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The Proof of Riemann Hypothesis, the Key

to the Door Is the Periodicity. Applied Ma- ~ Lhe Riemann hypothesis is mathematical problem that has
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in an infinite integral which includes infinife series with complex variables.
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1. Introduction

The Riemann hypothesis is a well-known mathematical problem. It had ever
been a global hot topic when British mathematician Michael F. Atiyah (1929-
2019) reported his proof in Heidelberg Laureate Forum on Sep. 24, 2018. Un-
fortunately, his approach does not work and now this problem is still in sus-
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pense. To crack it, just as reported by New Scientist in [1], “unless with a totally
new idea.” To read through the monographs in [2] [3] [4] and the popular read-
ings in [5] [6], one can find the difficulty of Riemann hypothesis lies in the com-
plexity of the Zeta function. Essentially, it is involved in an infinite integral which
includes infinite series with complex variables. To detour this infinite integral is
in vain, since all the messages are hid in it. To unscramble them, in my brain
many ideas appeared and died during the past three years. Among them there is
only one which survives and could be seen as “a totally new idea”. This is the

“periodicity”! The proof will be a combination of the sym monotonicity,

with s=o +it, which is

verges only for the case

nt of ¢ (s). This function has real zero
en integers —2,—4,-6,--- and one refers to them as the

ed by increasing positive imaginary part) had been checked by J. Lune et a/
witliPfiumerical approach in [10], and the result showed that they are simple and
all possess real part o =1/2. More zero points had been checked by the follow-
ers, the same thing occurred. Till now the known record was set by X. Gourdon
in 2004 [11], 10" zero points. So the Riemann hypothesis is very likely true.
What lacks is the theoretical proof.
The analytic continuation for Z:;l
Among them, the most popular one is given by:

/2 (s)
<(s)= (s—1)T(s/2+1)’

N~ (defined on o >1) is not unique.

(2)
which is meromorphic on C with a unique pole at s=1 (its residual is 1) [2]
[3] [4]. Here

[(s/2+1)= _[Ow x*2e*dx (3)

with a default requirement ¢/2+1> 0. Its analytic continuation to the negative
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direction is done by T'(s/2)=T"(s/2+1)/(s/2) step by step. In this sense,
—2,-4,-6,--- are the zero points of 1/I"(s/2+1), and this is why they are the
trivial zero points of ¢'(s). Naturally, the function &(s) satisfies the inverse rela-

tion which was written down by Riemann:

£(s) = (s=1)m 2T (s/2+1) < (s)
_ s(s

—T_l)nzl“(s/z)cj(s)

2 |s(s-1)
:%_ s(lz—S)LmW(X)(XZ

with y(x)= Zc::le'””zx, which satisfies i 1low (see the de-

(4)

(5)

£ (s) and the exploring o
£(s) . To substit
E(s)=£&(1-5).

between the funct

expression maintains unchanged, so

property implies the most important relation

¢(s)=

0
n=:

ne= H(l— ps )_1 (6)
p

[N

(where the last expression is a product respect to all the prime numbers
p=2,3,5-), one can easily checked that |§(S)| #0, that is |§(S)| #0, for the
case o >1 (see [5]). Furthermore, the relation &(s)=¢(1-s) indicates that the
same thing is true for o <0.

We note that, as the critical strip concerned, the two lines o =1 and ¢ =0 can
be gotten rid of. As reviewed in [4] [13], the proof given by de la Vallée Poussion in
1899 for this is very complex. Yet, as our approach concerned, it doesn’t matter. Any
chosen strip with 1/2-a<o <1/2+a and a>1/2 can fulfil the request.

To denote &(o+it)=U (o,t)+iV (o,t), then it follows from the well-known
Reflection Principle % =¢ (§) of complex conjugate that
U(o,t)-iV(o,t)=U(0o,~t)+iV (o,~-t). Meanwhile, the relation
£(s) = &(1-5) yields U (o,t)+iV(o,t)=U(1-0,~t)+iV (1-0o,-t). Based on

these two relations, the symmetric properties of &(s) are clarified as:
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Lemma 1. 7o denote &(o+it)=U (o,t)+iV (o,t), then its real part and im-
aginary part separately satisty the symmetries and anti-symmetries bellow:
U(o,-t)=U(o,t), V(o,~t)=-V(0ot),
U(l-o,t)=U(o,t), V(1-o,t)=-V(o,t).

For the particular cases with t=0 and o = 1/ 2, the relations for Vread
V(0,0)=-V (0,0) and V(1/2,t)=-V(¥/2,t). So V(0,0)=V(1/2,t)=0.
This indicates that the values of &(o +it) are real on thelines t=0 and

o =1/2. This lemma can be understood as: U and V are symmetzic and anti-sym-

the arguments are about the upper quarter strip wi
Particularly, due to the direct relationship with thedRi
o =1/2 has drawn much attention.
It is enlightening to divide Riemann h
sitions (see [5], pages 22-23):
Proposition 1. In the region bou

oldt in 1905 [4] [5] [14]. His estimation for
the zero-points nugmber is

T T
=zlog%+0(log(T)), (7)

ecks are’done according to this theoretical result, and the numerical approx-
alues for the first four zero points are
1/2+14.1347251i, 1/2+21.0220396i,

1/2+25.0108575i, 1/2+30.4248761i.

On the aspect of theoretical study, in 1914 Hardy firstly proved that, there are
infinitely many zero points of £(s) on the critical line o =1/2 (see the re-
view in [3]). Due to the efforts of Selberg [15], Levinson [16] and Conrey [17],
the ratio was lifted step by step. Now the known optimal estimation is that more
than 40% of zero points of £(s) are on the critical line o =1/2 (they are also
simple ones). These indicate that Proposition 2 is far from settled. Our approach
is a direct attack to it. In addition, as reviewed in [4], “A/ the zero points of
&(s) are simple ones” already became an accompanying conjecture to Rie-
mann hypothesis. Yet, under our approach, this is not a thing.

The above survey is about the known knowledge of Riemann hypothesis, and

the next is about our new findings. We begin with investigating the distribution
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law of zero points on the critical line o = 1/ 2 in Section 2; The third section is
about the main content, which includes 3 subsections. In the last subsection the
periodicity of U (o,t) is detailed illustrated. During the argument processes of
periodicity, the monotonicity of the related functions become the preconditions.
With the aid of explicit expression of U (o,t), the distribution law of zero
points is verified. This indicates Proposition 2 given by Riemann holds true. The
proof of Proposition 3, that is the Riemann hypothesis, is given in Section 4. The

conclusions and related remarks are given in the last.

where (R and 3 mean al and imaginary parts, respectively)

¥4 exp[ﬂ% Iogl“(ll2ti ﬂ )

1+2ti) t
——logm
4 2

(10)
t t n 1 7

=—log———+—F et

2 " 2ne 8 48t 5760t

a(t) >0, the zero points on the critical line are only determined
the sigd shift of Z (t) = eis(t)g“(]/2+ it) . Furthermore, as reviewed in [4], the

i expression can be employed to make the estimation [the zero points of
¢ (@/2+it) coincide with that of &£(1/2+it)]:
¢ (Y2+it)=e Uz (t)=Z(t)cos §(t)-iZ (t)sin 4(t). (11)

According to this, for the first time, Gram calculated the first 15 zero points in
1903. His method is an estimation approach based on sin J(t) =0, which yields
the known Gram pointsat 3(t,)=kn with an approximation:

tt =«

Yot Tk k=12, (12)
2 2ne 8

Certainly, to estimate the location of a zero point, the change of Z(t) should
be also considered. This adds the complexity. By the way, 29 years later, the ap-
proximate approach for Z(t) was improved. That is the known Riemann-Siegel
formula, which was discovered by Siegel in 1932 among Riemann’s private pa-
pers (see [4]).

Though the method given by Gram is so rough, it is enlightening. The distri-
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bution of zero points on the critical line o =1/2 may possess some kind of pe-
riodicity. In fact, for some given t=T , the argument $(T) obtained on the criti-
cal line and the zero-points number N(T) in the region 0<o <1 and
0<t<T have close relationship:

T T T
S(T)=—log———+---,
( ) 2 ane 8
T T
N(T)=—Ilog—+—+
( ) 27 ane 8
Exactly, as reviewed in [3] (page 132-134), in 1918 Backlun@ha ealed that,

Enlightened by this, we have a new idea. Pr iti provided that

U(1/2.t)= A(t)s ! (13)

, initial phase angle and small
perturbation function. Ce t=2n wehave
(t/2)log(t/2ne)=-n.H
cord with the fact that &(
£(0)=—¢(0)= and there

If U(Yy2,t) isi

ero points for 0<t <14, see [3], page 31).
a periodic form, the thing becomes very simple.

which accords with Proposition 2. Relative to Gram's approximation in Equation
(12), this formula is closer to the truth. In the following we give some numerical
evidences for this. The theoretical proof will be given in the next sections.

To neglect the perturbation term &(t, ) and make fitting with the known nu-
merical approximate values t, to the zero points (provided by Odlyzko in [18]),
it leads to the results in Figure 1. The first 50 zero points fitting yields an optim-
al phase angle « =4n/3, that is, the k -th zero point on the critical line is very
close to the solution of
ty

e Ak k=12 (15)
2 2ne 3

We call this newly found formula as the distribution law of zero points.
The check in Figure 2 with 10,000 zero points shows that the above distribution
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Figure 1. The fitting curve with the known numegical of the first 50

zero points, according to the formula in Equ: j =

*

Value of tk—tk

;
O AR
3 *‘ '} A e .
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*
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*
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Number of Zero Points

Fi 2. The variation of the error t, —t, with respect to the first 10,000 zero points.

law is also obeyed. The error is small. Though the value of t; is up to 9877, except
the 14-th and 64-th zero points, all the corresponding errors satisfy |tk —t:| <1.

In addition to the perturbation term &(t, ), these errors may also partly as-
cribe to the numerical scheme for t, , though its calculation accuracy is up to 10°.
Not forget that, essentially, the calculation of &(s) is involved in an infinite
integral which includes infinite series with complex variables. At least, the approx-
imate values for the 14-th and 64-th zero points are questionable. To take the 14-th
zero as an example. t, =60.831778525, t;, =65.112544048 and hence

bs Iogti—y’—ti—“logti—4 ~ 43.5681—38.6353 = 4.9328 > m. (16)
2 "2me 2 T 2me

Yet, it follows from N(T)~n"(T/2)log(T/2ne) that, to add one 7 means

to add a zero point. This indicates that 4.9328 is a too big difference between two
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adjacent zero points, it should be understood as a calculation error. With this

understanding, the departure from the newly-found distribution law caused by

the perturbation term &(t ) may be smaller than the difference of |t,: —tk|

depicted here.

Further check is given in Figure 3. This law is also obeyed for the zero points
numbered from 99,900 to 100,000.

74,925

74,915

74,905

Value of Imaginary Part t

74,895

€(5)-3

1
2

1

2

s(1-s) Iw

99,990

100,000

etical proof. Our theme is not limited by this, and in order to
pann hypothesis the periodicity of U (o,t) with 1/2<o <1 and
De considered in a unified way.

y, the 2-terms expression for £(s) in Equation (4) is awkward for use.

e following we adopt the derived form (see [3], pages 16-17):

V/(X)[le

T
X 4 cosh F(s—ijlog x} dx
| 2 2

% .E[ei(‘”"‘ij S G ] dx (17)

_s+l
+x 2

jdx

2

| x_% [x;[a_;J + x_%[a_g } cos (% log xj dx
+ Zif {xgy/(x)] x_% {x;[mg - x_%(g_%J }sin (% log xj dx,
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here the superscript “' ” denotes the taking of conventional derivative. Hence,
2T AT Yo k) Yo d)]
U(GJ):ZL {xzw'(x)} x4l x? Py 2 cos[EIongdx,

V(o,t)= ZJ'lw{xgy/’(x)] x% [x;(a;] - x%(g%] ]Sin (% log xj dx. (18)

In the following we mainly concern the variation of U (o,t).

To denote

with a substitution of

it follows from the first fo

U(o,t)= Lw

(20)
where, under another substitution y =e®*",
2 12
t o 2mne 2me t
L(ot)=—[ w . flo| =] e ||Z=| e ™ cos| —logy |d
1(ot) 21@ - {o( " j " 5109y |dy
12 12
=[" flo, 2me ) gowpagaan |[ 278V omoaat o 77 (21)
o(t) t t

- J';t) F(o,x(z,t))cos zdz,

12 2
l,(o.t)= %f(wt]’im f {a, [@] e/ y}(#) e ¥ sin G log yj dy
2ne (22)

=_[;(’t) F(o.x(z,t))sin zdz,
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in which F(o,x)=f(0o,x)x with

Y2 y2
x(z,t):(@j e‘“/?"y:(@j g 3t g2/t

3.1. To Prove the Monotonicity of F(o,x) about Xx

To recall that y(x)= z::le'nnzx , with a denotation & =(c-1/2)/2, the defi-
nition of f(o,x) in (19) leads to

F(o,x)= 2[x3/21//'(x)]' x’“(x‘s +x’5)-x

gXllzl//'(X)+ Xa/zl//"(X):| X3/4 (X§ £

N

=2 gy/'(x)+xz//"(x)} xs/“(xfS

(23)

and Xx>1, we have
=(0-1/2)/2, we have

—(x‘s —x“S)ZO

with a, =7n’. Since nn
F(o,x)>0.In addition,

_ Zi anﬁ(x‘“ _ x““)(an x4 _§X5/4]eanx
n=1 2
& s\ 9 _
+2nz=‘1an (% +x 5)(Zanx5/4 _Eije ¥
—Ziaﬁ (x? er“’)(anx"/4 —gijef‘"x
n=1

_ AN _3) e
=25(x° x")x“nz_;an(anx Zje

+2(x7+ X7 )xY g, (—aﬁxz +%anx—%je‘anx
n=1

kd 15 15 x* —1 3
=2(xC+x)x¥* Y a | -ai P +—a x——+5——| a x—— | |e™*
( ) Z; "L 47" 8 x4l 2
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<2(x*+x )XY a, {—anzx2 +%anx—%
n=1

1x-1 3) | _ax
e e
41+1 2

. 1 (24)
=2(x"+x7)x**>a, | a (a ——)xz
( ) nZ:‘I n| %n n 8
(29 3} 277 a
| —a,—— [x+—e
8 16 16
due to the fact that for x>1, n>1 and 0<S5<Y4 it
a,x—-3/2=nn’x-3/2>0 and 1<x* <X.
Let
. In

have h(n,x)>0 for n>2. In case n=1, the inequality
holds for x> x, ~1.0047. On [1,x,], h(1,x)<0 and to en-
re F,(o,x)<0 it suffices to consider the variation of the summation on this

1 . In fact, on this interval,

>a,la, (an —lsz —(Qan —ijx+£ I
ol 8 8 16 16
3
>>a, | a, (an —lj x? —(gan —ijx+2—7 g
n-1 8 8 16 16

whose value increases from 8.1862 x 107" to 0.0040. Hence, for all o <[1/2,1],
F.(0,x)<0 always holds and F(o,x) is monotone decreasing about X on

[1,00) .
3.2.To Prove 1/(o,t)+1;(o,t)>0 and Estimate Its Upper Bound

In order to combine the two terms I, (o, t)cosé(t)+1,(o,t)siné(t) into a sin-

gle periodic function, it requires \/ 17 (o,t)+17(o,t) >0, thatis

17 (o,t)+17(o,t)>0. Tosplit zinto z=2"+6(t), then
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12 12 .
X(Z,t) _ (@] e—n/BteZZ/l _ (#j efn/3te2(l +9(t))/t — eZz*/t ) (25)

It follows from Equation (21) and Equation (22) that

|2(O' t)+|2(a t)

—_[ (o,x(z,t))cos zdz-_[;t)F(a,x(w,t))coswdw
+_[ (o.x(z,t))sin zdz~j;t)F(o- x(w,t))sin wdw
j j (o,x(z,t))F (o, x(w,t))cos(z —w)dwdz

=" (a x(z"+0(t), ))F(a,x(w*+9(t),t
= J’O _[0 F (cr,e22 /‘)F (a,ezw*/t)cos(z* -w

(26)

:[I:F(a,ezz/‘)cos(z)d

For a fixed t(>0), thefrariations of F(O', /t),F(U,ezz/t)COS(Z) and
F(o.e*)sin(z) for the
Notice that F, (o, x)<

2 are simulated in Figure 4.

—F(c,X(z,t)) :
——F(c,X(Z,1))

= = =F(o,x(z,t))cos(z)
—— F(o,x(z,t))sin(z)
- — —Zero Line

_1 1 1 1 1 1
0 10 20 30 40 50 60

Figure 4. The variations of F(a,ezz/‘),F(a,ezz/‘)cos(z) and F(a,ezz/‘)sin(z) along

with the increasing of z for the case with 0=1/2 and t=100.
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%F (o.x(2.0)) = F, (o, x)% ~F, (o, x)%ezz/‘ <0

for the case with x =e%/, Hence, for fixed t>0, F (a,ezz/‘) decreases along
with the increasing of z (see Figure 4). In view of this,

'[: F (a,ezz/t )sin(z)dz

2(k+1)m

N
=~ N
a

F (cr,ezz/t )sin (z)dz

(27)

|12 (O',t)+ |22(O',t)>0. T

is also upper bounded.

2 O',t)

In fact, on the one hand, Equation (27) that

2(z +2kn-m)/t ) _F (0', 2z 2km)t )] (28)

3) a
a-—-—j|e™, 29
) o

which does not rely on o [see the expression in Equation (23)]. On the other
hand,

_[: F(a,ezz/‘)cos(z)dz

7R (o Joos(z)az+ 3 [0 F (o6 oos 1)

4k+1 n/Z
~ F(o,e%/ )_g

Of ( gl J/‘] in(2")dz'
_ F(G,eno/t)_gj { ( 22 e }/) (30)
-F (0', gl st Hsin (z7)dz”

0

=F (o-, e/t ) —2y [ F (0', o2 @k ) _F (o-, o2 a3yt )}

k=0
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with 0<z,<n/2 and 0<z, <m. Its upper bound is F (O',ezz°/t ) <R (1)
and lower bound is
F (O',GZZO/t )_ oF (O_,e(2z6+n)/t ) >F (O‘,en/t)—ZF (O_,en/t ) =—F (o',eﬂ/t) > —FO (1) .

Based on the above estimations, we have the final result:

0<\12(at)+12(a0t) < \/FOZ () +[2F, ()] =V5F, (1). (31)

3.3. Detailed Arguments on the Periodicity of U (0', t)

Since 17 (o,t)+ 12 (o,t), the real part of &(o +it) can be into a sin-

gle periodic one:

U (o) =%[I1(a,t)cose(t)+ 1,(o,t)

oncerned, in case 0<t<2me it is negative; in case

o take the derivative of H(t), it leads to a unique ex-

1347251, we only consider the case with t e [21-c, oo) on which
#5ing with value >-mt/3.
There is’a fact that, along with the increasing of (t), for every given
,1] , the function 1, (o,t) oscillates in a periodic manner about # Ex-
pliditly, for the case with H(fm ) =2mn+n/2 (m=0,1,2,---), it follows from Eq-
uation (21), Equation (26) and Equation (27) that

1, (o.5,)= J';t F (o, x(z.t,))cos zdz

- J:O F (0, 27 [ )cos[z* +0(t, )] dz”

* (4)
=[F (a,eZZ fon )cos(z* +2mr+m/2)dz”
- _.[:(a,ezz*/fm )sin Z’dz" <0.

Similarly, we have |, (O',fm ) >0 for the case with
H(fm): Q(fm)+n =2mn+3n/2 (m=0,1,2,---).

The above results accord with the fact that sing(o,t) shifts its sign when
#(o,t) is added by m. This consistency implies that 6(t) contributes to the var-
iation of sing(o,t), and is possibly the main part of ¢(o,t). In the following
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we verify this by considering the detailed variation of 1, (o,t) on the interval
[fm . J (together with another half period [fm ,fm+1:| ).
For any given t,(>2n),in case t>t, we have

I (a,t)—l AN

_I (o,x(z1) )coszdz—j;to)F(a,x(z,to))coszdz (35)

—f (o.x(z.t ))coszdz+j [ ,x(2,t))~F (o,x(2,t,)) | cos zdz.

Relative to 6(t,)=2mn+mr/2 (for a given M), to verify th is the main

with re-

(36)

F(o.x(zt))= F(a,x(z,to))+ R (ox(2,t)) A+,

At =t —t,, the subscript “#” means the taking of partial derivative with
respect to £
Recall that X(z,t) =(27te/t)]/2 “3e2t 1o replace zby
7 +o(t )—Z +(t/4)log(t/2ne)+ /6, it leads to

1 2(z- 75/6 (@j Ze—n/3t 2t
2 t t

1
Ot t o
2(z +6(t)-n/6 Y2 O
i i SR
t=t
=_£ 2_Z+llogt_o eZZ*/IO_
tLt\lt, 2 " 2=n

Furthermore, notice that x(z,t,)=x(z"+0(t,).t,) = e* /o, to recall the ex-

pression of F,(o,x) in Equation (24), we get
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0.8

04

0.2

oX
_FX(G, )Z:z*+6(to) Et_t
=l
ks 1 15 x¥ -1 3
=Ya |-a’x*+=a x +0 X—=||e™
Sa| ]
2(x +x77 ) 12z lIogt—0 X
tlt, 2 2

(38)

It follows from the proofs in Se
G, (0',622 )50 for 220 , 2<0<1. With respect to the

terms with n=1. Due to'\the existence §f strong decaying factor e *°", the ef-
fect from o isyvery small, 5. In the following we mainly consider
the case with o

The approximat@ valfies e maximum extreme points of G, (1/ 2, ew) and

T T T T

—F(1/2e") | 1
—G1(1/2,ew)

W
—G, (12"

0.2 0.4746 0.6484 0.8 1 1.2 1.4 1.6

Figure 5. The changes of Gl(o-,ew) (only the first term), Gz(a,ew) (only the first term)

and F(o-,e‘”) (only the first 3 terms) along with the increasing of w; for the cases with

o =

Y2 and o=1.
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G, (1/2,ew) are at about (0.6484,0.6957) and (0.4746,1.2304), respectively.
Explicitly, W, ~0.6484 and w, ~0.4746 satisfy separately the equations

oG, (1/2 e )/&N =0 and G, (1/2 e )/G\N =0 (for each of them only the first
term is concerned), which read:

2, 165 75) 15 .15
yl yl 6 yl 32 g T yl y '

165 75
2 _7yzi2y Dy
Yo = 1Y, 16 Y, 32

with y, =ne™ and y, =ne" . By the way, the maximu
F (]/2 , eW) is at about (0,0.8934) (to ensure the mo
are considered), which will be used in the related esti

G1<0',ew) and GZ(O',EW) have small shi
tion of Gl(O',eW) is at about (0.6484,

O its value increases a little. At the ri

(0.4746,1.2304) to about ) . sg indicate that the effect of

o to the maximum valu

e corresponding integrals. By the way, we
the variable o , and should be in the forms

.X(2.t,)) At cos zdz
9Ft(a,x(z*+6(to),to))cos(z*+9(t0))dz* (39)

=At[” LiGl (a,ezz*/tf’ )+2i|og;—°G2 (a,eZZ*/‘o )} cos(z" +2mn +m/2)dz
0

AO tO T
- _g G ( g2l )sin 2'dz" -~ Iog— ng (a,ezz*/to )sin z'dz".
0

In the following we give some illustrations for the case o =1/2. In view of Fig-
ure 5, G, (1/ 2,62 /o ) has maximum value at 22"/t = w,, that is, at about
Z" =t,w; /2 ~ 0.3242t, . Similarly, G, (]/ 2,622*/ tO) has maximum value at about
Z" =t,w, /2 ~ 0.2373, . For example, for the cases with m=0,1 and 2, to solve

H(t) °Iog( ej+%=2mn+n/2,

it yields t, =20.8747,37.4043 and 50.3595, respectively. The corresponding
maximum extreme points of G, (]/2 e fo ) are shifted to (6.7676,0.6957),
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(12.1265,0.6957) and (16.3265,0.6957), respectively. Similarly, those for

G, (J/z,ezz*/‘ﬂ ) are shifted to (4.9536,1.2304), (8.8760,1.2304) and
(11.9503,1.2304) , respectively (see Figure 6). What should be mentioned is that,
in the neighborhoods of these two maximum extreme points, G, (]/2 , g2l )Sin 7
and G, (1/ 2, g2l )sin Z" may possess their peak absolute values separately, which
dominate the integrals. Yet, since t,W, /2~ 0.3242t, and t,w,/2 ~0.2373t,, the
changes of G, (Zl/ 2,621%0) and G, (]/2,621*/ t") are not synchronous with that
of 6(t). This adds complexity to the additional term.

Notice that w=w, is the unique extreme point of G, <0' e’ ich it pos-

sesses the maximum value, we get an increasing interv;
creasing interval [tyw, /2,00) for G, (cr,e22 o ) with'resp

Z . For m=>0, there must be an integer k, >1 uch that

_G1 - = —G1sinz* - - _G1_GZ _stinz* - - -_G2 ------- Zero Line

Figure 6. The changes of G, (]/2,62{/‘”) , G, (J/Z,e“*/‘“) , G (J/Z,ezz'/"’)sin Z* and
G, (1/2,e2f/10 )sin 7" along with the increasing of z" for the cases with a: m = 0; b: m =

1 and ¢: m = 2 with respect to H(IO) =2mn + Tt/2 (that is, for t, =20.8747,37.4043 and
50.3595 separately).
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G (0', g2 /o )sin 2'dz"
__jAHG (0' g% /t°)smz dz” +Z J' G ( 2z+kn) /t")sin 2dz

=—j Gl(o-,e22 /‘°)sinz dz"+ | Gl(cr,ez(”“"“)/‘“)sin 2dz
-8 ) o0 o
- Z j [ ( Are(2it)m )/t‘)) G (cr,ez(z+2j“)/t° )}sin 2dz

j=lo+1

N (a,e2(2+210”)/‘° )sin 20z < 2G, (0, €™ ) <2

(40)

Here the approximation
0.6957 ~ G, (1/2,€" ) <G, (o, e™ ) <G, (Le™)

Similarly, in case k, =2j, -1 with j

© * . * _*
e (0', e2fi )sm 2'dz

(41)

0 * . * *
e (o-,eZZ o )sm Z'dz

< et )~ 2x0. =1 . 42
2G,(1,e" )~ 2x0.6967 =1.3934 (42)

hen G, (O', g2l ) is substituted by G, (O', el ) , with the same approach

we get a similar estimation:

Uw G, (cf,ezz*/to )sin 7'dz”
AG

<2G,(1/2,6" )~ 2x1.2304= 24608,  (43)
since for this case 1.2237 ~ G, (1,e" ) <G, (o,e"™ ) <G, (1/2,e" ) ~1.2304.

3.3.2. To Estimate the Change of 1, (o,t) with Respectto 6(t)
With the help of the above results, in the following we estimate the relative change
I,(o,t)=1,(o,t,) withrespectto O(t)e(2mn+n/2,2mn+3n/2) (Mm=0).

Relative to 6(t,)=2mn+m/2, there is a Taylor expansion for 6(t):

AH:H(t)—e(to):9’(t)At+0"(t)%+ _nggmi(m) L (44)
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Hence, At~ 4A0/Iog (tO/Zn). It follows from Equations (35), (36), (39), (42)
and (43) that

I(o-t) I(O't)

——j ") (o.x(z.1,) )coszdz+j [ ,x(2,t))-F (o,x(2,t,)) |cos 2dz
z.[o F(cr,eZZ /‘°)sinz dz* —f—ot AgGl(a,ezz*/“’)sin 2'dz"

t @ * . * x
—ZATtIogzi MGZ(O',GZZ /t")smz dz
0 T

-~ a6 Zz*/ [ 4A0 *© 27" /i

~j0 F(U,e b )San dz mjAgel(U,e d
_2A0 = G( 22/‘°)sinz*dz* (45)
tO

=:R(0',A9).

Furthermore, in view of 0 <A@ < m, ial degivative of R(o,Af)

with respectto A@, it reads

G, (0', g2/ )sin z'dz"

4
0—— *

t, log(t,/2m)
% (o:ezz*/to )sin z*dz*‘

e (a, o2l )sin z*dz*‘

(]/2 e27/to )sm AG - {% G, (J/Z,ewz )] (46)

2G, (1,e"
~ F(y2,e* )AH—%{%+GZ (1/2,e" )]

8G, (12,e")

b

F (Y26 )a6- >0,

provided that

8G, (1/2,6")

A9>m

Here the inequality 2G, (1, eM ) / log(t,/2n) <G, (]/ 2,e" ) is also used. In fact,
to solve @(t,)=m/2 ityields t,~20.8747.To recall that
G,(1,e")~06967 and G,(1/2,e" )~1.2304, we get
2G, (1,e")

~0.9432 <1.
log(t,/27)G, (1/2,6")
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Along with the increasing of M, thatis t, the ratio gets smaller and smaller,
and the inequality always holds.

For the case with m=0 and t; = 20.8747, the approximate value of
F (],/2 g2 ) is about 0.7205. At this time,

8G,(12.e")  8x1.2304

~ ~0.2083.
toF (12,7 )  20.8747x0.7205

This indicates that, for the case with H(t) e(n/2,3n/ 2), no matter the addi-

tional term

[ [F (o:x(z.0)~F (o.x(2.1,))

the relative change of 1, (o,t) forall oe
on the interval (0.2083r,7). In anothe

(M isanon-

cely2.1], 1,(

the interval define

0(t,)=2mn+n/2, then for all
along with the increasing of 6(t), at least on

8G, (1/2,6")
+—
tF (1/2,677)

ing, we begin with assuming 6(t,) =2mn—n/2 and consider the

<6(t)<2mn+3m/2. (47)

In the
e 6(t)
ti Ocess it results in
(ot)=1(o.t)
o(t) w
= _J.g(to) F(o.x(z1))cos ZdZ+L(t)[F (o.x(z.1))- F(a,x(z,to))]cos 2dz
~ —_[Ag F (o-, e o )sin 7'dz +$J‘°0 G, (O-, 2o )sin dz (48)
° t, log (t, /2m) 740
2A0 =

+—( G, (a,e2Z fi )sin 2'dz".
tO A6

e(2mn—n/2,2mn+m/2) with m>1. To repeat the previous deduc-

Furthermore, to denote it by R(c,A6), then we get 6R/0A@ <0 on condi-
tion that

8G, (1/2," )
t,F (12,677 )

Hence, there is a similar result bellow:

AG >
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Theorem 2. For the case with
t t T
O(t)==log| — |+—=€e|2mr—n/2,2mr+7/2
(t) 49[2ne]6[ / /2)

(M is a positive integer), let O(t,)=2mn—n/2, then forall o <[1/2,1],
I,(o,t) decreases along with the decreasing of 0(t), at least on the interval de-
fined by

8G, (1/2,")
tF (12,677

These two theorems have clarified the periodic behs

2mn—m/2+ <0(t)<2mn+m/2.

lows from Theorem 1 that, due to the existence o,
tion (47) (1/F (1/2 , 2% ) also decays), the do
term —J.;(;) F (O', X(Z,t0 ))COS zdz becomes

the thing becomes simple.

boundary t=t;, defined
gi 1s boundary it is monotone decreasing, and

exactly at t=t; which accords with

7, the maximum extreme point of 1 (o,t) get

e left end of the interval [2mn—n/2,2mn+m/2) with re-

o(t) =£Iog(i)+%e [2mm,2(m+1) 7]

(M is a non-negative integer), for every given o <[1/2,1] there is a mini-
mum extreme point and a maximum extreme point of 1,(o,t), which lie sepa-
rately in the intervals defined by

8G, (12,e"
2mm+ /2 < O(t) < 2mu+7/2 4+ - 2(12:¢")

8G, (1/2," )
2mn+3m/2 < O(t) < 2mn+3m/2+ -

th(]/Z,eZ"/fm)

with 0(f,)=2mn+n/2 and 6(f)=2mn+3n/2. As Mmoo, these two ex-

treme points in the moving intervals tend separately to their left boundaries T
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and 1.

3.3.3. To Estimate the Change of 1,(o,t)/A(c,t) with Respectto 6(t)

According to the definition,

| (O',t)

sing(o,t)=——2.

M=o
Hence, besides the estimation on the change of I, (o-,t) , it also requires an
estimation on that of A(o,t).

It follows from Equation (26) that A(o,t) =

(49)

Let X(Z,t) =¥ , then t follows from Equation (38)
that

((o,1)|£2G,(1,e")/t and |8 (o,t)|<2G, (1,e") /1.
he reference point defined by 6(t,)=2mn+n/2 with m=>0, it holds
At 4A9/ log (t0 /27:) [see Equation (44)], and hence

AR =|A(0,t) = A(o.t, )| = |A (0.1, )| At
z|H(O-'tO)Ht(O"'[o)"'s(o"to)st(O"to)| 4A6

\/Hz(a,to)+82(a,to) .|09(to/2n)
<|H(G,t0)|.|Ht(0,t0)|+|8(0',t0)|-|8t(O',to)|. 4A0 (50)
B JHZ (0t) +5% (o) log (t,/2m)

<zel(1,eW1) H(ot)[+[s(ot)]  4a0
b \/HZ(O',tO)-i-SZ(O',tO) log(t, /2m)

S2(31(1,e“'1) 5. 40 z8\/§G1(1,ewl)A0
t, log(t,/2m) tylog(t,/2n)

Due to the existence of the decay factor 1/t, log(t,/2n), this estimation makes
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sense. For example, for the cases with m=1,10 and 100, the approximate val-
ues are about 0.1572A¢, 0.0213A¢ and 0.0025A8, respectively.
For an arbitrary given reference point t; e (2r,0) and o [1/2,1] we have

. |1(0',t) |1(0',t) A(O',to)
()=o) A(oG) Alort)’

(51)

Since A(o,t,)> 0, the change characteristics of 1, (o,t) are maintained by
Il(o-,t)/A(o-,tO). The positive factor A(o,t, )/A(o-,t) does not influence the
sign change of sing(o,t). As the function I, (o-,t)/A(o-,t) erned, for
O(t,)=2mn+m/2, 1, (c.t,)/A(c.t,)<0,and for 6(t,
l,(c.t,)/A(o.t,) > 0. That is to say, the oscillation chd
maintained by 1,(o,t)/A(c,t). But the variation

difference, and a further estimation is needed.
Our task is to verify that the change of

Since this term increases on |2 (m>0) and decreases
(t), in the following we

For a fixed o, relative
A(o,t)=A(o.ty)

A(o.t)) Al =1, (o,t)) AA (52)
~ [A(ot)+2A]A(00t,)

, in the following arguments we omit it for simplicity.
ipequality A(o,t) 2||1(0',t)| holds for all t> 2, there always be
AA > | l,(o.ty)+ AI1| , and it follows from Equation (45), Equation (46)
ation (50) that

) {A(o,to)All—ll(a,to)AA}

oA0 A(o,t))+AA
A OAl, 1, OAA AAL -LAA GAA
T ATAA A0 A+AA OAO [A+ AAT Y
QAL 1, +Al, GAA
A+AA[8A6’ A+AA aAe}
oAl |0AA]|
A+AA{8 _|6A9|}

2G,(1,e™ w
> oA F<V2*ez"/‘°>“‘ﬂW*Gz(” * 2)}
842G, (1,e")
tlog(t,/2n)
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A ey, 4 2(\/§+1)Gl(1,e“’1)
T A+AA P2, a0 t,|  log(ty/2m)

+G, (1/2,6")

(53)

> A+AAA[F(1/2,e2"/‘°)A9—%GZ (1/2,e" )} >0

provided that
14G, (12,e")
>——)=".
tF (1/2,e77)

For the case with m =
F (]/2 e ) is about 0.

~ ~ 0.3646m < gn.
20.8747x0.7205 5

0
is positive or not, the increasing term —L ((:)) F (a, X(Z,to))COS 2dz
0

0 o,t) dominates the relative change of 1, (o-,t)/A(o-,t) forall oe[1/2,1],
at least, with respect to A@=06(t)—6(t,) on the interval (0.3646m, 7). In an-
other word, sing(o,t) increases along with the increasing of 6(t) on
(0.8646m,31/2). For the other cases with m>1, the interval becomes wider
than this.

In summery, for the case with @(t)e[2mn+n/2,2mn+37/2) (M=0), the
results for Il(o-,t)/A(o-,t) are similar to that of 1 (o,t) in Theorem 1. The
mimic theorem is as follows:

Theorem 3. For the case with
t t b
0(t)=—=log| — |+—<|2mn+=/2,2mn+37/2
(1)~ +1og( 5L |+ Eefamn s /2)
(m is a non-negative integer), let 6(t,)=2mn+n/2, then for all

oely2,1], sing(o,t) increases along with the increasing of 0(t), at least on
the interval defined by
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14G, (1/2,e" )
tF (1/2,677)

For another case with 6(t,)=2mn—n/2 and
O(t)e[2mrn—n/2,2mn+n/2) (m=1), the term —I:(:)) F(o.x(z.t)))coszdz of
I,(o,t) decreases and dominates, and there is a considerable dominating range.
In fact, the above approach holds and it follows from Equation (48) and Equa-
tion (50) that:

0 | A(o.ty)Al =1, (o,t))AA
6A6’{ A(o.ty)+AA }

_ A [0Al, 1, +Al, aAA
A+AA[OAO  A+AA OAG

2mr+ /2 + <0(t)<2mn+3m/2. (55)

A
<
A+ AA

8/2G, (1,e")
" t, log(t,/2m)

< A [—F(
A+AA

provided that

~F(y2,e*7°) A0+

|

ez“/t°)A0+

14G, (1/2,e")
>— .
tF (1/2,e77)

ase, the restlt is as follows:

B(t)=llog(%)+%e[2m7'c—n/2,2m1t+7'c/2)

j'a positive integer), let 0(t,)=2mn—n/2, then for all o <[1/2,1],
sifg(o,t) decreases along with the increasing of 0(t), at least on the interval
defined by

14G, (Y2,e")

2mn_n/2+—t0F(]/2,e2"/‘°)

<0(t)<2mn+m/2.

In the following we consider the relative change of sin¢(o,t) on the remainder
interval [(k-1/2)m, (k-1/2)m+p(t;)] (k isa positive integer) with
146, (V2,e" )

p(to)—m’

where t, is defined by 6(t,)=(k—1/2)n. We firstly study the odd case with
k=2m+1 (m=>0). At this time, the inequality sing(o,t,)<0 holds for all
o €[1/2,1]. According to Equation (52),
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sing(o,t)-sing(o,t,) = m{ml - kg:z; AA},

whose sign is determined by the factor in the bracket. In the following we con-
sider this part. With the denotations

P ) ZZ*/tD — 2 G , ZZ*/to G , ZZ*/to ,
(o-e ) log(t,/2m) 1(Ue )+ Z(O-e )
H(o,t,)H, (o.t))t, +S(o.t,)S, (0,1, )t
Q(O‘,tO)Z (O' o) t(‘: o)o"‘ (20' 0) t(o- o)o (57)
JH2(0.t,)+5% (a0t;)
to recall the approximations in Equation (45) and Equa
I - h(9h)
A(O"to)
zJ'AgF 2o )s' 7"dz
0
|1(O'
- 58
Ao (58)

- 2sing(o.t,)
log (t,/2m)

Q(o-,to)}.

2sing(o.t,)
log (t,/2m)

igfed with t, it can be used to make judgement. In case

, Equation (58) implies that sing(o,t)>sing(o,t,). The thing

s simple, and O(t,)=(2m+1/2)n accords with the minimum extreme

: P(a,eZZ fo )sin Zdz" +

Q(o.ty) (59)

point of sin ¢(o-,t) . In case <I>(o-,to) >0 the previous estimations make sense.
To take the partial derivative about A@, it reads

9 {All— '1(G’t°)AA}

OAO A(O',to)

z|:F(O',92Ag/t° )+¥P(a,e”% )}sin AO (60)
0
+£IM P(o-,ezz*/to )sin Z'dz" —Ed)(o-,to).
t, °° t,

Corresponding to the case with A& =0, its value is —(2/t,)®(o,t,)<0.On
the one hand, from the previous sections we know F,G, and G, are all posi-
tive functions. On the other hand, for fixed o e [1/ 2 ,1] , G, (o-, ew) and
G, (o-, eW) increase along with the increasing of w on [0,w,] and [O,w,]
(with w, ~0.6484, w, ~0.4746), respectively. Notice that 0<A#<n/2 and
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t, = 20.8747 for the initial case with m =0, we have
W =2A0/t, < 2x(7/2)/20.8747 ~0.1505 <w;, W, . So P(o,e**”") increases
along with the increasing of A . In addition, though F (o-,eZAH/‘O) decreases
along with the increasing of A#, the product of sinA@ and it increases. So
the function in Equation (60) increases along with the increasing of A6 on
[O, p(t )] for fixed o and t,. This indicates that Al, —1,AA/A decreases
first and possibly increases later on this small interval. After all, A& = p(t,)
accords with the left end of the increasing interval of sing(o,t)—sing(o,t,).
So, on the remainder interval [(2m+1/2)x,(2m+1/2)

dominates the sign of ®(o,t,),a

mum extreme points. For the ev

| 146G, (12,e" )
tF(v2.e)

(), p(fm ) — 0, and these two extreme points in the moving

p(t) (61)

rvals tend to their left boundaries T, and f_.

3.3.4. The Explicit Periodic Form for U (o,t)
It follows from Theorem 3 and Theorem 4 that, for a fixed o €[1/2,1],

sing(o,t)=1, (o-,t)/A(o-,t) increases or decreases along with the increasing of
0(t) on most of the variation range [(k-1/2)m,(k+1/2)n) (k is a positive
integer). In case k is odd it increases, and in case K is even it decreases. This
indicates that @(t) is the main part of ¢(o,t). It follows from Corollary 2
that, As M—o0, @(t)=2mn+mn/2 accords with the minimum extreme point
of sing(o,t), and the phase angle needs to be adjusted by adding one 7. In ad-
dition to this, in ¢(o,t) there should be also a perturbation term, say
—¢(o,t). It reflects the contributions from other factors. We note that the nega-
tive sign here is to accord with the fact that all the location-shifts of the extreme
points are to the right. Based on this, for every given o [1/2,1] and every
t>t, with 6(t,)=n/2 (t, ~20.8747), we have an explicit formula bellow:
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Sin¢(cr,t)=Sin[0(t)+n—g(a,t)]. (62)

To recall the relation in Equation (32), we express the real part of &(o +it)

in an explicit periodic form:
U (o) =%A(o-,t)sin[¢(o-,t)+9(t)]

=% A(o,t)sin[20(t)+ - (o,t)]

:%A(o-,t)sin{ [_Iog(&re}-%}-ﬂ_

=A"(o,t)sin [—Iog(zjt j+

with A (ot)= 2A(o-,t)/t , which matches e tion in Sec-

tion 2 for the particular case with o =1/2

(63)

3.3.5. To Refine the Esti

From Equation (31) we s l) In fact, the lower bound can
be refined. To denote X = , then it follows from Equation (24) and
Equation (38) that

k=0

~-23 [ oz =
42 +(2k+1) ,

_?;)J.z:ukn GZ( ! Z/t)d
dn &

ZT'(Z:;G (G e )

inwhich 0<z, <n and

dkn 2

(k+1)n
5 25 k) <y < 2[4 + (ks yn] DT

(65)

In view of Figure 5, for a given o €[1/2,1], G, (o-,ew) has a unique maxi-
mum extreme point at W,. On [0,w, ] it increases and on [w,,) it decreas-
es. Along with the increasing of o, the location of the maximum extreme point
is shifted from about (0.4746,1.2304) to about (0.4820,1.2237). Notice that
t>1t, ~ 20.8747, 4n/t <4n/t, ~0.6020 > w, , it follows from Equation (26) and
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Equation (64) that:

A(o,t)= \/U: F(o.e™" )cos(z)dz}2 +U: F(o,e”")sin (z)dz]2

S .[: F (6% )sin(2)dz =4'[—1T§JG2 (O',eWk )

> 4'[—7TG2 (0', e ) > %GZ (J/Z,eS“/‘O ) ~ %.0_115 > %

To combine this result with that in Equation (31) we get
2n/5t < A(o,t) <+/5F, (1) and hence

(66)

ectto £

ecreases. Phis leads to a contradiction. In case Q(t*) lies in the remainder in-
al 2mn+m/2< H(t*) <2mn+m/2+ p(t,), there should be
sing| o, t*) =sin H(t*) >0. Yet, according to the previous arguments,

sing(o.ty) =1, (0.t))/A(o,t,) <0.

As ty > o, p(t,) >0 andin case t islarge enough, it is sufficiently close
to t,,and it follows from the continuousness of the function that
sin ¢(o-,t*) < 0. This is also a contradiction. On another half period with
2mn+3n/2 < G(t*) <2mn+5mn/2, a contradiction is also met. This indicates that
¢(o,t) is bounded.

Secondly, on every period there exists an interval on which |g(0', t)| <m/2.As
the case 6(t,)=2mn+n/2 concerned, it follows from the previous arguments
that, either t, is exactly the minimum extreme point of sin¢g(o,t), or there is
a right-shifting of the minimum extreme point. For any given o €[1/2,1], for
the later case the extreme point accords with

#(o.t)=6(t)+n—e(o,t)=2mn+3n/2
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for some t=t, (>t,). According to Corollary 2,
0(t,) € (2mn+mn/2,2mr+m/2+ p(t,) |. Hence,
14G, (V2,6") »
O<e(ot)=0(1)-0(t,) < p(ty) =—F——F7F<—-m (67)
( tl) (ti) (o) (o) tOF(l/Z.ezn/to) 5
Due to the existence of the decay factor 1/ t, , its value should become smaller
and smaller as M —> oo . This indicates that, in any given half period
[2mm+7/2,2mm+37/2], there indeed exists some region such that
|g (o-,t)| < /2. This result also holds for another half period.

For every given o e[1/2,1], the extreme point of
respect to ¢(o,t)e (kn,(k +1)71:) (k is a nonn
#(o,t) isincreasing along with the increasin

1
4 (ot) = log (68)
Since ¢(o,t) isbounded, & ( nded, say
|‘~3t (o-,t)| <C,, where C, is a pesili t. Certainly, the above inequality

(69)
o,t) has a unique negative minimum ex-
gsitive maximum extreme point on [Zmrc, 2(m+1) TC)

any big enough m. As the minimum extreme point

O(ty)=2mn+3m/2.

e assertion is false, there mustbea t">T anda o e []/ 2,1] such that
g(a*,t*) =n/2 or —m/2. Let t,t,,t,,t, and t; be the points which accord
with ¢(c"t)=(2m+1)n, (2m+1)n+m/2, 2(m+1)n, 2(m+1)n+m/2 and
(2m+3)m, respectively. Firstly, t" #t,,t,, since they are the extreme points
with 0< g(o-,t*) <2m/5 for all oe[1/2,1]. Secondly, t"=t,t,t; are also
impossible. The reason is that, for the case with t" =t,,
sin ¢(a*,t*) =sin[2(m+1)]=0, yet
o(t;) = ¢(O'*,t3)—7t+8(0'*,t3) =(2m+1)n+n/2 accords with sin ¢(0*,t3) #0
(see Figure 7). This is a contradiction. The same thing occurs for t" =t and
ts.

In the following we firstly consider the case with g(a*,t*) =n/2.1In case t
lies in the increasing interval (t,,t;) of sin ¢(0'*,t) , then
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sin[O(t)+x]

96.0156 97 976977 99
t
(®)

sin[0O(t)+r—n/10]

98.0332

(see (b))

om Theorem 4 we see on this interval sin ¢(0'*,t) de-
e increasing of 6 (t) , that is, along with the increasing of ¢
ntradiction. In case t & (ty,t,), we have sin ¢(cr*,t) >0. Yet at this

sing(o”,1") =sin[ (6(t') ~n/2) + x| =sin[6(F) + =] <0

with e (t,,t,). This is also a contradiction. In case t* lies in the decreasing
interval (t,,t;) of sin ¢(a*,t) , then it follows from Theorem 3 that, there is
also a corresponding point f e(t;,t,), at which sin ¢(a*,t) increases. A con-
tradiction is met. In case t (t,t,), we have sin ¢(0'*,t*) <0, and there
should be a corresponding point f e (ty,t,) with ¢(0*,tl) =(2m+1)n—-n/2,
such that sin ¢(0'*,t*) >0, and get a contradiction.

For the case with g(a*,t*) =—m/2, to repeat the above processes we get the
corresponding contradictions. In summary, for all o [1/2,1] and all
t>T = 2ne*® | it holds the estimation |g(0',t)| <m/2.

In addition, along with the increasing of 6(t) on (m/2+p(t,),3m/2),
sing(o,t) increases. This indicates that ¢(t) dominates and the inequality in
Equation (68) holds true. Notice that p(t,) < 2n/5, to solve
(t*/4) log (t*/Zne) +m/6 =m/2+2n/5, it yields t" ~26.2694 . Hence, on the in-
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verse manner, from Equation (68) we have

*

C, < l|Og (t—j ~0.3576 < E
4 2n 5
This partly indicates that, the requirement for 7'is not too high.
In the following we refine the estimation on ¢(o,t) with another approach.
Firstly, as the extreme points of sin¢g(o,t) concerned, for a given o e[1/2,1],
there must be a positive integer k anda t, such that
9(t:)+ n— S(O',t;) =kn+3n/2, from which we get [same to E ion (67)]

0= e(o)< p(E) - i4(32 (V2,e")

the estimation

(71)

. — y_AC
< |8(60,T)| = ﬂg(ao,t,(ﬂ) <Ap(fe,y)< T
K+1
Case b: In case 5(00 ,t;ﬂ) =0, if there is an integer n(>1) such that
s +n) >0, then the previous contradiction is also met by choosing
C »AC . At this time, the inequality bellow
A

&

*

S cfel ) - e ) 20 (5 )=

]l

tK+n

+

>

is contradictory.

Case c: If for all k > K, the equality g(ao,t; ) =0 always holds, furthermore,
if thereisa o, €[1/2,1] and an integer n(>1) such that
(5‘(01,t;+n ) >0, then |£(0'0,T)| = ﬂg(al,tzm) also holds for some A>0, and
the previous contradiction is also met. We note that, due to the continuousness
of 8(0‘,t) , the occurrence of this situation is very natural.

Case d: For all o €[1/2,1] and all k>K, the equality g(a,t:) =0 always
holds, then the particular point T with (% )=kn+m/2 is exactly the ex-
treme point of sing(o,t). If that happens, the refined estimation in Equation

(71) is invalid. However, the estimation |g(0',t)| <m/2 is still valid for this case.
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We note that, the ideal situation in the last case hardly occurs, since it requires
the inequality ® (ot )<0 always holds. This, in turn, needs the dominating fac-

tor
G (a,e“*/fk )sin(z*)dz* <0.

Yet, take the case with o =1/2 as an example, G, (]/ 2,e” fe ) has peak
value at about z" =% w,/2 ~ 0.2373f, where the ratio 0.2373 is not an integer or
half integer. Furthermore, since this peak value may dominate the correspond-

ing integral, as a whole, the variation of ®(o,%) is not syg

be used in a direct way. To ensure |g(0',t)| <m/2, it only re-
=2C, /.

quires

.7. The Finial Results for U and the Verification of Proposition 2

ed in the previous section, for every given o €[1/2,1], only if ¢ is big
endugh, say t>T =2ne'®, thereis ¢ (o,t)=6'(t)-& (o,t)>0, and on every
period the uniqueness of the minimum extreme point and maximum extreme

point of sing(o,t) isensured. To denote

3(0,t)=29(t)+%n—g(o-,t)

t t 4
:—I — —_— f—
5 Og(znej+3n e(ot),

(72)

then the inequality 4 (o,t)=0'(t)+¢ (o,t)>0 holds for t>T = 2ne*% | which
is bigger than 2m.

For every permitted integer k, with respect to 19(O',t) € (kTC,(k +1) n) , we
verify the uniqueness of the extreme point of U (o,t)= A (o,t)sing(o,t). We
note that, since U (o,t) is the real part of the analytic function &(o +it), both

A (O',t) and &(o,t) are smooth functions which have arbitrary order deriva-
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tives.
For every given o €[1/2,1], the partial derivative of U (o,t) about #reads:
U, (o) = %[A”(a,t)sin 8(c,t)]
=A (o.t)sind(o,t)+ A (o,t)4 (o,t)cos (o, t)

=A*(O',t)‘9t(o-’t)3in'9(o-’t) COtg(G,t)—%

= A" (0,t)4 (o,t)sin$(o,t)[ cot $(o,t) - g

We note that, as the extreme points concerned, the ca; i 0 isex-
cluded since at this time U, (o,t)# 0. With this undefs ocations
of extreme points are determined by the equatio It is eas-
ily checked that, no matter g(o,t) is posit ersects with

that of cot9(o,t) only once on every gi i + n). This indi-

cates U (O',t) has a unique extreme

cot9(o,t)—g(o,t) alw
(kn,(k +1)1'c) . In additio case k=2m itholds sin$(o,t)>0, yet in case

Theorem5. For every given o €[1/2,1] andevery t>t, with
tO

t T T
0(t,)="log| =2 |+===
(t) 409{2nej+6 2

(t, = 20.8747 ), the real part of £(o +it) s in an explicit periodic form:

U(ot) = A*(cr,t)sinElog[%j+gn—g(a,t)}.

e

Here the amplitude decays within
. 2V5F, (1
4_75 < A (O', t) < M
5t t
The perturbation term ¢(o,t) is bounded. & (o,t) Isalso bounded, say
|gt (o-,t)| <C,, where C, is a positive constant. In case t>T =2me*® , there is
an estimation |g(0',t)| <n/2, and on every period U (o,t) has a unique posi-
tive maximum extreme point and a unique negative minimum extreme point. In
addition, to define t, by H(t;) =kn+m/2, then except the particular case with
£ (0', t, ) =0 forall c<[12,1] and all nonnegative integer k, there is a refined
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estimation:

C
oot <=2,

here C, is a positive constant.
These theoretical results accord well with the numerical ones in Section 2 (see

Figures 1-3), and the distribution law

Yorogl M )edrokm, k=12,
2 %\ 2 )3

with |€(1/2,T)/1r| <y2.
4, The Finial Proof

the variation of &(o +it), we make nu-

and V (o,t) according to the formulas in Equ-

(ot)=]"f (a,x)cos(%log xjdx,

(75)
V(ot)= _[100 g(o,x)sin (%Iog xj dx

where §=(0-1/2)/2 and a, =n=n’.

Essentially, they are infinite integrals with infinite series. How to make objec-
tive numerical simulations for them is still a question. Our try with finite ap-
proximations yield Figure 8 and Figure 9 which are just for reference. These
figures roughly reflect the basic variation characteristics of U (c,t) and
V (o,t). We note that the simulated periodic signals are too strong, and they
have depressed the random variations. There is an evidence for this, that is, the
simulated zeros points of U (1/2,t) does not completely coincide with the known
numerical ones (mentioned in Section 2).

Since &(o +it) is analytic, the well-known Cauchy-Riemann conditions hold
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for its real and imaginary parts:
u, =V, U=-V_.

One can check these with the two formulas in Equation (75) in a direct way.

(76)

Applied Mathematics
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Let Q be any finite domain in two-dimensional real space R?. The analytic
property of &(o+it) implies good smoothness of U'and Von Q. So the se-
cond-order partial derivatives of them exist and are continuous, that is,

U,V ecC? (Q) . It follows from Equation (76) that

U, +U,=0, V_+V,=0, (ot)eQ
These mean bother Uand V satisfy the two-dimensional Laplace equation, and

the result below hold for them:
Lemma 2. (Extremum Principle) [19]: If u(o,t) satisfies the Laplace equa-

less it is a constant on the entire region Q.

It is well-known that there is no zero point outsj

the known record was set by X. Gour-

ledge for the case with t
don in 2004 [11]. He had

all possess real f

st 10" zero points and found that they
culate with our distribution law, its upper
bound is up to 2 As reviewed in [9], another calculation had

ever been done b

¢ following is the final theoretical result:
Except on the critical line o =1/2, the real part U (o,t) and im-

A]x(T,00)U[0,1]x(—o0,~T) for big enough T, say
T max{2ne4c° ,4C,/ n} , where C, Iis the upper bound of the bounded func-

tion |£t (o.t)|, C, isthe positive constant which ensures |g(0',t)| <C/t.

Proof. It follows from Lemma 1 that, U (o,t) is symmetric about the hori-
zontal line t=0 and vertical line o= ]/2 , and V (o-,t) is anti-symmetric
about the horizontal line t=0 and vertical line o =1/2. Hence, as the mutual
zero point of Uand V concerned, it only needs to consider one quarter part of
the concerned region. Here we choose the one defined by (1/2,1]x(T,), which
excludes the critical line o =1/2.

Suppose U (o,t) and V(o,t) has a mutual zero point in (1/2,1]x(T,),
say (op.ty), then it must not be an isolated zero point of U (o,t) or V(o,t).
On the contrary, if so, to draw a small circle around (oy,t,), then U (o,t) or
V (o,t) maintains its sign on this circle, either positive or negative. For this
case, at the interior point (oy,t,), U=0 or V =0, and this point must be a

minimum extreme one or a maximum extreme one of U (a,t) or V(o,t) on
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this circular region. This contradicts with the Extremum Principle. Hence,
(o4.ty) is not isolated, and the 2-dimensional surfaces defined by U (o,t) and
\YJ (o-,t) must intersect the zero-valued plane with two curves, say |, and 1,,
which pass through the mutual zero point (oy,t,). For convenience, we call
them “zero-valued curves” of Uand V.

Firstly, we assert that all the zero-valued curves of Uintersect with the critical
line o =1/2. It follows from the Extremum Principle that all the zero points of
E(o+it) on o =1/2 can not be isolated ones. Explicitly, since V (1/2,t)=0

holds for all t & (—o,), this line itself is a zero-valued cu il Meanwhile,

discussion.

For thé{@articular case with &(o,t,)=0 forall o e[1/2,1], the point t, ac-

ords with/6(t,) =mn+m/2 for some integer m, and hence

9(o.ty)=20(t))—¢(o.t;)=2(mn+mn/2)-0=(2m+1)m.

At this time, |, is a horizontal straight line which does not rely on o . In
view of U (o,t)=A"(o,t)sing(o,t), along with the increasing of o <[1/2,1],
with respect this zero-valued line, the neighboring maximum extreme points
and minimum extreme points are also linked into two curves, say h and h,,
which satisfy

(o,t)=20(t)-¢(o,t)=2mn+m7/2, o8)
S(U,t_) = 249('[_)—6(0,t_) =2mn+371/2,

4Cy

respectively. Since t>T >2ne™ , it follows from Theorem 5 that

|e(0',§)|<1r/2 and |€(0',t_)|<7t/2.Hence,
20(t)=2mn+n/2+&(o,t)<(2m+1)n and
260(t)=2mn+3n/2+¢(o0,T)>(2m+1)n. This indicates that

20(t) < 260(t,) <20(t), from which we get t<t, <t forall oe[1/2,1]. Ac-
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tually, h and h, possessthe coordinate (o,t) and (o,t), respectively.

Certainly, |, is included in the horizontal strip delimited by h, and h,.If

there is a zero-valued curve |, of V(o,t) which intersects with |, at
(00:ty), then V(1/2,t))=V (oy.t,) =0, and along I, there must be an ex-
treme point o =0, at which V_ =0. Yet notice that for every given
o €[1/2,1], with respect to $(o,t) on (2mn+m/2,2mn+3m/2),
U (O',t) =A (G,t)Sin 19(0,'{) decreases, there should be U, <0 on the whole
strip. Furthermore, it follows from the Cauchy-Riemann condition in Equation
(76) that V_=-U, >0. This leads to a contradiction.

Except the particular case ¢(o,t,)=0, it follows frg

Theore

e consta

condition that t>T >4C, /n, we have

|5(0',t)|

To take 26(t) as a research object i see |, accords with

<

T
kit——<2 79
o 4 (79)

for some positive integer neighboring two extreme-point

curves, say h, and h,, af@defined as in/Equation (78), which yield

+e(o,t)< kon—E,
4 (80)

29(§)<k0n—%<29(f)<k0n+%< 26/(F). (81)

the horizontal strip delimited by h, and h,, there are two horizontal lines,
say\ ), and J,, defined by 26(t)=k,n—n/4 and 260(t)=k,m+m/4, respec-
tively. If there is a zero-valued curve I, of V (o,t) which intersects with I,
at (oy,ty), then the horizontal line t=t, is between the two horizontal lines
j and J,. Naturally, we have V (1/2,t,)=V (oy.,t,) =0, and along the line
t=t, there should be an extreme point o =0 , at which V_ =0. Yet in the
horizontal strip delimited by h, and h,, 9(o,t) lies in the monotone inter-
val (k,m—m/2,k,m+m/2). In case k; is odd, say k, =2m, +1, for every given
oe[y2,1], U(o,t)=A"(o,t)sing(o,t) decreases on this interval. Particu-
larly, between the two horizontal lines j and j,, there is U, <0. Further-
more, it follows from the Cauchy-Riemann condition in Equation (76) that
V_=-U, >0. This leads to a contradiction. In case K, is even, say k,=2m,,
(kom—m/2,kym+m/2) is the increasing interval of U (o,t), and between the
two horizontal lines j; and j, there mustbe V_ =-U, <0. This is also con-

tradictory.
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The contradiction above indicate that the real part U (o,t) and imaginary part
V(o,t) of &(o+it) have no mutual zero point in the region (1/2,1]x(T,)
for big enough 7. Furthermore, it follows from the symmetric properties of U
and V that, except on the critical line o =1/2, they have no other mutual zero
point in the whole region [0,1]x(T,o)U[0,1]x(—o0,~T ). The proof is finished.

5. Conclusions and Remarks

The Riemann hypothesis is a well-known unsolved problem. Its difficulty lies in

the complexity of the Zeta function ¢(s). Essentially, it isg d in an infi-

the steep precipices and
we began to investigate t
o =1/2, abold jdea appeare
all the scattered resul8pin the literatures are linked together. With three-month

ith 4r/50° < A"(o,t) < 24/5F, (l)/t and |g(0',t)| <m/2. Except a particular
c ere is also a refined estimation |5(0',t)| <C,/t for some positive con-
staigts C,.

These theoretical results have verified the observed distribution law

—klog(t—kJ+in=kn, k=12,
e) 3

for the zero points on the critical line o =1/2. Here t, stands for the ap-
proximate value of the k -th zero point. This indicates Proposition 2 given by
Riemann is true. Explicitly, for a big enough T which does not accord with a zero
point, in the range 0<t<T the number of zero points on the critical line
o =1/2 obeys the exact formula bellow (understood as taking the integer part):
2,T
N (T):llog T +f_g(1/—)
2n 2re) 3 T
with |e(12,T)/n|<1/2.

It is well-known that there is no zero point outside the critical strip 0<o <1.
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For any given finite region bounded by 0<o <1 and 0<t<T, it can be al-
ways checked that, all the zero points of &(o,t) are on the critical line
o =1/2. What lacks is the knowledge for the case with t — oo . In 2004, Gour-
don [11] had checked the first 10** zero points and found the Riemann hypothe-
sis is true. To speculate with our distribution law, its upper bound is up to
T =2.4460x10" . As reviewed in [9], another calculation had ever been done by
Odlyzko in 1989 [20] in selected intervals show that the Riemann hypothesis
holds for over 3 x 10° zeros at height up to T =2x10%. Our request on the
lower bound 7'may be much lower than this. The final resultd

full stop for this suspending problem.
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