

ISSN Online: 2152-7393 ISSN Print: 2152-7385

The Number of Matching Equivalent for the Union Graph of Vertices and Cycles

Xiaoling Wang

School of Mathematics and Statistics, Qinghai Nationalities University, Xining, China Email: qh_wangxiaoling@163.com

How to cite this paper: Wang, X.L. (2021) The Number of Matching Equivalent for the Union Graph of Vertices and Cycles. *Applied Mathematics*, **12**, 471-476. https://doi.org/10.4236/am.2021.126032

Received: May 3, 2021 Accepted: June 21, 2021 Published: June 24, 2021

Copyright © 2021 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

For two graphs G and H, if G and H have the same matching polynomial, then G and H are said to be matching equivalent. We denote by $\delta(G)$, the number of the matching equivalent graphs of G. In this paper, we give $\delta(sK_1 \cup t_1C_9 \cup t_2C_{15})$, which is a generation of the results of in [1].

Keywords

Graph, Matching Polynomial, Matching Equivalence

1. Introduction

This paper only considers finite undirected simple graphs. Let G be a graph with n vertices. The matching of G means a spanning subgraph of G, and each of its connected branches is either an isolated vertex or an isolated edge. t-matching means matching that there are t edges. Matching polynomial of graph G is defined as follows in [2]:

$$\mu(G,x) = \sum_{t\geq 0} (-1)^t \alpha_t(G) x^{n-2t} , \qquad (1)$$

where $\alpha_{t}(G)$ is number of *t*-matching for *G*.

If graph G and graph H satisfy $\mu(G,x) = \mu(H,x)$, then we say G and H are matching equivalence, denoted as $G \sim H$.

Set $\delta(G)$ which denotes the number of matching equivalent graphs of all different isomorphisms for graph G, if $\delta(G)=1$, we say graph G is a unique matching. In [2], the authors gave some elegant properties of matching polynomials, and proved that to find the matching polynomial of a graph is an NP-problem. Thus, in [1], the authors studied the number of matching equivalent graphs of some vertices and some cycle-union graphs. It turns out that the problem is not simple. In this paper, we study the number of matching equiva-

lent for the union graph of vertices and cycles, that is $\delta(sK_1 \cup t_1C_9 \cup t_2C_{15})$.

Throughout the paper, K_1 denotes an isolated vertex, $P_n(n \ge 2)$ denotes the path including n vertices; $C_m(m \ge 3)$ denotes a cycle that including m vertices; $T_{i,j,k}$ denotes a tree that has only a 3-degree vertex, three 1-degree vertex, and the distance between this 3-degree vertex and three 1-degree vertex is i, j, k separately; $D_n(n \ge 4)$ denotes a graph that produced by bonding a vertex on a triangle to an end of a path P_{n-2} ; nG denotes disjoint union of n graph G.

2. Preliminaries

Lemma 2.1 [3] Suppose graph G has k connected component: G_1, G_2, \dots, G_k , then $\mu(G, x) = \prod_{i=1}^k \mu(G_i, x)$, the roots of matching polynomials are all real numbers, denote M(G) as the maximum root of $\mu(G, x)$.

Lemma 2.2 [3] Suppose *G* is connected graph, then M(G) < 2 if and only if $G \in \Gamma = \{K_1, P_n, T_{1,1,n}, T_{1,2,2}, T_{1,2,3}, T_{1,2,4}, C_n, D_4\}$.

Lemma 2.3 [3] (i) $M(C_m) = M(T_{1,1,m-2}) = M(P_{2m-1})$.

- (ii) $M(C_6) = M(T_{1,1,4}) = M(T_{1,2,2}) = M(D_4) = M(P_{11})$.
- (iii) $M(C_9) = M(T_{1,1,7}) = M(T_{1,2,3}) = M(P_{17}).$
- (iv) $M(C_{15}) = M(T_{1.1.13}) = M(T_{1.2.4}) = M(P_{29})$.

Lemma 2.4 [4] [5] (i) The matching equivalent graph of $K_1 \cup C_m (m \neq 6, 9, 15)$ is $K_1 \cup C_m, T_{1,1,m-2}$.

- (ii) The matching equivalent graph of $K_1 \cup C_6$ is: $K_1 \cup C_6, T_{1,1,4}, P_3 \cup D_4$.
- (iii) The matching equivalent graph of $K_1 \cup C_9$ is $K_1 \cup C_9, T_{117}, C_3 \cup T_{123}$.
- (iv) The matching equivalent graph of $K_1 \cup C_{15}$ is: $K_1 \cup C_{15} \sim C_3 \cup C_5 \cup T_{1,2,4}$.

Lemma 2.5 [6] (i) $P_{2m+1} \sim P_m \cup C_{m+1}, (m \ge 2)$.

- (ii) $T_{1,1n} \sim K_1 \bigcup C_{n+2}$.
- (iii) $T_{1,2,2} \sim P_2 \cup D_4$.
- (iv) $K_1 \cup C_6 \sim P_3 \cup D_4$.
- (v) $K_1 \cup C_9 \sim C_3 \cup T_{1,2,3}$.
- (vi) $K_1 \cup C_{15} \sim C_3 \cup C_5 \cup T_{1,2,4}$.

Lemma 2.6 [1] Suppose $G = sK_1$ or $t_1C_{m_1} \cup \cdots \cup t_kC_{m_k}$, then G is a unique matching, that is $\delta(G) = 1$.

Lemma 2.7 [1] Suppose

$$G = sK_1 \bigcup t_1 C_{m_1} \bigcup t_2 C_{m_2} \bigcup \cdots \bigcup t_k C_{m_k}, m_i \neq 6 (i = 1, 2, \cdots, k),$$

then all matching equivalent graphs of G do not contain road branches.

Lemma 2.8 [1]

(i) $G = sK_1 \cup aP_3 \cup tC_6$, then all matching equivalent graphs of G do not contain P_{11} branch and also $T_{1,2,2}$ [7],

(ii)
$$\delta(sK_1 \cup aP_3 \cup tC_6) = \delta(sK_1 \cup tC_6)$$
.

Lemma 2.9 [1] [7] If $m \neq 6,9,15$, then

$$\delta(sK_1 \cup tC_6) = \min\{s, t\} + 1. \tag{2}$$

Lemma 2.10 [1] [8] If $m_i \neq 6,9,15 (i=1,2)$, then

$$\delta(sK_1 \cup t_1C_{m_1} \cup t_2C_{m_2}) = \sum_{i=0}^r \min\{s-i, t_1\} + r + 1$$
, where

$$r = \min\left\{s, t_2\right\}. \tag{3}$$

3. Main Results

Lemma 3.1
$$\delta(sK_1 \cup t_1C_3 \cup t_2C_5 \cup t_3C_9) = \sum_{j=0}^r \sum_{i=j}^r \delta(s-i, t_1 + (i-j), t_2),$$

where

$$r = \min\left\{s, t_3\right\}. \tag{4}$$

Proof. For simplicity, denote $\delta(sK_1 \cup t_1C_3 \cup t_2C_5 \cup t_3C_9) = \delta(s,t_1,t_2,t_3)$.

Set $H \sim sK_1 \cup t_1C_3 \cup t_2C_5 \cup t_3C_6$, by lemma 2.3 (iii) and lemma 2.7, we know H contains connected component $C_9, T_{1,1,7}$ or $T_{1,2,3}$.

1) If H contains C_9 , by $H = C_9 \cup H_2 \sim sK_1 \cup t_1C_3 \cup t_2C_5 \cup t_3C_9$, we know $H_2 \sim sK_1 \cup t_1C_3 \cup t_2C_5 \cup (t_3-1)C_9$.

Such H_2 has a total of $\delta(s,t_1,t_2,t_3-1)$.

2) If *H* contains $T_{1,1,7}$, by $H = T_{1,1,7} \cup H_2 \sim sK_1 \cup t_1C_3 \cup t_2C_5 \cup t_3C_9$ and lemma 2.5 (ii), we know

$$H_2 \sim (s-1)K_1 \cup t_1C_3 \cup t_2C_5 \cup (t_3-1)C_9$$
,

Such H_2 has a total of $\delta(s-1,t_1,t_2,t_3-1)$.

3) If H contains $T_{1,2,3}$, by $H = T_{1,2,3} \cup H_2 \sim sK_1 \cup t_1C_3 \cup t_2C_5 \cup t_3C_9$ and lemma 2.5(v), we get

$$H_2 \sim (s-1)K_1 \cup (t_1+1)C_3 \cup t_2C_5 \cup (t_3-1)C_9$$

Such H_2 has a total of $\delta(s-1,t_1+1,t_2,t_3-1)$.

- 4) If H contains C_9 and $T_{1,1,7}$ simultaneously, such H_2 has a total of $\delta(s-1,t_1,t_2,t_3-2)$.
- 5) If H contains C_9 and $T_{1,2,3}$ simultaneously, such H_2 has a total of $\delta(s-1,t_1+1,t_2,t_3-2)$.
- 6) If H contains $T_{1,1,7}$ and $T_{1,2,3}$ simultaneously, such H_2 has a total of $\delta(s-2,t_1+1,t_2,t_3-2)$.
- 7) If H contains C_9 , $T_{1,1,7}$ and $T_{1,2,3}$ simultaneously, such H_2 has a total of $\delta(s-2,t_1+1,t_2,t_3-3)$.

Thus,

$$\delta(s,t_1,t_2,t_3) = \delta(s,t_1,t_2,t_3-1) + \delta(s-1,t_1,t_2,t_3-1) + \delta(s-1,t_1+1,t_2,t_3-1)$$
$$-\delta(s-1,t_1,t_2,t_3-2) - \delta(s-1,t_1+1,t_2,t_3-2)$$
$$-\delta(s-2,t_1+1,t_2,t_3-2) + \delta(s-2,t_1+1,t_2,t_3-3)$$

Then,

$$\delta(s,t_1,t_2,t_3) - \delta(s-1,t_1,t_2,t_3-1) - \delta(s-1,t_1+1,t_2,t_3-1) + \delta(s-2,t_1+1,t_2,t_3-2) = \delta(s,t_1,t_2,t_3-1) - \delta(s-1,t_1,t_2,t_3-2) - \delta(s-1,t_1+1,t_2,t_3-2) + \delta(s-2,t_1+1,t_2,t_3-3)$$

Repeat the application of the above formula, we obtain

$$\begin{split} &\delta\left(s,t_{1},t_{2},t_{3}\right)-\delta\left(s-1,t_{1},t_{2},t_{3}-1\right)-\delta\left(s-1,t_{1}+1,t_{2},t_{3}-1\right)\\ &+\delta\left(s-2,t_{1}+1,t_{2},t_{3}-2\right)\\ &=\delta\left(s,t_{1},t_{2},2\right)-\delta\left(s-1,t_{1},t_{2},1\right)-\delta\left(s-1,t_{1}+1,t_{2},1\right)+\delta\left(s-2,t_{1}+1,t_{2},0\right)\\ &=\delta\left(s,t_{1},t_{2},1\right)-\delta\left(s-1,t_{1},t_{2},0\right)-\delta\left(s-1,t_{1}+1,t_{2},0\right)\\ &=\delta\left(s,t_{1},t_{2},0\right)=\delta\left(s,t_{1},t_{2},0\right)-\delta\left(s-1,t_{1}+1,t_{2},0\right) \end{split}$$

Thus,

$$\delta(s,t_{1},t_{2},t_{3}) - \delta(s-1,t_{1},t_{2},t_{3}-1)$$

$$= \delta(s-1,t_{1}+1,t_{2},t_{3}-1) - \delta(s-2,t_{1}+1,t_{2},t_{3}-2) + \delta(s,t_{1},t_{2})$$

$$= \delta(s-2,t_{1}+2,t_{2},t_{3}-2) - \delta(s-3,t_{1}+2,t_{2},t_{3}-3)$$

$$+ \delta(s-1,t_{1}+1,t_{2}) + \delta(s-1,t_{1}+1,t_{2})$$

$$= \dots = \sum_{i=1}^{r} \delta(s-i,t_{1}+i,t_{2})$$

$$\delta(s, t_1, t_2, t_3) - \delta(s - 1, t_1, t_2, t_3 - 1) = \sum_{i=0}^{r} \delta(s - i, t_1 + i, t_2)$$
 (1)

$$\delta(s-1,t_1,t_2,t_3-1) - \delta(s-2,t_1,t_2,t_3-2) = \sum_{i=1}^{r} \delta(s-i,t_1+(i-1),t_2)$$
 (2)

$$\delta(s - (r-1), t_1, t_2, t_3 - (r-1)) - \delta(s - r, t_1, t_2, t_3 - r)$$

$$= \sum_{i=r-1}^{r} \delta(s - i, t_1 + i - (r-1), t_2)$$
(r)

$$\delta(s-r,t_1,t_2,t_3-r) = \sum_{i=r}^{r} \delta(s-i,t_1+(i-r),t_2) \quad (r+1)$$

Add (1), (2), \cdots , (r+1) together, we get

$$\delta(s, t_1, t_2, t_3) = \sum_{j=0}^{r} \sum_{i=j}^{r} \delta(s - i, t_1 + (i - j), t_2).$$

Theorem 3.1

$$\delta(sK_1 \cup t_1C_9 \cup t_2C_{15}) = \sum_{j=0}^r \sum_{i=j}^r \delta(s-i, i-j, i-j, t_1).$$
 (5)

Proof. For simplicity, denote

$$\delta(sK_1 \cup tC_3 \cup t'C_5 \cup t_1C_9 \cup t_2C_{15}) = \delta(s,t,t't_1,t_2).$$

Suppose $H \sim G$, by lemma 2.3(iv) and lemma 2.7, we know H contains connected component C_{15} , $T_{1,1,13}$ or $T_{1,2,4}$.

- 1) If H contains C_{15} , by $H = C_{15} \cup H_2 \sim sK_1 \cup t_1C_9 \cup t_2C_{15}$ we know $H_2 \sim sK_1 \cup t_1C_9 \cup (t_2-1)C_{15}$. Such H_2 has a total of $\delta(s,0,0,t_1,t_2-1)$.
- 2) If H contains $T_{1,1,13}$, by $H = T_{1,1,13} \cup H_2 \sim G = sK_1 \cup t_1C_9 \cup t_2C_{15}$ and lemma 2.5(ii), we get $H_2 \sim (s-1)K_1 \cup t_1C_9 \cup (t_2-1)C_{15}$. Such H_2 has a total of $\delta(s-1,0,0,t_1,t_2-1)$.
- 3) If H contains $T_{1,2,4}$, by $H = T_{1,2,4} \cup H_2 \sim G = sK_1 \cup t_1C_9 \cup t_2C_{15}$ and lemma 2.5(vi), we get $H_2 \sim (s-1)K_1 \cup C_3 \cup C_5 \cup t_1C_9 \cup (t_2-1)C_{15}$, such H_2 has a total of $\delta(s-1,1,1,t_1,t_2-1)$.

- 4) If H contains C_{15} and $T_{1,1,1,3}$, such H_2 has a total of $\delta(s-1,0,0,t_1,t_2-2)$.
- 5) If H contains C_{15} and $T_{1,2,4}$, such H_2 has a total of $\delta(s-1,1,1,t_1,t_2-2)$.
- 6) If H contains $T_{1,1,13}$ and $T_{1,2,4}$, such H_2 has a total of $\delta(s-2,1,1,t_1,t_2-2)$.
- 7) If H contains C_{15} , $T_{1,1,13}$ and $T_{1,2,4}$, such H_2 has a total of $\delta(s-2,1,1,t_1,t_2-3)$.

Then

$$\begin{split} \delta\left(s,0,0,t_{1},t_{2}\right) &= \delta\left(s,0,0,t_{1},t_{2}-1\right) + \delta\left(s-1,0,0,t_{1},t_{2}-1\right) \\ &+ \delta\left(s-1,1,1,t_{1},t_{2}-1\right) - \delta\left(s-1,0,0,t_{1},t_{2}-2\right) \\ &- \delta\left(s-1,1,1,t_{1},t_{2}-2\right) - \delta\left(s-2,1,1,t_{1},t_{2}-2\right) \\ &+ \delta\left(s-2,1,1,t_{1},t_{2}-3\right) \end{split}$$

Thus,

$$\begin{split} &\delta\left(s,0,0,t_{1},t_{2}\right)-\delta\left(s-1,0,0,t_{1},t_{2}-1\right)-\delta\left(s-1,1,1,t_{1},t_{2}-1\right)\\ &+\delta\left(s-2,1,1,t_{1},t_{2}-2\right)\\ &=\delta\left(s,0,0,t_{1},t_{2}-1\right)-\delta\left(s-1,0,0,t_{1},t_{2}-2\right)-\delta\left(s-1,1,1,t_{1},t_{2}-2\right)\\ &+\delta\left(s-2,1,1,t_{1},t_{2}-3\right) \end{split}$$

Repeat the application of the above formula, we obtain

$$\delta(s,0,0,t_{1},t_{2}) - \delta(s-1,0,0,t_{1},t_{2}-1) - \delta(s-1,1,1,t_{1},t_{2}-1) + \delta(s-2,1,1,t_{1},t_{2}-2) = \delta(s,0,0,t_{1},2) - \delta(s-1,0,0,t_{1},1) - \delta(s-1,1,1,t_{1},1) + \delta(s-2,1,1,t_{1},0) = \delta(s,0,0,t_{1},1) - \delta(s-1,0,0,t_{1},0) - \delta(s-1,1,1,t_{1},0) = \delta(s,0,0,t_{1})$$

So,

$$\begin{split} &\delta\left(s,0,0,t_{1},t_{2}\right)-\delta\left(s-1,0,0,t_{1},t_{2}-1\right)\\ &=\delta\left(s-1,1,1,t_{1},t_{2}-1\right)-\delta\left(s-2,1,1,t_{1},t_{2}-2\right)+\delta\left(s,0,0,t_{1}\right)\\ &=\delta\left(s-2,2,2,t_{1},t_{2}-2\right)-\delta\left(s-3,2,2,t_{1},t_{2}-3\right)\\ &+\delta\left(s,0,0,t_{1}\right)+\delta\left(s-1,1,1,t_{1}\right)\\ &=\delta\left(s-3,3,3,t_{1},t_{2}-3\right)-\delta\left(s-4,3,3,t_{1},t_{2}-4\right)+\delta\left(s,0,0,t_{1}\right)\\ &+\delta\left(s-1,1,1,t_{1}\right)+\delta\left(s-2,2,2,t_{1}\right)\\ &=\cdots=\sum_{i=0}^{r}\delta\left(s-i,\ i,i,t_{1}\right) \end{split}$$

$$\delta(s,0,0,t_1,t_2) - \delta(s-1,0,0,t_1,t_2-1) = \sum_{i=0}^{r} \delta(s-i,i,i,t_1) \quad (1'')$$

$$\delta(s-1,0,0,t_1,t_2-1) - \delta(s-2,0,0,t_1,t_2-2) = \sum_{i=0}^{r} \delta(s-i,i-1,i-1,t_1) \quad (2'')$$

$$\begin{split} &\delta\left(s-\left(r-1\right),0,0,t_{1},t_{2}-\left(r-1\right)\right)-\delta\left(s-r,0,0,t_{1},t_{2}-r\right)\\ &=\sum_{i=r-1}^{r}\delta\left(s-i,i-\left(r-1\right),i-\left(r-1\right),t_{1}\right) \end{split} \tag{r'}$$

$$\delta(s-r,0,0,t_1,t_2-r) = \sum_{i=r}^{r} \delta(s-i,i-r,i-r,t_1) \quad (r+1)'$$

Add (1'), (2'), \cdots , (r+1') together, we get:

$$\delta(s,0,0,t_1,t_2) = \sum_{j=0}^{r} \sum_{i=j}^{r} \delta(s-i,i-j,i-j,t_1). \blacksquare$$

Characterizing all graphs determined by a graph polynomial is an important subject in algebraic graph theory, among them, matching polynomial is considered to be a better algebraic tool. It is NP difficult to completely characterize the matched equivalent graphs of a class of graphs. In this paper, we study the number of matching equivalent graphs of some points and some cycli-union graphs, that is to say we calculate

$$\delta(sK_1 \cup t_1C_9 \cup t_2C_{15}) = \sum_{j=0}^r \sum_{i=j}^r \delta(s-i, i-j, i-j, t_1).$$

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11561056), the Natural Science Foundation of Qinghai Province (2016-ZJ-914), Teaching Reform Research Project of Qinghai Nationalities University (2021-JYQN-005).

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

- [1] Ma, H.C. and Wang, X.L. (2006) Matching Equivalent Graph Class of Point-Circle Union Graph. *Journal of Northeast Normal University (Natural Science Edition)*, **4**, 36-40.
- [2] Godsil, C.D. (1993) Algebraic Combinatorics. Chapman and Hall, New York, London.
- [3] Ma, H.C. (2000) Matching Equivalence Classes of Two Types of Graphs. *Journal of Mathematical Study*, **2**, 218-222.
- [4] Ma, H.C. (2003) Matches the Matching Equivalence Class of Graphs Whose Maximum Root Is Less than 2. *Journal of Systems Science and Mathematical Sciences*, **3**, 337-342.
- [5] Ma, H.C. and Li, Y.K. (2016) The Matching Equivalence Graphs with the Maximam Matching Root Less than or Equal to 2. Applied Mathematics, 7, 920-926. https://doi.org/10.4236/am.2016.79082
- [6] Guo, Z.Y. and Yu, Y.S. (1989) On the Matching Uniqueness of Two Kinds of Graphs. *Mathematica Applicata*, **2**, 25-32.
- [7] Ma, H.C. (2017) A Characterization of Graphs with Rank More than 5. *Applied Mathematics*, **8**, 26-34. https://doi.org/10.4236/am.2017.81003
- [8] Ma, H.C. (2017) The Energy and Operations of Graphs. *Advances in Pure Mathematics*, **7**, 345-351. https://doi.org/10.4236/apm.2017.76021