log ,e cos 2 2 d
2 2

,e sin d log ,e
2 2

t

tt

t

z t z t

z t z

F x z t F x z t z z

F x z t t z z

t F x z t t z t z

t
t G G z m z

t t
tt tG z z G

t t

θ

θ

θ

θ

θ θ

σ σ

σ

σ θ θ

σ σ

σ σ

∞

∞

∞

∆

∞

∆

∞ ∞

∆ ∆

 − 

≈ ∆

= ∆ + +

 
= ∆ + + π+ π π 

∆ ∆
= − −

π

∫

∫

∫

∫

∫ ∫ ( )*
0 * *sin d .t z z

 (39) 

In the following we give some illustrations for the case 1 2σ = . In view of Fig-
ure 5, ( )*

02
1 1 2,e z tG  has maximum value at *

0 12z t w= , that is, at about  
*

0 1 02 0.3242z t w t= ≈ . Similarly, ( )*
02

2 1 2,e z tG  has maximum value at about 
*

0 2 02 0.2373z t w t= ≈ . For example, for the cases with 0,1=m  and 2, to solve 

( ) 0 0
0 log 2 2,

4 2 e 6
t t

t mθ π = + = π+ π π 
 

it yields 0 20.8747,37.4043t =  and 50.3595, respectively. The corresponding 
maximum extreme points of ( )*

02
1 1 2,e z tG  are shifted to ( )6.7676,0.6957 ,  
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( )12.1265,0.6957  and ( )16.3265,0.6957 , respectively. Similarly, those for  

( )*
02

2 1 2,e z tG  are shifted to ( )4.9536,1.2304 , ( )8.8760,1.2304  and  
( )11.9503,1.2304 , respectively (see Figure 6). What should be mentioned is that, 
in the neighborhoods of these two maximum extreme points, ( )*

02 *
1 1 2,e sinz tG z  

and ( )*
02 *

2 1 2,e sinz tG z  may possess their peak absolute values separately, which 
dominate the integrals. Yet, since 0 1 02 0.3242t w t≈  and 0 2 02 0.2373t w t≈ , the 
changes of ( )*

02
1 1 2,e z tG  and ( )*

02
2 1 2,e z tG  are not synchronous with that 

of ( )tθ . This adds complexity to the additional term. 
Notice that 1w w=  is the unique extreme point of ( )1 , ewG σ  at which it pos-

sesses the maximum value, we get an increasing interval [ ]0 10, 2t w  and a de-
creasing interval [ )0 1 2,t w ∞  for ( )*

02
1 , e z tG σ  with respect to the variable  

*z . For 0m ≥ , there must be an integer 0 1k ≥  such that  
( ) )*

0 1 0 02 , 1z t w k k= ∈ π + π  (see Figure 6). Furthermore, in case 0 02k j=  with 

0 1j ≥ , we have 
 

 

Figure 6. The changes of ( )*
02

1 1 2,e z tG , ( )*
02

2 1 2,e z tG , ( )*
02 *

1 1 2,e sinz tG z  and  

( )*
02 *

2 1 2,e sinz tG z  along with the increasing of *z  for the cases with a: m = 0; b: m = 

1 and c: m = 2 with respect to ( )0 2 2t mθ = π + π  (that is, for 0 20.8747,37.4043t =  and 

50.3595 separately). 
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( )
( ) ( ) ( )( )
( ) ( )( )

( )( )( ) ( )( )

*
0

*
00

*
0 00

0
0 0

0

2 * *
1

22 * *
1 10 0

0

2 22 * *
1 10 0

1
2 2 1 2 2

1 10
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2 2
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, e sin d
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z j tz t
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G z z
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G z z G z z

G G e z z

G

θ

θ

θ

σ

σ σ

σ σ

σ σ

σ

∞

∆

∞∆ π + π

=

∆ π + π

−
π + + π + π

=

∞ π + −

= +

= − + −

= − +

 − −  

−

∫

∑∫ ∫

∫ ∫

∑ ∫

∑ ∫ ( )( )( ) ( )( )
( )( ) ( ) ( )

0 0

0 0 1 1

1 2 2
1

2 2
1 1 10

, e sin d

,e sin d 2 ,e 2 1,e .

t z j t

z j t w w

G z z

G z z G G

σ

σ σ

π + π

π + π

 −  

< < ≤∫

   (40) 

Here the approximation  

( ) ( ) ( )1 1 1
1 1 10.6957 1 2,e ,e 1,e 0.6967w w wG G Gσ≈ ≤ ≤ ≈  is used. 

Similarly, in case 0 02 1k j= −  with 0 1j > , we have 

( )
( ) ( ) ( )( )
( ) ( )( )( )

( )( ) ( )( )( )
( )( )

*
0

*
00

*
0 00

0
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0
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,e sin d ,e sin d
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j
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G z z
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G z z G z z

G G z z

G

θ

θ

θ

σ

σ σ

σ σ

σ σ

σ

∞

∆

∞π π + π

∆
=

π π + − π

∆

−
π + − π+ π

=

∞ π + π

=

= + −

= −

 + −  

+

∫

∑∫ ∫

∫ ∫

∑ ∫

∑ ∫ ( )( )( )
( )( )( ) ( ) ( )

0

0 0 1 1

2 2 1
1

2 2 1
1 1 10

, e sin d

,e sin d 2 ,e 2 1,e .

z j t

z j t w w

G z z

G z z G G

σ

σ σ

+ + π

π + − π

 −  

> − > − ≥ −∫

    (41) 

In a word, with respect to ( )0 2 2t mθ = π+ π , for all 0m ≥  it holds the es-
timation bellow: 

( ) ( )*
0 12 * *

1 1, e sin d 2 1,e 2 0.6967 1.3934.z t wG z z G
θ

σ
∞

∆
< ≈ × =∫      (42) 

When ( )*
02

1 , e z tG σ  is substituted by ( )*
02

2 , e z tG σ , with the same approach 

we get a similar estimation: 

( ) ( )*
0 22 * *

2 2, e sin d 2 1 2,e 2 1.2304 2.4608,z t wG z z G
θ

σ
∞

∆
< ≈ × =∫     (43) 

since for this case ( ) ( ) ( )2 2 2
2 2 21.2237 1,e ,e 1 2,e 1.2304w w wG G Gσ≈ ≤ ≤ ≈ . 

3.3.2. To Estimate the Change of ( )I tσ1 ,  with Respect to ( )tθ  
With the help of the above results, in the following we estimate the relative change 
( ) ( )1 1 0, ,I t I tσ σ−  with respect to ( ) ( )2 2,2 2t m mθ ∈ π+ π π+ 3π  ( 0m ≥ ). 

Relative to ( )0 2 2t mθ = π+ π , there is a Taylor expansion for ( )tθ : 

( ) ( ) ( ) ( ) ( ) ( )
2

20
0

0

1 1log .
2! 4 2 8
t t

t t t t t t t
t

θ θ θ θ θ
∆

′ ′′∆ = − = ∆ + + = ∆ + ∆ +
π

   (44) 
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Hence, ( )04 log 2t tθ∆ ≈ ∆ π . It follows from Equations (35), (36), (39), (42) 
and (43) that 

( ) ( )
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∫ ∫

∫      (45) 

Furthermore, in view of 0 θ< ∆ < π , to take the partial derivative of ( ),R σ θ∆  
with respect to θ∆ , it reads 

( ) ( ) ( )
( )

( ) ( ) ( )

*
0 0

*
0

0 0

2 2 * *
1

0 0

2 * *
2

0

2 2
1 2

0 0

4,e sin ,e sin d
log 2

2 ,e sin d

2 2 ,e ,e sin
log 2

t z t

z t

t t

R F G z z
t t

G z z
t

G G
t t

θ
θ

θ

θ θ

σ θ σ
θ

σ

θ σ σ θ

∞∆

∆

∞

∆

∆ ∆

∂
= ∆ −

∂∆ π

−

 ∆
+ + ∆ 

π  

∫

∫  

( ) ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

*
0 0

*
0

1

0 2

1

0 2

2

0

2 2 * *
1

0 0

2 * *
2

0

12
2

0 0

12
2

0 0

22

0

4,e sin ,e sin d
log 2

2 ,e sin d

2 1,e41 2,e sin 1 2,e
log 2

2 1,e41 2,e 1 2,e
log 2

8 1 2,e
1 2,e 0,

t z t

z t

w
t w

w
t w

w
t

F G z z
t t

G z z
t

G
F G

t t

G
F G

t t

G
F

t

θ

θ

σ θ σ

σ

θ

θ

θ

∞π

∆

∞

∆

π

π

π

> ∆ −
π

−

 
 > ∆ − +

π  
 
 ≈ ∆ − +

π  

> ∆ − >

∫

∫

  (46) 

provided that 

( )
( )

2

0

2

2
0

8 1 2,e
.

1 2,e

w

t

G

t F
θ

π
∆ >

 
Here the inequality ( ) ( ) ( )1 2

1 0 22 1,e log 2 1 2,ew wG t Gπ <  is also used. In fact, 
to solve ( )0 2tθ = π  it yields 0 20.8747t ≈ . To recall that  

( )1
1 1,e 0.6967wG ≈  and ( )2

2 1 2,e 1.2304wG ≈ , we get 

( )
( ) ( )

1

2

1

0 2

2 1,e
0.9432 1.

log 2 1 2,e

w

w

G

t G
≈ <

π
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Along with the increasing of m , that is 0t , the ratio gets smaller and smaller, 
and the inequality always holds. 

For the case with 0m =  and 0 20.8747t ≈ , the approximate value of  

( )021 2,e tF π  is about 0.7205. At this time, 

( )
( )

2

0

2

2
0

8 1 2,e 8 1.2304 0.2083 .
20.8747 0.72051 2,e

w

t

G

t F π

×
≈ ≈ π

×
 

This indicates that, for the case with ( ) ( )2, 2tθ ∈ π 3π , no matter the addi-
tional term 

( ) ( )( ) ( )( )0, , , , cos d
t

F x z t F x z t z z
θ

σ σ
∞
 − ∫

 
is positive or not, the increasing term 

( )
( ) ( )( )

0
0, , cos d

t

t
F x z t z z

θ

θ
σ−∫  dominates 

the relative change of ( )1 ,I tσ  for all [ ]1 2,1σ ∈ , at least, with respect to θ∆  
on the interval ( )0.2083 ,π π . In another word, ( )1 ,I tσ  increases along with 
the increasing of ( )tθ  on ( )0.7083 ,3 2π π  (ensured by 0R θ∂ ∂∆ > ). For the 
other cases with 1m ≥ , the interval may become wider than this. To summarize 
the results, we get a theorem below: 

Theorem 1. For the case with 

( ) [ )log 2 2,2 2
4 2 e 6
t tt m mθ π = + ∈ π+ π π+ 3π π   

( m  is a non-negative integer), let ( )0 2 2t mθ = π+ π , then for all  
[ ]1 2,1σ ∈ , ( )1 ,I tσ  increases along with the increasing of ( )tθ , at least on 

the interval defined by 

( )
( ) ( )

2

0

2

2
0

8 1 2,e
2 2 2 2.

1 2,e

w

t

G
m t m

t F
θ

π
π + π + < < π+ 3π           (47) 

In the following, we begin with assuming ( )0 2 2t mθ = π− π  and consider the 
case ( ) ( )2 2,2 2t m mθ ∈ π− π π+ π  with 1m ≥ . To repeat the previous deduc-
tion process it results in 

( ) ( )

( )
( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( ) ( )
( )

0

* *
0 0

*
0

1 1 0

0 0

2 2* * * *
10

0 0

2 * *
2

0

, ,

, , cos d , , , , cos d

4,e sin d ,e sin d
log 2

2 ,e sin d .

t

t t

z t z t

z t

I t I t

F x z t z z F x z t F x z t z z

F z z G z z
t t

G z z
t

θ

θ θ

θ

θ

θ

σ σ

σ σ σ

θσ σ

θ σ

∞

∆ ∞

∆

∞

∆

−

 = − + − 

∆
≈ − +

π

∆
+

∫ ∫

∫ ∫

∫

 (48) 

Furthermore, to denote it by ( ),R σ θ∆ , then we get 0R θ∂ ∂∆ <  on condi-
tion that 

( )
( )

2

0

2

2
0

8 1 2,e
.

1 2,e

w

t

G

t F
θ

π
∆ >

 
Hence, there is a similar result bellow: 
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Theorem 2. For the case with 

( ) [ )log 2 2,2 2
4 2 e 6
t tt m mθ π = + ∈ π− π π+ π π   

( m  is a positive integer), let ( )0 2 2t mθ = π− π , then for all [ ]1 2,1σ ∈ ,  
( )1 ,I tσ  decreases along with the decreasing of ( )tθ , at least on the interval de-

fined by 

( )
( ) ( )

2

0

2

2
0

8 1 2,e
2 2 2 2.

1 2,e

w

t

G
m t m

t F
θ

π
π − π + < < π+ π

 
These two theorems have clarified the periodic behaviors of ( )1 ,I tσ . It fol-

lows from Theorem 1 that, due to the existence of decay factor 01 t  in Equa-
tion (47) ( ( )021 1 2,e tF π  also decays), the dominating interval of the increasing 
term 

( )
( ) ( )( )

0
0, , cos d

t

t
F x z t z z

θ

θ
σ−∫  becomes wider and wider along with the in-

creasing of 0t . In another word, the possible interval for ( ) ( )1 1 0, ,I t I tσ σ<  
becomes narrower and narrower. This implies that the minimum extreme point 
of ( )1 ,I tσ  get closer and closer to the left end of the interval  
[ )2 2,2 2m mπ+ π π+ 3π  with respect to ( )tθ  as m →∞  ( 0m ≥ ). Certainly, 
this only makes sense when the additional term is negative. In case it is positive, 
the thing becomes simple. The minimum value of ( )1 ,I tσ  is attained at the left 
boundary 0t t=  defined by ( )0 2 2t mθ = π+ π . Furthermore, from Theorem 2 
we see, in the left neighborhood of this boundary it is monotone decreasing, and 
the minimum extreme point is exactly at 0t t=  which accords with  
( )0 2 2t mθ = π+ π . Inversely, the maximum extreme point of ( )1 ,I tσ  get 

closer and closer to the left end of the interval [ )2 2,2 2m mπ− π π+ π  with re-
spect to ( )tθ  as m →∞ . It only makes sense when the additional term is posi-
tive, and in case this term is negative the maximum extreme point is exactly at 

0t t=  with ( )0 2 2t mθ = π− π  ( 1m ≥ ). 
Based on the above analysis we get a corollary below: 
Corollary 1. For the case with 

( ) ( )log 2 ,2 1
4 2 e 6
t tt m mθ π = + ∈ π + π    π   

( m  is a non-negative integer), for every given [ ]1 2,1σ ∈  there is a mini-
mum extreme point and a maximum extreme point of ( )1 ,I tσ , which lie sepa-
rately in the intervals defined by 

( )
( )
( )

2
2

2

8 1 2,e
2 2 2 2 ,

1 2,e m

w

t
m

G
m t m

t F
θ

π
π + π ≤ ≤ π+ π +





 

( )
( )
( )

2
2

ˆ2

8 1 2,e
2 2 2 2

ˆ 1 2,e m

w

t
m

G
m t m

t F
θ

π
π + 3π ≤ ≤ π+ 3π +

 

with ( ) 2 2mt mθ = π+ π  and ( )ˆ 2 2mt mθ = π+ 3π . As m →∞ , these two ex-
treme points in the moving intervals tend separately to their left boundaries mt  
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and m̂t . 

3.3.3. To Estimate the Change of ( ) ( )I t A tσ σ1 , ,  with Respect to ( )tθ  

According to the definition, 

( ) ( )
( )

1 ,
sin , .

,
I t

t
A t
σ

φ σ
σ

=
 

Hence, besides the estimation on the change of ( )1 ,I tσ , it also requires an 
estimation on that of ( ),A tσ . 

It follows from Equation (26) that ( ) ( ) ( )2 2, , ,A t H t S tσ σ σ= +  with 

( ) ( ) ( )2
0

, , e cos d ,z tH t F z zσ σ
∞

= ∫  

( ) ( ) ( )2
0

, , e sin d .z tS t F z zσ σ
∞

= ∫  
To take the partial derivative of ( ),A tσ  about t, it leads to 

( ) ( ) ( ) ( ) ( )
( ) ( )2 2

, , , ,
, .

, ,
t t

t

H t H t S t S t
A t

H t S t

σ σ σ σ
σ

σ σ

+
=

+
           (49) 

Let ( ) 2, e z tx z t = , then ( )2 22 e z tx t z t∂ ∂ = − . It follows from Equation (38) 
that 

( ) ( )( ) ( )

( ) ( )

( ) ( )

0

0

2
10

, , , cos d ,

, cos d ,

1 ,e cos d .

t t

x

z t

H t F x z t z z

xF x z z
t

G z z
t

σ σ

σ

σ

∞

∞

∞

=

∂
=

∂

=

∫

∫

∫
 

( ) ( ) ( )2
10

1, ,e sin d .z t
tS t G z z

t
σ σ

∞
= ∫

 
To repeat the deduction processes in Equation (40) and Equation (41) we get 
( ) ( )1

1, 2 1,ew
tH t G tσ ≤  and ( ) ( )1

1, 2 1,ew
tS t G tσ ≤ . 

For the reference point defined by ( )0 2 2t mθ = π+ π  with 0m ≥ , it holds 
( )04 log 2t tθ∆ ≈ ∆ π  [see Equation (44)], and hence 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )
( )

( )

1

1 1

0 0

0 0 0 0

2 2
00 0

0 0 0 0

2 2
00 0

1 0 0

2 2
0 00 0

1 1

0 0

, , ,

, , , , 4
log 2, ,

, , , , 4
log 2, ,

2 1,e , , 4
log 2, ,

2 1,e 8 2 1,e42
log 2

t

t t

t t

w

w w

A A t A t A t t

H t H t S t S t
tH t S t

H t H t S t S t
tH t S t

G H t S t
t tH t S t

G G

t t t

σ σ σ

σ σ σ σ θ

σ σ

σ σ σ σ θ

σ σ

σ σ θ

σ σ

θ

∆ = − ≈ ∆

+ ∆
≈ ⋅

π+

⋅ + ⋅ ∆
≤ ⋅

π+

+ ∆
< ⋅

π+

∆
≤ ⋅ ≈

π ( )0 0

.
log 2t

θ∆
π

     (50) 

Due to the existence of the decay factor ( )0 01 log 2t t π , this estimation makes 
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sense. For example, for the cases with 1,10m =  and 100, the approximate val-
ues are about 0.1572 θ∆ , 0.0213 θ∆  and 0.0025 θ∆ , respectively. 

For an arbitrary given reference point ( )0 2 ,t ∈ π ∞  and [ ]1 2,1σ ∈  we have 

( ) ( )
( )

( )
( )

( )
( )

01 1

0

,, ,
sin , .

, , ,
A tI t I t

t
A t A t A t

σσ σ
φ σ

σ σ σ
= = ⋅             (51) 

Since ( )0, 0A tσ > , the change characteristics of ( )1 ,I tσ  are maintained by 
( ) ( )1 0, ,I t A tσ σ . The positive factor ( ) ( )0, ,A t A tσ σ  does not influence the 

sign change of ( )sin , tφ σ . As the function ( ) ( )1 , ,I t A tσ σ  concerned, for  
( )0 2 2t mθ = π+ π , ( ) ( )1 0 0, , 0I t A tσ σ < , and for ( )0 2 2t mθ = π+ 3π ,  
( ) ( )1 0 0, , 0I t A tσ σ > . That is to say, the oscillation characteristic of ( )1 ,I tσ  is 

maintained by ( ) ( )1 , ,I t A tσ σ . But the variation of the amplitude does make a 
difference, and a further estimation is needed. 

Our task is to verify that the change of ( ) ( )1 , ,I t A tσ σ  is mainly associated 

with that of ( )tθ , that is, the term 
( )
( ) ( )( )

0
0, , cos d

t

t
F x z t z z

θ

θ
σ−∫  also dominate. 

Since this term increases on [ ]2 2,2 2m mπ+ π π+ 3π  ( 0m ≥ ) and decreases 

on [ ]2 2,2 2m mπ− π π+ π  ( 1m ≥ ) with respect to ( )tθ , in the following we 
still consider it in a separate way. 

For a fixed σ , relative to 0t t=  defined by ( )0 2 2t mθ = π+ π , to denote  

( ) ( )0, ,A t A t Aσ σ= + ∆  and ( ) ( )1 1 0 1, ,I t I t Iσ σ= + ∆ , then 

( ) ( )
( )
( )

( )
( )

( ) ( )
( ) ( )

0

1 0 0 1 1 01

0 0 0

sin , sin ,

, , ,,
.

, , , ,

t t

I t A t I I t AI t
A t A t A t A A t

φ σ φ σ

σ σ σσ
σ σ σ σ

−

∆ − ∆
= − =

 + ∆ 

         (52) 

Since the unchangeable factor ( )01 ,A tσ  does not impact the relative change 
of this increment, in the following arguments we omit it for simplicity. 

Since the inequality ( ) ( )1, ,A t I tσ σ≥  holds for all 2t > π , there always be 
( ) ( )0 1 0 1, ,A t A I t Iσ σ+ ∆ ≥ + ∆ , and it follows from Equation (45), Equation (46) 

and Equation (50) that 

( ) ( )
( )

0 1 1 0

0

1 1 1 1
2

1 1 1

1

, ,
,

[ ]

A t I I t A
A t A
I I A I I AA A A

A A A A A A
I I IA A

A A A A
IA A

A A

σ σ
θ σ

θ θ θ

θ θ

θ θ

 ∆ − ∆∂
 

∂∆ + ∆  
∂∆ ∆ − ∆∂∆ ∂∆

= ⋅ − ⋅ − ⋅
+ ∆ ∂∆ + ∆ ∂∆ ∂∆+ ∆

∂∆ + ∆ ∂∆ = − ⋅ + ∆ ∂∆ + ∆ ∂∆ 
∂∆ ∂∆ 

≥ − + ∆ ∂∆ ∂∆ 

 

( ) ( )
( ) ( )

( )
( )

1

0 2

1

12
2

0 0

1

0 0

2 1,e41 2,e 1 2,e
log 2

8 2 1,e

log 2

w
t w

w

GA F G
A A t t

G

t t

θπ
    > ∆ − +

+ ∆ π   
− 

π 
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( ) ( ) ( )
( ) ( )

( ) ( )

1

0 2

0 2

12
2

0 0

2
2

0

2 2 1 1,e41 2,e 1 2,e
log 2

141 2,e 1 2,e 0

w
t w

t w

GA F G
A A t t

A F G
A A t

θ

θ

π

π

  +  = ∆ − +  + ∆ π   
 

> ∆ − > + ∆  

 (53) 

provided that 

( )
( )

2

0

2

2
0

14 1 2,e
.

1 2,e

w

t

G

t F
θ

π
∆ >                      (54) 

Here the inequality ( ) ( ) ( ) ( ) ( )1 2
1 0 22 2 1 1,e log 2 5 2 1 2,ew wG t G+ π <  is 

used. In fact, for the case with 0m = , to recall that ( )1
1 1,e 0.6967wG ≈ ,  

( )2
2 1 2,e 1.2304wG ≈  and 0 20.8747t ≈ , we get 

( ) ( )
( ) ( )

( )
( )

1

2

1

0 2

2 2 1 1,e 2 2 1 0.6967
2.2771 5 2.

log 20.8747 2 1.2304log 2 1 2,e

w

w

G

t G

+ + ×
≈ ≈ <

π ×π
 

Along with the increasing of m , 0t  increases accordingly, and this propor-
tion will become smaller and smaller. So, the inequality always holds true. 

For the case with 0m =  and 0 20.8747t ≈ , the approximate value of  

( )021 2,e tF π  is about 0.7205. At this time, 

( )
( )

2

0

2

2
0

14 1 2,e 14 1.2304 20.3646 .
20.8747 0.7205 51 2,e

w

t

G

t F π

×
≈ ≈ π < π

×
 

This indicates that, for the case with ( ) ( )2, 2tθ ∈ π 3π , no matter the addi-
tional term 

( ) ( )( ) ( )( )0, , , , cos d
t

F x z t F x z t z z
θ

σ σ
∞  − ∫

 

of ( )1 ,I tσ  is positive or not, the increasing term 
( )
( ) ( )( )

0
0, , cos d

t

t
F x z t z z

θ

θ
σ−∫  

of ( )1 ,I tσ  dominates the relative change of ( ) ( )1 , ,I t A tσ σ  for all [ ]1 2,1σ ∈ , 
at least, with respect to ( ) ( )0t tθ θ θ∆ = −  on the interval ( )0.3646 ,π π . In an- 
other word, ( )sin , tφ σ  increases along with the increasing of ( )tθ  on  
( )0.8646 , 2π 3π . For the other cases with 1m ≥ , the interval becomes wider 
than this. 

In summery, for the case with ( ) [ )2 2,2 2t m mθ ∈ π+ π π+ 3π  ( 0m ≥ ), the 
results for ( ) ( )1 , ,I t A tσ σ  are similar to that of ( )1 ,I tσ  in Theorem 1. The 
mimic theorem is as follows: 

Theorem 3. For the case with 

( ) [ )log 2 2, 2 2
4 2 e 6
t tt m mθ π = + ∈ π+ π π+ 3π π   

( m  is a non-negative integer), let ( )0 2 2t mθ = π+ π , then for all  
[ ]1 2,1σ ∈ , ( )sin , tφ σ  increases along with the increasing of ( )tθ , at least on 

the interval defined by 
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( )
( ) ( )

2

0

2

2
0

14 1 2,e
2 2 2 2.

1 2,e

w

t

G
m t m

t F
θ

π
π + π + < < π+ 3π           (55) 

For another case with ( )0 2 2t mθ = π− π  and  
( ) [ )2 2,2 2t m mθ ∈ π− π π+ π  ( 1m ≥ ), the term 

( )
( ) ( )( )

0
0, , cos d

t

t
F x z t z z

θ

θ
σ−∫  of 

( )1 ,I tσ  decreases and dominates, and there is a considerable dominating range. 
In fact, the above approach holds and it follows from Equation (48) and Equa-
tion (50) that: 

( ) ( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )

1

0 2

1

0 2

0 1 1 0

0

1 1 1
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0 0

1
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2
2

0

, ,
,

2 1,e41 2,e 1 2,e
log 2

8 2 1,e

log 2

141 2,e 1 2,e 0

w
t w

w

t w

A t I I t A
A t A

I I IA A
A A A A

GA F G
A A t t

G

t t

A F G
A A t

σ σ
θ σ

θ θ

θ

θ

π

π

 ∆ − ∆∂
 

∂∆ + ∆  
∂∆ + ∆ ∂∆ = − ⋅ + ∆ ∂∆ + ∆ ∂∆ 
    ≤ − ∆ + +

+ ∆ π   
+ 

π 
 

< − ∆ + < + ∆  

     (56) 

provided that 

( )
( )

2

0

2

2
0

14 1 2,e
.

1 2,e

w

t

G

t F
θ

π
∆ >

 
For this case, the result is as follows: 
Theorem 4. For the case with 

( ) [ )log 2 2,2 2
4 2 e 6
t tt m mθ π = + ∈ π− π π+ π π   

( m  is a positive integer), let ( )0 2 2t mθ = π− π , then for all [ ]1 2,1σ ∈ ,  
( )sin , tφ σ  decreases along with the increasing of ( )tθ , at least on the interval 

defined by 

( )
( ) ( )

2

0

2

2
0

14 1 2,e
2 2 2 2.

1 2,e

w

t

G
m t m

t F
θ

π
π − π + < < π+ π

 

In the following we consider the relative change of ( )sin , tφ σ  on the remainder 
interval ( ) ( ) ( )01 2 , 1 2k k p t − π − π+   ( k  is a positive integer) with 

( )
( )

( )
2

0

2
0 2

0

14 1 2,e
,

1 2,e

w

t

G
p t

t F π
=

 
where 0t  is defined by ( ) ( )0 1 2t kθ = − π . We firstly study the odd case with 

2 1k m= +  ( 0m ≥ ). At this time, the inequality ( )0sin , 0tφ σ <  holds for all 
[ ]1 2,1σ ∈ . According to Equation (52), 
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( ) ( ) ( )
( )
( )

1 0
0 1

0 0

,1sin , sin , ,
, ,

I t
t t I A

A t A A t
σ

φ σ φ σ
σ σ

 
− = ∆ − ∆ 

+ ∆     
whose sign is determined by the factor in the bracket. In the following we con-
sider this part. With the denotations 

( ) ( ) ( ) ( )* * *
0 0 02 2 2

1 2
0

2,e ,e ,e ,
log 2

z t z t z tP G G
t

σ σ σ= +
π  

( ) ( ) ( ) ( ) ( )
( ) ( )

0 0 0 0 0 0
0 2 2

0 0

, , , ,
, ,

, ,
t tH t H t t S t S t t

Q t
H t S t

σ σ σ σ
σ

σ σ

+
=

+
        (57) 

to recall the approximations in Equation (45) and Equation (50), we have 

( )
( )

( ) ( )
( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

* *
0 0

* *
0 0

*
0

1 0
1

0

2 2* * * *
0

0

1 0
0

0 0 0

2 2 * *
0

0

02 * *
00

0 0

,
,

2,e sin d ,e sin d

, 4 ,
, log 2

2,e ,e sin d

2sin ,2 ,e sin d , .
log 2

z t z t

z t z t

z t

I t
I A

A t

F z z P z z
t

I t
Q t

A t t t

F P z z
t

t
P z z Q t

t t

θ

θ

θ

σ
σ

θσ σ

σ θ σ
σ

θσ σ

φ σθ σ σ

∆ ∞

∆

∆

∞

∆ − ∆

∆
≈ −

∆
− ⋅

π

 ∆
= + 

 
 ∆

− + 
π  

∫ ∫

∫

∫

      (58) 

Notice that for ( )00 2p tθ< ∆ ≤ < π  the first term is positive, and its sign 
relies on the second term. Since for a fixed σ , the function 

( ) ( ) ( )
( ) ( )*

0 02 * *
0 00

0

2sin ,
, , e sin d ,

log 2
z t t

t P z z Q t
t
φ σ

σ σ σ
∞

Φ = +
π∫       (59) 

is only associated with 0t , it can be used to make judgement. In case  
( )0, 0tσΦ ≤ , Equation (58) implies that ( ) ( )0sin , sin ,t tφ σ φ σ> . The thing 

becomes simple, and ( ) ( )0 2 1 2t mθ = + π  accords with the minimum extreme 
point of ( )sin , tφ σ . In case ( )0, 0tσΦ >  the previous estimations make sense. 
To take the partial derivative about θ∆ , it reads 

( )
( )

( ) ( )

( ) ( )

0 0

*
0

1 0
1

0

2 2

0

2 * *
00

0 0

,
,

2,e ,e sin

2 2,e sin d , .

t t

z t

I t
I A

A t

F P
t

P z z t
t t

θ θ

θ

σ
θ σ

θσ σ θ

σ σ

∆ ∆

∆

 ∂
∆ − ∆ 

∂∆   
 ∆

≈ + ∆ 
 

+ − Φ∫

            (60) 

Corresponding to the case with 0θ∆ = , its value is ( ) ( )0 02 , 0t tσ− Φ < . On 
the one hand, from the previous sections we know 1,F G  and 2G  are all posi-
tive functions. On the other hand, for fixed [ ]1 2,1σ ∈ , ( )1 , ewG σ  and  

( )2 , ewG σ  increase along with the increasing of w  on [ ]10, w  and [ ]20, w  
(with 1 0.6484w ≈ , 2 0.4746w ≈ ), respectively. Notice that 0 2θ≤ ∆ < π  and 
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0 20.8747t ≈  for the initial case with 0m = , we have  
( )0 1 22 2 2 20.8747 0.1505 ,w t w wθ= ∆ < × π ≈ < . So ( )02, e tP θσ ∆  increases 

along with the increasing of θ∆ . In addition, though ( )02, e tF θσ ∆  decreases 
along with the increasing of θ∆ , the product of sin θ∆  and it increases. So 
the function in Equation (60) increases along with the increasing of θ∆  on 

( )00, p t    for fixed σ  and 0t . This indicates that 1 1I I A A∆ − ∆  decreases 
first and possibly increases later on this small interval. After all, ( )0p tθ∆ =  
accords with the left end of the increasing interval of ( ) ( )0sin , sin ,t tφ σ φ σ− . 

So, on the remainder interval ( ) ( ) ( )02 1 2 , 2 1 2m m p t + π + π+   ( 0m ≥ ), 
the variation of ( )tθ  also makes significant influence on ( )sin , tφ σ , and the 
minimum extreme point shifts to the right or not is determined by the sign of 
( )0, tσΦ . Furthermore, from Equation (57) and Equation (59) we see, due to 

the existence of decay factor ( )02 log 2t π  in the other two terms, 

( ) ( )*
02 * *

20
, e sin dz tG z zσ

∞

∫  
dominates the sign of ( )0, tσΦ , and influences the location-shifting of the mini-
mum extreme points. For the even case with 2k m=  ( 1m ≥ ), to repeat the above 
deduction process we get a symmetric result for the maximum extreme points. 

The correspondingly corollary is as follows: 
Corollary 2. For the case with ( ) ( )2 ,2 1t m mθ ∈ π + π    ( m  is a positive in-

teger), let ( ) 2 2mt mθ = π+ π  and ( )ˆ 2 2mt mθ = π+ 3π , then there is a mini-
mum extreme point and a maximum extreme point of ( )sin , tφ σ , which lie 
separately in the intervals ( )2 2,2 2 mm m p t π + π π+ π +   and  

( )ˆ2 2,2 2 mm m p t π + 3π π+ 3π +  , where the function p is defined by 

( )
( )

( )
2

2

2

14 1 2,e
.

1 2,e

w

t

G
p t

tF π
=                     (61) 

As m →∞ , ( ) ( )ˆ, 0m mp t p t → , and these two extreme points in the moving 
intervals tend to their left boundaries mt  and m̂t . 

3.3.4. The Explicit Periodic Form for ( )U tσ ,  

It follows from Theorem 3 and Theorem 4 that, for a fixed [ ]1 2,1σ ∈ ,  
( ) ( ) ( )1sin , , ,t I t A tφ σ σ σ=  increases or decreases along with the increasing of 

( )tθ  on most of the variation range ( ) ( ) )1 2 , 1 2k k− π + π  ( k  is a positive 
integer). In case k  is odd it increases, and in case k  is even it decreases. This 
indicates that ( )tθ  is the main part of ( ), tφ σ . It follows from Corollary 2 
that, As m →∞ , ( ) 2 2t mθ = π+ π  accords with the minimum extreme point 
of ( )sin , tφ σ , and the phase angle needs to be adjusted by adding one π. In ad-
dition to this, in ( ), tφ σ  there should be also a perturbation term, say 

( ), tε σ− . It reflects the contributions from other factors. We note that the nega-
tive sign here is to accord with the fact that all the location-shifts of the extreme 
points are to the right. Based on this, for every given [ ]1 2,1σ ∈  and every 

0t t≥  with ( )0 2tθ = π  ( 0 20.8747t ≈ ), we have an explicit formula bellow: 
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( ) ( ) ( )sin , sin , .t t tφ σ θ ε σ= + π−                  (62) 

To recall the relation in Equation (32), we express the real part of ( )itξ σ +  
in an explicit periodic form: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )*

2, , sin ,

2 , sin 2 ,

2 , sin 2 log ,
4 2 e 6

4, sin log ,
2 2 e 3

U t A t t t
t

A t t t
t

t tA t t
t

t tA t t

σ σ φ σ θ

σ θ ε σ

σ ε σ

σ ε σ

= +  

= + π−  

  π = + + π−   π   
  = + π−  π  

      (63) 

with ( ) ( )* , 2 ,A t A t tσ σ= , which matches exactly with the anticipation in Sec-
tion 2 for the particular case with 1 2σ = . 

In the following we give some estimations to the amplitude function  
( )* ,A tσ  and the perturbation function ( ), tε σ . 

3.3.5. To Refine the Estimation of Amplitude Function ( )A tσ ,∗  

From Equation (31) we see ( ) ( )00 , 5 1A t Fσ< < . In fact, the lower bound can 
be refined. To denote ( ) 2, e z tx z t = , then it follows from Equation (24) and 
Equation (38) that 

( )( ) ( ) ( ) ( )2 2
2

2 2 2, , , e , , e 0.z t z t
z x xF x z t F x F x x G

t t t
σ σ σ σ= ⋅ = = − <

 
Based on this, for a fixed [ ]1 2,1σ ∈  we refine the estimation in Equation 

(27) as follows: 

( ) ( )
( )( ) ( )( )

( ) ( )( )
( ) ( )

( )

2
0

2 2 2 2

0

2 1

2
0

2 1 2
22

0

ˆ
2

0

, e sin d

2 ,e ,e

2 , , d

4 ,e d

4 ,e ,

k k

k

k

k

k

k

z t

z k t z k t

k

z k
zz k

k

z k z t
z k

k

w

k

F z z

F F

F x z t z

G z
t

G
t

σ

σ σ

σ

σ

σ

∞

∞
′ ′+ π + π+π

=

∞ ′ + + π

′ + π
=

∞ ′ + + π

′ + π
=

∞

=

 = − 

= −

=

π
=

∫

∑

∑ ∫

∑ ∫

∑

           (64) 

in which 0 kz′≤ ≤ π  and 

( ) ( ) ( )4 14 2 2ˆ2 2 1 .k k k

kk z k w z k
t t t t

+ ππ ′ ′≤ + π ≤ ≤ + + π ≤         (65) 

In view of Figure 5, for a given [ ]1 2,1σ ∈ , ( )2 , ewG σ  has a unique maxi-
mum extreme point at 2w . On [ ]20, w  it increases and on [ )2 ,w ∞  it decreas-
es. Along with the increasing of σ , the location of the maximum extreme point 
is shifted from about ( )0.4746,1.2304  to about ( )0.4820,1.2237 . Notice that 

0 20.8747t t≥ ≈ , 0 24 4 0.6020t t wπ ≤ π ≈ > , it follows from Equation (26) and 
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Equation (64) that: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )01

2 2
2 2

0 0

ˆ2
20

0

ˆ 8
2 2

, , e cos d ,e sin d

4,e sin d ,e

4 4 4 2,e 1 2,e 0.115 > .
5

k

z t z t

wz t

k

tw

A t F z z F z z

F z z G
t

G G
t t t t

σ σ σ

σ σ

σ

∞ ∞

∞∞

=

π

   = +      
π

≥ =

π π π π
> ≥ ≈ ⋅

∫ ∫

∑∫

 
To combine this result with that in Equation (31) we get  

( ) ( )02 5 , 5 1t A t Fσπ < <  and hence 

( ) ( )0*
2

2 5 14 , ,
5

F
A t

tt
σπ

< <                   (66) 

which has clarified the decaying characteristics of ( ),U tσ  with respect to t. 

3.3.6. To Estimate the Perturbation Function ( )tε σ ,  

In the following we explore the perturbation term ( ), tε σ . 
Firstly, for every given [ ]1 2,1σ ∈ , we affirm that the case with 

( )lim ,
t

tε σ
→∞

= ∞
 

is impossible. On the contrary, if it is true, there must be a large enough *t  and 
an integer M such that ( ) ( )*, 2 1t Mε σ = + π . At this time, ( )*tθ  lies either in 
[ )2 2,2 2m mπ+ π π+ 3π  or in [ )2 2,2 2m mπ+ 3π π+ 5π  for some 0m ≥ . In 
the following we consider the first half period. In case ( )*tθ  lies in the in-
creasing interval, that is, ( ) ( )*

02 2 2 2m p t t mθπ+ π + < < π+ 3π  [here ( )0p t  
is defined in Equation (61) with ( )0 2 2t mθ = π+ π ], ( )sin , tφ σ  must increas-
es in the neighborhood of *t t= . Yet at this time, 

( ) ( ) ( ) ( )* * *sin , sin 2 1 sint t M tφ σ θ θ = + π− + π =   
decreases. This leads to a contradiction. In case ( )*tθ  lies in the remainder in-
terval ( ) ( )*

02 2 2 2m t m p tθπ+ π ≤ ≤ π+ π + , there should be  

( ) ( )* *sin , sin 0t tφ σ θ= > . Yet, according to the previous arguments, 

( ) ( ) ( )0 1 0 0sin , , , 0.t I t A tφ σ σ σ= <  

As 0t →∞ , ( )0 0p t →  and in case *t  is large enough, it is sufficiently close 
to 0t , and it follows from the continuousness of the function that  

( )*sin , 0tφ σ < . This is also a contradiction. On another half period with  

( )*2 2 2 2m t mθπ+ 3π ≤ < π+ 5π , a contradiction is also met. This indicates that 
( ), tε σ  is bounded. 
Secondly, on every period there exists an interval on which ( ), 2tε σ < π . As 

the case ( )0 2 2t mθ = π+ π  concerned, it follows from the previous arguments 
that, either 0t  is exactly the minimum extreme point of ( )sin , tφ σ , or there is 
a right-shifting of the minimum extreme point. For any given [ ]1 2,1σ ∈ , for 
the later case the extreme point accords with 

( ) ( ) ( )1 1 1, , 2 2t t t mφ σ θ ε σ= + π− = π+ 3π  
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for some ( )1 0t t t= > . According to Corollary 2,  
( ) ( )(1 02 2,2 2t m m p tθ ∈ π+ π π+ π +  . Hence, 

( ) ( ) ( ) ( )
( )

( )
2

0

2
1 1 0 0 2

0

14 1 2,e 20 , .
51 2,e

w

t

G
t t t p t

t F
ε σ θ θ

π
< = − ≤ = < π       (67) 

Due to the existence of the decay factor 01 t , its value should become smaller 
and smaller as m →∞ . This indicates that, in any given half period  
[ ]2 2,2 2m mπ+ π π+ 3π , there indeed exists some region such that  
( ), 2tε σ < π . This result also holds for another half period. 
Thirdly, the inequality ( ), 2tε σ < π  holds for big enough t. 
For every given [ ]1 2,1σ ∈ , the extreme point of ( )sin , tφ σ  is unique with 

respect to ( ) ( )( ), , 1t k kφ σ ∈ π + π  ( k  is a nonnegative integer), if and only if 
( ), tφ σ  is increasing along with the increasing of t, that is, 

( ) ( )1, log , 0.
4 2t t

tt tφ σ ε σ = − > π 
               (68) 

Since ( ), tε σ  is bounded, ( ),t tε σ  should be also bounded, say  
( ) 0,t t Cε σ ≤ , where 0C  is a positive constant. Certainly, the above inequality 

holds for the case with ( ), 0t tε σ ≤ . For another case with ( ), 0t tε σ > , the es-
timation makes sense, and it holds provided that 

042 e .Ct T> = π                        (69) 

Under the above assumption, ( )sin , tφ σ  has a unique negative minimum ex-

treme point and a unique positive maximum extreme point on ( ) )2 ,2 1m mπ + π  

with respect to ( ), tφ σ  for any big enough m . As the minimum extreme point 
concerned, according to Corollary 2, it lies in the interval  

( )02 2,2 2m m p t π + π π+ π +   with respect to ( )tθ , where 0t  is defined by 

( )0 2 2t mθ = π+ π . Similarly, the maximum extreme point lies in the interval 

( )02 2,2 2m m p t π + 3π π+ 3π +   with respect to ( )tθ , where 0t  is defined 

by ( )0 2 2t mθ = π+ 3π . 

If the assertion is false, there must be a *t T>  and a [ ]* 1 2,1σ ∈  such that 

( )* *, 2tε σ = π  or 2−π . Let 1 2 3 4, , ,t t t t  and 5t  be the points which accord 

with ( ) ( )* , 2 1t mφ σ = + π , ( )2 1 2m + π+ π , ( )2 1m + π , ( )2 1 2m + π+ π  and 

( )2 3m + π , respectively. Firstly, *
2 4,t t t≠ , since they are the extreme points 

with ( )*0 , 5tε σ< < 2π  for all [ ]1 2,1σ ∈ . Secondly, *
1 3 5, ,t t t t=  are also 

impossible. The reason is that, for the case with *
3t t= ,  

( ) ( )* *sin , sin 2 1 0t mφ σ = + π =   , yet  

( ) ( ) ( ) ( )* *
3 3 3, , 2 1 2t t t mθ φ σ ε σ= − π+ = + π± π  accords with ( )*

3sin , 0tφ σ ≠  

(see Figure 7). This is a contradiction. The same thing occurs for *
1t t=  and 

5t . 

In the following we firstly consider the case with ( )* *, 2tε σ = π . In case *t  
lies in the increasing interval ( )2 3,t t  of ( )*sin , tφ σ , then 
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Figure 7. The variation of ( )sin tθ + π   (see (a)) and ( ) ( )sin ,t tθ ε σ + π −    (see (b)) 

with respect to ( ) [ ]10 ,22tθ ∈ π π  for the particular case with ( ), 10tε σ ≡ π . 

 

( ) ( ) ( )
( )( ) ( )

* * * * *

*

sin , sin ,

sin 2 sin

t t t

t t

φ σ θ ε σ

θ θ

 = + π− 
   = − π + π = + π  



 
with ( )1 2,t t t∈ . Yet from Theorem 4 we see on this interval ( )*sin , tφ σ  de-
creases along with the increasing of ( )tθ , that is, along with the increasing of t. 
This is a contradiction. In case ( )*

3 4,t t t∈ , we have ( )*sin , 0tφ σ > . Yet at this 
time, 

( ) ( )( ) ( )* * *sin , sin 2 sin 0t t tφ σ θ θ   = − π + π = + π <  


 
with ( )2 3,t t t∈ . This is also a contradiction. In case *t  lies in the decreasing 
interval ( )4 5,t t  of ( )*sin , tφ σ , then it follows from Theorem 3 that, there is 
also a corresponding point ( )3 4,t t t∈ , at which ( )*sin , tφ σ  increases. A con-
tradiction is met. In case ( )*

1 2,t t t∈ , we have ( )* *sin , 0tφ σ < , and there 
should be a corresponding point ( )0 1,t t t∈  with ( ) ( )*

1, 2 1 2t mφ σ = + π− π , 
such that ( )* *sin , 0tφ σ > , and get a contradiction. 

For the case with ( )* *, 2tε σ = −π , to repeat the above processes we get the 
corresponding contradictions. In summary, for all [ ]1 2,1σ ∈  and all  

042 e Ct T> = π , it holds the estimation ( ), 2tε σ < π . 
In addition, along with the increasing of ( )tθ  on ( )( )02 , 2p tπ + 3π , 

( )sin , tφ σ  increases. This indicates that ( )tθ  dominates and the inequality in 
Equation (68) holds true. Notice that ( )0 5p t < 2π , to solve  

( ) ( )* *4 log 2 e 6 2 5t t π + π = π + 2π , it yields * 26.2694t ≈ . Hence, on the in-
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verse manner, from Equation (68) we have 
*

0
1 2log 0.3576 .
4 5

tC
 

< ≈ < 2π   
This partly indicates that, the requirement for T is not too high. 
In the following we refine the estimation on ( ), tε σ  with another approach. 
Firstly, as the extreme points of ( )sin , tφ σ  concerned, for a given [ ]1 2,1σ ∈ , 

there must be a positive integer k  and a *
kt  such that  

( ) ( )* *, 2k kt t kθ ε σ+ π− = π+ 3π , from which we get [same to Equation (67)] 

( ) ( )
( )

( )
2

2*
2

14 1 2,e
0 ,

1 2,e k

w

k k t
kk

G Ct p t
tt F

ε σ
π

≤ ≤ = ≤              (70) 

with ( ) ( )2 12
214 1 2,e 1 2,ew tC G F π= , where kt  is defined by  

( ) 2kt kθ = π+ π . Since this inequality holds for all k , we expect the estimation 

( ) 1,
Ct
t

ε σ ≤                         (71) 

holds for some finite positive constant 1C  which does not rely on σ . 
On the contrary, if for any given 0C >  there is always a 0σ σ=  and a  

t T=  such that ( )0 , 0T C Tε σ > > , then there is an integer 0K >  such that 

( ) ( ) [ )* , 2, 2Kt T K Kθ θ ∈ π+ π π+ 3π . In the following we seek for a contradic-
tion with case by case discussion. 

Case a: In case ( )*
0 1, 0Ktε σ + > , Since both ( )0 ,Tε σ  and ( )*

0 1, Ktε σ +  are pos-
itive, there must be a finite proportional coefficient 0λ >  such that  
( ) ( )*

0 0 1, , KT tε σ λε σ += . In view of 1Kt T+ >  we have 

( ) ( ) ( )*
0 0 1 1

1 1

, , .K K
K K

C C CT t p t
t T t

λε σ λε σ λ+ +
+ +

< < = ≤ ≤
 

A contradiction is met only if we choose C Cλ> . 
Case b: In case ( )*

0 1, 0Ktε σ + = , if there is an integer ( )1n >  such that  

( )*
0 , 0K ntε σ + > , then the previous contradiction is also met by choosing  

C Cλ> . At this time, the inequality bellow 

( ) ( ) ( )*
0 0, , .K n K n

K n K n

C C CT t p t
t T t

λε σ λε σ λ+ +
+ +

< < = ≤ ≤
 

is contradictory. 
Case c: If for all k K> , the equality ( )*

0 , 0ktε σ =  always holds, furthermore, 
if there is a [ ]1 1 2,1σ ∈  and an integer ( )1n ≥  such that  

( )*
1, 0K ntε σ + > , then ( ) ( )*

0 1, , K nT tε σ λε σ +=  also holds for some 0λ > , and 
the previous contradiction is also met. We note that, due to the continuousness 
of ( ), tε σ , the occurrence of this situation is very natural. 

Case d: For all [ ]1 2,1σ ∈  and all k K> , the equality ( )*, 0ktε σ =  always 
holds, then the particular point kt  with ( ) 2kt kθ = π+ π  is exactly the ex-
treme point of ( )sin , tφ σ . If that happens, the refined estimation in Equation 
(71) is invalid. However, the estimation ( ), 2tε σ < π  is still valid for this case. 
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We note that, the ideal situation in the last case hardly occurs, since it requires 
the inequality ( ), 0ktσΦ ≤  always holds. This, in turn, needs the dominating fac-
tor 

( ) ( )*2 * *
20

, e sin d 0.kz tG z zσ
∞

≤∫  
Yet, take the case with 1 2σ =  as an example, ( )*2

2 1 2,e kz tG  has peak 
value at about *

2 2 0.2373k kz t w t= ≈ , where the ratio 0.2373 is not an integer or 
half integer. Furthermore, since this peak value may dominate the correspond-
ing integral, as a whole, the variation of ( ), ktσΦ  is not synchronous with that 
of ( )ktθ , and it prevents the occurrence of this ideal situation. Unfortunately, a 
rigid proof is unobtainable, and this case can not be excluded. 

We note that, for Cases a-c, the requirement 042 e Ct T> = π  for the unique-
ness of extreme point can be loosened. Since it holds ( ) 1, t C tε σ ≤ , to express 
( ) ( ), ,t h t tε σ σ= , then ( ) 1,h t Cσ ≤  and there is also a finite positive con-

stant 2C  such that ( ) 2,th t Cσ ≤ . Hence, 

( ) ( ) ( ) ( )

( ) ( )

2

2 1

, , , 1
,

, ,
.

t
t

t

h t h t t h t
t

t t t

h t t C C
t t

σ σ σ
ε σ

σ ε σ

− ⋅ ∂
= = ∂  

− +
= ≤

 
For this case, the inequality in Equation (68) holds on condition that t T>  

with 

1 2log .
4
T T C C  = + 2π   

Certainly, there is another understanding. For Cases a-c, the estimation  
( ) 1, t C tε σ ≤  can be used in a direct way. To ensure ( ), 2tε σ < π , it only re-

quires 12t T C> = π . 

3.3.7. The Finial Results for U  and the Verification of Proposition 2 
As stated in the previous section, for every given [ ]1 2,1σ ∈ , only if t is big 
enough, say 042 e Ct T> = π , there is ( ) ( ) ( ), , 0t tt t tφ σ θ ε σ′= − > , and on every 
period the uniqueness of the minimum extreme point and maximum extreme 
point of ( )sin , tφ σ  is ensured. To denote 

( ) ( ) ( )

( )

4, 2 ,
3

4log , ,
2 2 e 3

t t t

t t t

ϑ σ θ ε σ

ε σ

= + π−

 = + π− π 

               (72) 

then the inequality ( ) ( ) ( ), , 0t tt t tϑ σ θ φ σ′= + >  holds for 042 e Ct T> = π , which 
is bigger than 2π. 

For every permitted integer k , with respect to ( ) ( )( ), , 1t k kϑ σ ∈ π + π , we 
verify the uniqueness of the extreme point of ( ) ( ) ( )*, , sin ,U t A t tσ σ ϑ σ= . We 
note that, since ( ),U tσ  is the real part of the analytic function ( )itξ σ + , both 

( )* ,A tσ  and ( ), tε σ  are smooth functions which have arbitrary order deriva-
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tives. 
For every given [ ]1 2,1σ ∈ , the partial derivative of ( ),U tσ  about t reads: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

*

* *

*
*

*

*

, , sin ,

, sin , , , cos ,

,
, , sin , cot ,

, ,

: , , sin , cot , , .

t

t t

t
t

t

t

U t A t t
t

A t t A t t t

A t
A t t t t

A t t

A t t t t g t

σ σ ϑ σ

σ ϑ σ σ ϑ σ ϑ σ

σ
σ ϑ σ ϑ σ ϑ σ

σ ϑ σ

σ ϑ σ ϑ σ ϑ σ σ

∂  =  ∂
= +

 −
= − 

  
= −  

  (73) 

We note that, as the extreme points concerned, the case ( )sin , 0tϑ σ =  is ex-
cluded since at this time ( ), 0tU tσ ≠ . With this understanding, all the locations 
of extreme points are determined by the equation ( ) ( )cot , ,t g tϑ σ σ= . It is eas-
ily checked that, no matter ( ),g tσ  is positive or not, its curve intersects with 
that of ( )cot , tϑ σ  only once on every given period ( )( ), 1k kπ + π . This indi-
cates ( ),U tσ  has a unique extreme point on ( )( ), 1k kπ + π . 

Furthermore, notice that for a fixed σ , ( )cot , tϑ σ →∞  as t k→ π  from the 
right and ( )cot , tϑ σ → −∞  as ( )1t k→ + π  from the left, and  
( ) ( ) ( ) ( )* *, , , ,t tg t A t A t tσ σ σ ϑ σ= −  is bounded, for all k  the function  

( ) ( )cot , ,t g tϑ σ σ−  always changes from positive to negative on  
( )( ), 1k kπ + π . In addition, in case 2k m=  it holds ( )sin , 0tϑ σ > , yet in case  
2 1k m= −  it holds ( )sin , 0tϑ σ < . It follows from Equation (73) that, on  
( )( )2 , 2 1m mπ + π  the unique positive extreme point of  

( ) ( ) ( )*, , sin ,U t A t tσ σ ϑ σ=  is the maximum one, and on ( )( )2 1 ,2m m− π π  the 
unique negative extreme point is the minimum one. 

Hence, on every half period, the uniqueness of the extreme point of  
( ) ( ) ( )*, , sin ,U t A t tσ σ ϑ σ=  is verified. It only requires 042 e Ct T> = π . 
To summarize all the obtained results we have the final theorem: 
Theorem 5. For every given [ ]1 2,1σ ∈  and every 0t t≥  with 

( ) 0 0
0 log

4 2 e 6 2
t t

tθ π π = + = π   
( 0 20.8747t ≈ ), the real part of ( )itξ σ +  is in an explicit periodic form: 

( ) ( ) ( )* 4, , sin log , .
2 2 e 3
t tU t A t tσ σ ε σ  = + π−  π    

Here the amplitude decays within 

( ) ( )0*
2

2 5 14 , .
5

F
A t

tt
σπ

< <  

The perturbation term ( ), tε σ  is bounded. ( ),t tε σ  is also bounded, say  
( ) 0,t t Cε σ ≤ , where 0C  is a positive constant. In case 042 e Ct T> = π , there is 

an estimation ( ), 2tε σ < π , and on every period ( ),U tσ  has a unique posi-
tive maximum extreme point and a unique negative minimum extreme point. In 
addition, to define *

kt  by ( )* 2kt kθ = π+ π , then except the particular case with 
( )*, 0ktε σ ≡  for all [ ]1 2,1σ ∈  and all nonnegative integer k, there is a refined 
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estimation: 

( ) 1, ,
Ct
t

ε σ ≤
 

here 1C  is a positive constant. 
These theoretical results accord well with the numerical ones in Section 2 (see 

Figures 1-3), and the distribution law 

4log , 1,2,
2 2 e 3
k kt t

k k  + π = π = π 


 
of the zero points on the critical line 1 2σ =  is embodied perfectly. Here kt  
stands for the approximate value of the k -th zero point. This indicates Proposi-
tion 2 given by Riemann is true. The explicit illustration is as follows: 

Theorem 6. For a big enough T which does not accord with a zero point, in 
the range 0 t T< <  the number of zero points on the critical line 1 2σ =  ob-
eys the exact formula bellow (understood as taking the integer part): 

( ) ( )1 2,4log
2 2 e 3

TT TN T
ε = + − π π π 

              (74) 

with ( )1 2, 1 2Tε π < . 

4. The Finial Proof of Riemann Hypothesis 

To get an intuitive understanding on the variation of ( )itξ σ + , we make nu-
merical simulations on ( ),U tσ  and ( ),V tσ  according to the formulas in Equ-
ation (18) and Equation (23), that is, 

( ) ( )

( ) ( )

1

1

, , cos log d ,
2

, , sin log d
2

tU t f x x x

tV t g x x x

σ σ

σ σ

∞

∞

 =  
 
 =  
 

∫

∫
              (75) 

with 

( ) ( )1 4

1

3, 2 e ,
2

na x
n n

n
f x x x x a a xδ δσ

∞
−−

=

 = + − 
 

∑
 

( ) ( )1 4

1

3, 2 e ,
2

na x
n n

n
g x x x x a a xδ δσ

∞
−−

=

 = − − 
 

∑
 

where ( )1 2 2δ σ= −  and 2
na n= π . 

Essentially, they are infinite integrals with infinite series. How to make objec-
tive numerical simulations for them is still a question. Our try with finite ap-
proximations yield Figure 8 and Figure 9 which are just for reference. These 
figures roughly reflect the basic variation characteristics of ( ),U tσ  and  
( ),V tσ . We note that the simulated periodic signals are too strong, and they 

have depressed the random variations. There is an evidence for this, that is, the 
simulated zeros points of ( )1 2,U t  does not completely coincide with the known 
numerical ones (mentioned in Section 2). 

Since ( )itξ σ +  is analytic, the well-known Cauchy-Riemann conditions hold  
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Figure 8. The numerical simulation of ( ),U tσ  for the case with 1 2σ− ≤ ≤  and  

997 1030t≤ ≤ . 
 

 
Figure 9. The numerical simulation of ( ),V tσ  for the case with 1 2σ− ≤ ≤  and  

997 1030t≤ ≤ . 
 

for its real and imaginary parts: 

, .t tU V U Vσ σ= = −                      (76) 

One can check these with the two formulas in Equation (75) in a direct way. 

RETRACTED

https://doi.org/10.4236/am.2021.128050


J. L. Wang 
 

 

DOI: 10.4236/am.2021.128050 760 Applied Mathematics 
 

Let Ω  be any finite domain in two-dimensional real space 2 . The analytic 
property of ( )itξ σ +  implies good smoothness of U and V on Ω . So the se- 
cond-order partial derivatives of them exist and are continuous, that is,  

( )2,U V C∈ Ω . It follows from Equation (76) that 

( )0, 0, , .tt ttU U V V tσσ σσ σ+ = + = ∈Ω  
These mean bother U and V satisfy the two-dimensional Laplace equation, and 

the result below hold for them: 
Lemma 2. (Extremum Principle) [19]: If ( ),u tσ  satisfies the Laplace equa-

tion 0ttu uσσ + =  in Ω , then it has no extreme point in the interior of Ω , un-
less it is a constant on the entire region Ω . 

It is well-known that there is no zero point outside the critical strip 0 1σ≤ ≤  
(see [2] [3] [4] [5] [6]). Notice that the zero points of ( )itξ σ +  accord with the 
nontrivial zero points of ( )itζ σ + , as the real-valued problem concerned, the 
equivalent statement of the Riemann hypothesis is as follows: 

Except on the critical line 1 2σ = , ( ),U tσ  and ( ),V tσ  have no other mu-
tual zero point in the region [ ] ( )0,1 0,× ∞ . 

Just as mentioned in Section 1, for any given finite region bounded by  
0 1σ≤ ≤  and 0 t T< < , the check can be always done. What lacks is the know-
ledge for the case with t →∞ . Till now the known record was set by X. Gour-
don in 2004 [11]. He had checked the first 1013 zero points and found that they 
all possess real part 1 2σ = . To speculate with our distribution law, its upper 
bound is up to 122.4460 10T = × . As reviewed in [9], another calculation had 
ever been done by Odlyzko in 1989 [20] in selected intervals show that the Rie-
mann hypothesis holds for over 3 × 108 zeros at height up to 202 10T = × . Our 
aim is to settle down the infinite case, and the lower bound T may be much low-
er than this. The following is the final theoretical result: 

Theorem 7. Except on the critical line 1 2σ = , the real part ( ),U tσ  and im-
aginary part ( ),V tσ  of ( )itξ σ +  have no other mutual zero point in the re-
gion [ ] ( ) [ ] ( )0,1 , 0,1 ,T T× ∞ × −∞ −  for big enough T, say  

{ }04
1max 2 e ,4CT C= π π , where 0C  is the upper bound of the bounded func-

tion ( ),t tε σ , 1C  is the positive constant which ensures ( ) 1, t C tε σ ≤ . 
Proof. It follows from Lemma 1 that, ( ),U tσ  is symmetric about the hori-

zontal line 0t =  and vertical line 1 2σ = , and ( ),V tσ  is anti-symmetric 
about the horizontal line 0t =  and vertical line 1 2σ = . Hence, as the mutual 
zero point of U and V concerned, it only needs to consider one quarter part of 
the concerned region. Here we choose the one defined by ( ] ( )1 2,1 ,T× ∞ , which 
excludes the critical line 1 2σ = . 

Suppose ( ),U tσ  and ( ),V tσ  has a mutual zero point in ( ] ( )1 2,1 ,T× ∞ , 
say ( )0 0, tσ , then it must not be an isolated zero point of ( ),U tσ  or ( ),V tσ . 
On the contrary, if so, to draw a small circle around ( )0 0, tσ , then ( ),U tσ  or  
( ),V tσ  maintains its sign on this circle, either positive or negative. For this 

case, at the interior point ( )0 0, tσ , 0U =  or 0V = , and this point must be a 
minimum extreme one or a maximum extreme one of ( ),U tσ  or ( ),V tσ  on 
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this circular region. This contradicts with the Extremum Principle. Hence,  
( )0 0, tσ  is not isolated, and the 2-dimensional surfaces defined by ( ),U tσ  and 
( ),V tσ  must intersect the zero-valued plane with two curves, say 1l  and 2l , 

which pass through the mutual zero point ( )0 0, tσ . For convenience, we call 
them “zero-valued curves” of U and V. 

Firstly, we assert that all the zero-valued curves of U intersect with the critical 
line 1 2σ = . It follows from the Extremum Principle that all the zero points of 
( )itξ σ +  on 1 2σ =  can not be isolated ones. Explicitly, since ( )1 2, 0V t ≡  

holds for all ( ),t∈ −∞ ∞ , this line itself is a zero-valued curve of V. Meanwhile, 
for every given positive integer k , let ( )1 2, kt  be the k -th zero point of 
( )1 2,U t , then there is also a zero-valued curve across it. This curve is also 

unique. In fact, it follows from Theorem 5 that ( ) ( ) ( )*, , sin ,U t A t tσ σ ϑ σ= , 
and this curve is actually one of the intersecting curves of this continuous peri-
odic surface and the zero-valued plane, which crosses the point ( )1 2, kt . Exact-
ly, this zero-valued curve is determined by 

( ) ( ) ( )

( )

, 2 ,

4log ,
2 2 e 3

t t t

t t t k

ϑ σ θ ε σ

ε σ

= −

 = + π− = π π 

             (77) 

with ( ), 2tε σ < π . Under the condition that 042 e Ct T> ≥ π , the inequality 
( ), 0t tϑ σ >  holds, and for the case with [ ]1 2,1σ ∈ , the value of t is uniquely 

determined. The periodicity of ( ),U tσ  ensured that there is no other ze-
ro-valued curves. Hence, the zero-valued curve 1l  of ( ),U tσ , which is across  
( )0 0, tσ , should accord with Equation (77) with some 0k k= . 

Secondly, there exists a horizontal strip which includes 1l , on which the sign 
of Vσ  maintains unchanged, and a contradiction is met. In the following we 
make case by case discussion. 

For the particular case with ( )0, 0tε σ ≡  for all [ ]1 2,1σ ∈ , the point 0t  ac-
cords with ( )0 2t mθ = π+ π  for some integer m, and hence 

( ) ( ) ( ) ( ) ( )0 0 0, 2 , 2 2 0 2 1 .t t t m mϑ σ θ ε σ= − = π+ π − = + π  
At this time, 1l  is a horizontal straight line which does not rely on σ . In 

view of ( ) ( ) ( )*, , sin ,U t A t tσ σ ϑ σ= , along with the increasing of [ ]1 2,1σ ∈ , 
with respect this zero-valued line, the neighboring maximum extreme points 
and minimum extreme points are also linked into two curves, say 1h  and 2h , 
which satisfy 

( ) ( ) ( )
( ) ( ) ( )

, 2 , 2 2,

, 2 , 2 2,

t t t m

t t t m

ϑ σ θ ε σ

ϑ σ θ ε σ

= − = π+ π

= − = π+ 3π
             (78) 

respectively. Since 042 e Ct T> ≥ π , it follows from Theorem 5 that  

( ), 2tε σ < π  and ( ), 2tε σ < π . Hence,  

( ) ( ) ( )2 2 2 , 2 1t m t mθ ε σ= π+ π + < + π  and  

( ) ( ) ( )2 2 2 , 2 1t m t mθ ε σ= π+ 3π + > + π . This indicates that  

( ) ( ) ( )02 2 2t t tθ θ θ< < , from which we get 0t t t< <  for all [ ]1 2,1σ ∈ . Ac-
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tually, 1h  and 2h  possess the coordinate ( ), tσ  and ( ), tσ , respectively. 

Certainly, 1l  is included in the horizontal strip delimited by 1h  and 2h . If 
there is a zero-valued curve 2l  of ( ),V tσ  which intersects with 1l  at  
( )0 0, tσ , then ( ) ( )0 0 01 2, , 0V t V tσ= = , and along 1l  there must be an ex-
treme point *σ σ= , at which 0Vσ = . Yet notice that for every given  

[ ]1 2,1σ ∈ , with respect to ( ), tϑ σ  on ( )2 2,2 2m mπ+ π π+ 3π ,  
( ) ( ) ( )*, , sin ,U t A t tσ σ ϑ σ=  decreases, there should be 0tU <  on the whole 

strip. Furthermore, it follows from the Cauchy-Riemann condition in Equation 
(76) that 0tV Uσ = − > . This leads to a contradiction. 

Except the particular case ( )0, 0tε σ ≡ , it follows from Theorem 5 that, the 
refined estimation ( ) 1, t C tε σ ≤  holds for some positive constant 1C . On 
condition that 14t T C> ≥ π , we have 

( ), .
4

tε σ π
<  

To take ( )2 tθ  as a research object, from Equation (77) we see 1l  accords with 

( ) ( )0 0 02 ,
4 4

k t k t kθ ε σπ π
π− < = π+ < π+               (79) 

for some positive integer 0k . At this time, the neighboring two extreme-point 
curves, say 1h  and 2h , are defined as in Equation (78), which yield 

( ) ( )

( ) ( )

0 0

0 0

2 2 , ,
4

2 2 , .
4

t k t k

t k t k

θ ε σ

θ ε σ

π
= π− π + < π−

π
= π+ π + > π+

              (80) 

As a default, here t T>  is fulfilled. To combine the inequalities in Equation 
(79) we have 

( ) ( ) ( )0 02 2 2 .
4 4

t k t k tθ θ θπ π
< π− < < π+ <             (81) 

In the horizontal strip delimited by 1h  and 2h , there are two horizontal lines, 
say 1j  and 2j , defined by ( ) 02 4t kθ = π− π  and ( ) 02 4t kθ = π+ π , respec-
tively. If there is a zero-valued curve 2l  of ( ),V tσ  which intersects with 1l  
at ( )0 0, tσ , then the horizontal line 0t t=  is between the two horizontal lines 

1j  and 2j . Naturally, we have ( ) ( )0 0 01 2, , 0V t V tσ= = , and along the line 

0t t=  there should be an extreme point *σ σ= , at which 0Vσ = . Yet in the 
horizontal strip delimited by 1h  and 2h , ( ), tϑ σ  lies in the monotone inter-
val ( )0 02, 2k kπ− π π+ π . In case 0k  is odd, say 0 02 1k m= + , for every given 

[ ]1 2,1σ ∈ , ( ) ( ) ( )*, , sin ,U t A t tσ σ ϑ σ=  decreases on this interval. Particu-
larly, between the two horizontal lines 1j  and 2j , there is 0tU < . Further-
more, it follows from the Cauchy-Riemann condition in Equation (76) that 

0tV Uσ = − > . This leads to a contradiction. In case 0k  is even, say 0 02k m= , 
( )0 02, 2k kπ− π π+ π  is the increasing interval of ( ),U tσ , and between the 
two horizontal lines 1j  and 2j  there must be 0tV Uσ = − < . This is also con-
tradictory. 
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The contradiction above indicate that the real part ( ),U tσ  and imaginary part 
( ),V tσ  of ( )itξ σ +  have no mutual zero point in the region ( ] ( )1 2,1 ,T× ∞  

for big enough T. Furthermore, it follows from the symmetric properties of U 
and V that, except on the critical line 1 2σ = , they have no other mutual zero 
point in the whole region [ ] ( ) [ ] ( )0,1 , 0,1 ,T T× ∞ × −∞ − . The proof is finished. 

5. Conclusions and Remarks 

The Riemann hypothesis is a well-known unsolved problem. Its difficulty lies in 
the complexity of the Zeta function ( )sζ . Essentially, it is involved in an infi-
nite integral which includes infinite series with complex variables. 

From October 2018 we had tried to detour this infinite integral, and explore 
an abstract proof with the “symmetry” of ( )sξ  [which is equivalent to ( )sζ ], 
the Extremum Principle and some new techniques. After about one year, we had 
found that all these tries are in vain and turned to the “monotonicity”. As de-
picted in Figure 9, ( ),V tσ  shows good horizontal monotonicity. Yet the proof 
is not available. In 2020 we had grasped the key point, that is, to prove the Rie-
mann hypothesis it requires, ( )1 2,U t  has no positive minimum extreme 
point and negative maximum extreme point. Yet, to prove this is like climbing 
the steep precipices and cliffs, there is no viable path! Until March 2021, when 
we began to investigate the distribution law of zero points on the critical line 

1 2σ = , a bold idea appeared, that is the “periodicity”! With this understanding, 
all the scattered results in the literatures are linked together. With three-month 
effort, a brand-new artwork appeared. 

For every given [ ]1 2,1σ ∈ , we have found that the real part of ( )itξ σ +  is 
actually in an explicit periodic form: 

( ) ( ) ( )* 4, , sin log , .
2 2 e 3
t tU t A t tσ σ ε σ  = + π−  π    

with ( ) ( )2 *
04 5 , 2 5 1t A t F tσπ < <  and ( ), 2tε σ < π . Except a particular 

case, there is also a refined estimation ( ) 1, t C tε σ ≤  for some positive con-
stants 1C . 

These theoretical results have verified the observed distribution law 

4log , 1,2,
2 2 e 3
k kt t

k k  + π = π = π 


 
for the zero points on the critical line 1 2σ = . Here kt  stands for the ap-
proximate value of the k -th zero point. This indicates Proposition 2 given by 
Riemann is true. Explicitly, for a big enough T which does not accord with a zero 
point, in the range 0 t T< <  the number of zero points on the critical line 

1 2σ =  obeys the exact formula bellow (understood as taking the integer part): 

( ) ( )1 2,4log
2 2 e 3

TT TN T
ε = + − π π π 

 

with ( )1 2, 1 2Tε π < . 
It is well-known that there is no zero point outside the critical strip 0 1σ≤ ≤ . 
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For any given finite region bounded by 0 1σ≤ ≤  and 0 t T< < , it can be al-
ways checked that, all the zero points of ( ), tξ σ  are on the critical line 

1 2σ = . What lacks is the knowledge for the case with t →∞ . In 2004, Gour-
don [11] had checked the first 1013 zero points and found the Riemann hypothe-
sis is true. To speculate with our distribution law, its upper bound is up to 

122.4460 10T = × . As reviewed in [9], another calculation had ever been done by 
Odlyzko in 1989 [20] in selected intervals show that the Riemann hypothesis 
holds for over 3 × 108 zeros at height up to 202 10T = × . Our request on the 
lower bound T may be much lower than this. The final result is as follows: 

Except on the critical line 1 2σ = , the real part ( ),U tσ  and imaginary part 
( ),V tσ  of ( )itξ σ +  have no other mutual zero point in the region  

[ ] ( ) [ ] ( )0,1 , 0,1 ,T T× ∞ × −∞ −  for big enough T. 
This indicates the Riemann hypothesis is true, and it is the moment to draw 

full stop for this suspending problem. 
In addition to the “Riemann hypothesis”, we had also explored another well- 

known problem named “P versus NP” in [21], where a brand-new fast algorithm 
for the “travelling salesman problem” was constructed, and a surprising result “P 
= NP” was obtained. Those who are interested can read it. 
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