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Abstract 
Biochemical systems have numerous practical applications, in particular to 
the study of critical intracellular processes. Frequently, biochemical kinetic 
models depict cellular processes as systems of chemical reactions. Many bio-
logical processes in a cell are inherently stochastic, due to the existence of 
some low molecular amounts. These stochastic fluctuations may have a great 
effect on the biochemical system’s behaviour. In such cases, stochastic models 
are necessary to accurately describe the system’s dynamics. Biochemical sys-
tems at the cellular level may entail many species or reactions and their ma-
thematical models may be non-linear and with multiple scales in time. In this 
work, we provide a numerical technique for simplifying stochastic discrete 
models of well-stirred biochemical systems, which ensures that the main 
properties of the original system are preserved. The proposed technique em-
ploys sensitivity analysis and requires solving an optimization problem. The 
numerical tests on several models of practical interest show that our model 
reduction strategy performs very well. 
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1. Introduction 

Modelling and simulation of cellular processes are subjects of significant interest 
in fields such as Computational and Systems Biology. Biological processes at the 
level of a single cell are commonly portrayed as systems of biochemical reactions. 
The dynamics of various biochemically reacting systems may exhibit random 
fluctuations, due to some molecular species which exist in low amounts. These 
random fluctuations could have critical implications in biology [1] [2]. Then, 
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stochastic models are essential for an accurate description of the system’s dy-
namics. An extensively used stochastic model of well-stirred biochemical systems 
is the Chemical Master Equation (CME) [3]. This model represents the state of 
the system as a Markov process. An exact stochastic simulation algorithm for the 
Chemical Master Equation was proposed by Gillespie [4] [5]. 

Biochemical processes at the cellular level may entail many biochemical species 
undergoing a significant number of reactions. The mathematical models of such 
biochemical networks have high dimension, and thus their numerical simulation 
is quite demanding. Moreover, numerous biochemical systems evolve on mul-
tiple time scales, leading to stiffness. Stiffness is a challenge for numerical simu-
lations. A large number of the species and/or reactions of some biochemical sys-
tems encountered in applications imply that their mathematical models have a 
significant number of parameters. Usually, these parameters cannot be measured 
accurately. For many biochemical networks, it is difficult to determine the parts 
of the system which are critical in determining their behaviour. Therefore, it is 
critical to design accurate and robust strategies to simplify these complex bio-
chemical systems, which maintain the key properties of the original network. 
The reduced models will be easier to analyze and simulate numerically. In addi-
tion, they can be utilized to predict and control the behaviour of the system. 
Furthermore, the simplified models have a lower number of parameters, which 
thus become easier to determine. Reduction techniques for deterministic models 
of biochemical systems include species and reaction lumping methods [6] [7], 
sensitivity analysis based schemes [8] and time-scale analysis based strategies [9] 
[10]. Lumping schemes cause a loss of the physical interpretation of the elemen-
tary reactions and of information on some species or reactions. These schemes 
are useful when poor data exist about certain reactions. Time-scale analysis ap-
plies to systems with reactions that can be partitioned into fast and slow events, 
for which the fast components are in a quasi-steady state. For complex networks 
of biochemical reactions, finding the constraints for the fast dynamics may be a 
challenging task. Sensitivity analysis examines the dependence of the system’s 
behaviour on its parameters. In particular, local sensitivity analysis of models of 
biochemical systems measures the variation of the system’s state with small per-
turbations in model’s parameters [11]. Sensitivity analysis makes it possible to 
identify and discard the reactions which are not essential, those with a negligible 
parametric sensitivity with respect to their rate parameters [8]. Few reduction 
techniques for stochastic models of biochemical systems exist in the literature. 
These include [12] [13] [14] for discrete models and [15] [16] for continuous 
ones (see also references therein). 

This paper proposes a new technique for reducing the complexity of stochastic 
discrete models of homogeneous biochemical networks. The discrete stochastic 
model under consideration is the Chemical Master Equation. The Chemical 
Master Equation accurately describes the dynamics of a wide range of well-stirred, 
realistic biochemical systems. The reduced reaction mechanisms generated with 
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the new technique are easier to understand and manipulate and have fewer pa-
rameters. 

Local sensitivity analysis quantifies the variations in the system’s behaviour 
caused by small changes in its parameters. Our method relies on estimating (lo-
cal) parametric sensitivities of the Chemical Master Equation model. These pa-
rametric sensitivities are approximated using the Coupled Finite Difference (CFD) 
scheme [17] and the Common Random Number (CRN) method [18]. Sensitivity 
analysis is performed to detect which parameters, and thus which reactions, are 
good candidates for elimination. It should be noted that local sensitivity analysis 
alone may not be a reliable tool for model reduction. It may indicate that a fast 
reaction can be eliminated, although that reaction is important. Elimination of a 
fast reaction means that the value of its rate parameter changes significantly. 
Nevertheless, local sensitivity analysis provides no information on the perturba-
tions in the system’s dynamics induced by large variations in its parameters. To 
correct this, local sensitivity analysis is coupled with a global approach to model 
reduction, which requires solving an optimization problem. For achieving this, 
we shall apply a strategy akin to that proposed in [8] for reducing continuous 
deterministic models of chemical reactions. This strategy ensures that the sim-
plified biochemical system retains the stability and nonlinear properties of the 
original network. 

The paper is organized as follows. In Section 2, we present the background on 
stochastic discrete models of homogeneous biochemical systems, and methods 
to simulate and estimate parametric sensitivities for these models. In Section 3, 
we propose a new model reduction strategy for the Chemical Master Equation. 
The advantages of the proposed strategy are illustrated on three critical models 
arising in applications, namely the infection, the epidermal growth factor recep-
tor signalling pathway and the gemcitabine biochemical systems, in Section 4. 

2. Background 
2.1. Chemical Master Equation 

The evolution in time of homogeneous biochemical systems is governed by the 
Chemical Master Equation. This model has been successfully utilized to study vital 
biological processes, such as gene expression and regulation [1] [2]. 

Consider N biochemical species 1, , NS S�  interacting through M chemical 
reactions, 1, , MR R� . Assume that the system is homogeneous, and at constant 
volume and thermal equilibrium. It is described by the state vector:  

( ) ( ) ( ) ( ) T
1 2, , , Nt X t X t X t=   �X  

where ( )iX t  indicates the amount of iS  molecules at time t. The biochemical 
system state, ( )tX , is a Markov process continuous in time and discrete in 
space. To each reaction jR  it corresponds a state change vector  

( )T
1 , ,j j Njν ν≡ �ν , with ijν  representing the number of iS  molecules con-

sumed or produced when a reaction jR  fires. The matrix { }1 ,1ij i N j M
ν

≤ ≤ ≤ ≤
=ν , 
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where N is the number of reactants and M is the number of reactions, represents 
the stoichiometric matrix. In addition, a propensity function ( )ja x  is used for 
describing a reaction jR . By definition, ( )ja dtx  is the probability of one reac-
tion jR  firing during [ ],t t dt+ , provided that at time t the system was in state 
x . 

Each propensity function follows the mass-action kinetics; thus, for the first 
order reaction productsjc

mS → , it is ( )( ) ( )j j ma t c X t=X , and for the 
second order reaction productsjc

m nS S+ → , with m n≠ , the propensity is 
( )( ) ( ) ( )j j m na t c X t X t=X . Lastly, the propensity of productsjc

m mS S+ →  
may be expressed as ( )( ) ( ) ( )( )1 2j j m ma t c X t X t= −X . 

For 0t t≥ , let ( )0 0, | ,P t tx x  be the conditional probability that the state 
vector at time t is ( )t =X x , given that at time 0t  it was ( )0 0t =X x . Then, 
( )0 0, | ,P t tx x  satisfies the Chemical Master Equation [3]  

( ) ( ) ( ) ( ) ( )0 0
0 0 0 0

1

, | ,
, | , , | , ,

M

j j j j
j

P t t
a P t t a P t t

t =

∂
 = − − − ∂ ∑

x x
x x x x x xν ν   (1) 

where jν  is the state-change vector for reaction jR . The Chemical Master Equ-
ation is a refined stochastic discrete model of homogeneous biochemical systems. 
It is worth mentioning that, generally, the CME is a high dimensional model. 
Exact Monte Carlo techniques for the Chemical Master Equation model were 
developed in the literature. They include Gillespie’s algorithm [4] and the Ran-
dom Time-Change (RTC) algorithm [17] [18] based on the RTC representation 
of Kurtz [19]. 

2.2. Gillespie’s Algorithm 

The Chemical Master Equation (1) is computationally intractable for the major-
ity of biochemical systems encountered in applications. To deal with this diffi-
culty, Gillespie [4] [5] proposed an exact Monte Carlo strategy for the Chemical 
Master Equation, referred to as the stochastic simulation algorithm (SSA). 

Gillespie’s algorithm proceeds as follows:  
1) Initialize 0t t← , ( )0 0t ←X x .  
2) At time t, evaluate  

( )( ) ( )( )
1

: .
M

sum k
k

a t a t
=

= ∑X X  

3) Draw a unit uniform random number 1r , and take  

( )( ) ( )11 ln 1 .suma t rτ  =  X  

4) Draw a unit uniform random number 2r  and denote by j the smallest in-
teger satisfying  

( )( ) ( )( )2
1

.
j

k sum
k

a t r a t
=

>∑ X X  

5) Update ( ) ( ) jt tτ+ ← +X X ν  and t t τ← + . 
6) Return to step 2 or else stop.  
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2.3. Sensitivity Analysis 

Sensitivity analysis is a key tool for investigating the robustness properties of a 
model with respect to perturbations in its parameters, for estimating these pa-
rameters or for guiding model reduction. Models of biochemically reacting sys-
tems depend on several parameters, such as the reaction rate parameters and the 
initial conditions. In many instances, the values of several such parameters are 
not available or cannot be evaluated accurately. For this reason, it is critical to 
investigate how variations in model parameters influence the behaviour of the 
system. Local sensitivity analysis examines how the system dynamics is influ-
enced by small changes in model parameters. A model is sensitive with respect 
to one of its parameters if the behaviour of the system varies significantly with 
minor perturbations in that parameter; else it is robust with respect to variations 
in that parameter. Parametric sensitivities help determine which components of 
the biochemical network control the model’s behaviour. If a reaction is such that 
some parametric sensitivities with respect to its kinetic parameter are large, then 
it is considered important. 

For a deterministic system, the parametric sensitivity of the state vector, ( ),t cX , 
with respect to a parameter c can be computed by ( ),t c c= ∂ ∂S X . Estimating 
parametric sensitivities of a stochastic discrete model can be a daunting task. In 
this work, we employ finite-difference approximations of the local parametric 
sensitivities for the Chemical Master Equation model. The sample paths neces-
sary for the finite-difference estimations are generated with Monte Carlo simula-
tions. In the discrete stochastic setting, if   is the expected value, f  is a func-
tion of interest, ( ),t cX  represents the system state at time t, corresponding to the 
parameter c, then a finite-difference estimation of the sensitivity of ( )( )( ),t c f X  
with respect to c is  

( )( ) ( )( ), ,
.

t c h t c

h

   + −   ≈
 f X f X

S                (2) 

Here h is a small perturbation of the parameter c. In what follows, c represents 
a kinetic rate parameter. 

Let ( ) ( ),n t c h+X  and ( ) ( ),n t cX  be trajectories generated by Monte Carlo 
simulations, for the parameters c h+  and c, respectively. Here n is the trajec-
tory index (1 n L≤ ≤ ) and L is the total number of trajectories. In this case, a fi-
nite-difference numerical approximation of the sensitivity, utilizing Monte Carlo 
simulations, is  

( ) ( )( ) ( ) ( )( )
1

1 1 , , .
L

n n

n
S t c h t c

L h=

 ≈ + − ∑ f X f X              (3) 

It is widely known that variance reduction strategies allow more precise esti-
mations of the sensitivity, with a smaller numbers of simulations. To reduce the 
variance of the estimator, finite-difference sensitivity estimators couple the per-
turbed and unperturbed trajectories. Among the most effective and accurate fi-
nite-difference parametric estimators for stochastic discrete models of biochem-
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ical systems are the Common Random Number (CRN) method due to Rathinam 
et al. [18] and the Coupled Finite-Difference (CFD) scheme proposed by An-
derson [17]. For further information on the CFD method, using the random time 
change representation [19] of the Markov process ( )tX , we refer the reader to 
[17]. The CRN method is presented below. Notice that the CRN and CFD tech-
niques are based on exact Monte Carlo simulation schemes for the Chemical 
Master Equation.  

Common Random Number (CRN) The common random number technique 
is utilized for estimating parametric sensitivities of stochastic discrete biochemi-
cal kinetic models. The CRN estimator has a low variance [18]. To estimate the 
sensitivity of the mean ( )( ),t c X , with respect to a parameter c, two systems 
will be considered: the unperturbed system ( ),t cX  and the perturbed coun-
terpart ( ),t c h+X . The CRN method applies Gillespie’s algorithm with the 
same string of common of random numbers to generate the coupled perturbed 
and unperturbed paths, corresponding to the parameters c h+  and c, respec-
tively. The use of a common random number sequence reduces the variance of 
the estimator, thus increases its accuracy for the same number of sample paths. 
The CRN algorithm consists of the following steps:  

1) Take jc c= . For each n L≤ , with L being the number of sample paths, 
2) Generate an SSA path for the unperturbed system (for parameter c), with a 

sequence of independent uniform (0, 1) random numbers, ( ) ( ),n t cX .  
3) Generate an SSA path for the perturbed system (for parameter c h+ ), with 

the same sequence of independent uniform (0, 1) random number, ( ) ( ),n t c h+X . 
4) Calculate ( ) ( ) ( ) ( )( ) ( ) ( )( )( ), ,n n nt t c h t c h= + −s f X f X . 
5) End loop over n.  
6) Compute the mean of ( ) ( ){ }n

n L
t

≤
s . 

Remark that the perturbation h should be small enough to decrease the trun-
cation error associated with finite-difference approximations of derivatives, but 
large enough to increase the convergence rate of the sensitivity estimation [17]. 
The CRN algorithm is a popular technique for sensitivity estimation, being effi-
cient and easy to implement. The parametric sensitivity estimators discussed above 
is utilized to simplify complex stochastic models of homogeneous biochemical 
networks. Alternatively, a finite-difference scheme may be employed for esti-
mating sensitivities by approximate Monte Carlo simulation techniques [20] [21], 
such as adaptive tau-leaping methods; these strategies are efficient on moderate-
ly stiff to very stiff models. 

3. Model Reduction 

In this section, we introduce a new procedure to simplify stochastic discrete bi-
ochemical networks, which are modelled with the Chemical Master Equation. 
The goal of this procedure is to determine a reduced biochemical reaction sys-
tem which retains the essential features of the full system, such as its stability 
features, nonlinear behaviour and physical interpretation of the elementary reac-
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tions. The reduced biochemical model will be faster to solve numerically and 
easier to investigate and understand. Local sensitivity analysis is applied to un-
cover the unimportant reactions of the full biochemical network. Also, it seeks to 
find the essential reactions, which should be retained in a simplified model. 
Further, our strategy extends the global approach for continuous deterministic 
chemical system reduction proposed in [8]. Remark that the reduced network 
generated with the procedure presented below is expected to perform well over a 
variety of parameter values, in a neighbourhood of the values for which it was 
obtained. 

Initially, a local sensitivity analysis is performed for the stochastic discrete 
model of the original biochemical system. Of interest are the kinetic parameters, 

ic c= . Finite-difference methods, such as the CFD or the CRN algorithms, are 
employed to estimate the local parametric sensitivities. This allows a preselection 
of the crucial reactions in the network, those for which the molecular amounts 
of all, or of the important species, are very sensitive with respect to small varia-
tions in the associated rate parameter. Let { }

cri i I
R

∈
, for some subset crI  of in-

dexes { }1, , M� , be these crucial reactions. These reaction channels should be 
kept in the system. Moreover, the sensitivity analysis also helps determine the 
reactions for which small perturbations in their rate parameters cause insignifi-
cant changes in the overall behaviour of the system. More precisely, the kinetic 
parameter ic  of such a reaction satisfies  

( )( ) ( )( ), 1,
,

i
k i

ik i

c
X t c

cX t c
∂
∂

�


 

for all the quantities of interest kX . These reactions could be unimportant, and 
may be considered for deletion. 

Stability is a desired property of a simplified reaction network and a reduction 
technique based on local sensitivity analysis of the original system alone cannot 
guarantee it. As a consequence, we shall use a global approach to ensure that our 
strategy leads to a stable reduced system. For this, we consider the following 
continuous optimization problem for deterministic models (see also [8]),  

( ) ( )
( ) ( )

( )

0

0

1

1

min such that

, 0

, 0 , 0

, 0 1, for 1 ,

, , .

M

i i
i

M

t T

d u d i M

g d d r
=

−

′ = =

′ = = ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

≤

∑�

�

x z

x F x x x

z DF z z x

ν

ν                (4) 

Note that x  and z  are the state vectors of the original and the reduced bi-
ochemical systems, respectively, modelled with the reaction rate equations. Also, 
ν  is the stoichiometric matrix, ( )⋅F  represents the vector of propensities and 
D  is a diagonal matrix, with id  being the i-th row diagonal entry. Observe 
that 1id =  if the reaction is kept in the reduced system and 0id = , if it is re-
moved. 
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Here �  and u are the simplified model’s lower and upper bounds for the to-
tal reaction count, and 0r >  is a small constant. Also, g denotes a non-linear 
function which becomes 0 when id  are either 0 or 1, for all 1 i M≤ ≤ . We 
consider the following nonlinear function  

( )2

1
,

M

i i
i

g d d
β

=

= −∑                         (5) 

with 2β ≥  being a parameter. In our implementation, β  is set to 2. By re-
laxing the condition  

( ) ( )1 1, , 0 to , , ,M Mg d d g d d r= ≤� �  

the discrete optimization is simplified to a continuous optimization problem. 
Once a solution of the continuous optimization problem is found, the coeffi-
cients id  are rounded to 0 if they are very small; otherwise they are rounded to 
1. This result may yield a local rather than a global minimum. Still, for models 
with many reactions, i.e., a large parameter space, a local minimum would be 
considered a satisfactory solution for the simplifying strategy. Also, the choice of 
the parameters (e.g., u, r), would affect how closely the dynamics of the reduced 
system matches that of the original version. There is a trade-off between im-
proving the accuracy of the simplified mechanism and eliminating many reac-
tions. To obtain a simpler optimization problem, after we identified the impor-
tant reactions, { }

cri i I
R

∈
, and we assigned their 1id = , we solve (4) over a 

smaller set of parameters, { }
cr

j j I
d

∉
. 

Remark that the optimization problem is formulated in a continuous deter-
ministic framework. Empirically, we found that posing an optimization problem 
for the reaction rate equations, rather than for the much more challenging Chem-
ical Master Equation model, yields an accurate reduction mechanism for biochemi-
cal systems with a low to moderate level of noise. Moreover, this procedure can 
handle efficiently large biochemical networks as well. 

For solving the optimization problem (4), we utilize GEKKO [22], an optimizer 
toolbox. The modes of operation of GEKKO include parameter regression, data 
reconciliation, real-time optimization, dynamic simulation, and nonlinear pre-
dictive control. For our reduction procedure, we apply dynamic estimation with 
the APOPT solver. After the optimization problem is solved, we isolate the coef-
ficients id  which are very small and set them to 0. This means that the asso-
ciated reactions will be deleted from the biochemical system. The remaining 
coefficients id  are rounded to 1. In our experiments, we observed that a good 
number of unimportant reactions identified with the optimization approach are 
among those selected by the local sensitivity analysis as candidates for elimina-
tion. The results are validated by comparing the behaviours of the reduced and 
full models. 

4. Numerical Examples 

In this section, we illustrate the advantages of the proposed model reduction 
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technique on three systems of biochemical reactions: one is a low size but key 
test problem, while the other two are high-dimension biochemical networks, with 
applications to cancer research. In each case, sensitivity analysis is performed to 
identify which parts of the network do not play a significant role in its overall 
behaviour. More importantly, the analysis finds the reactions which are critical 
for the dynamics of the biochemical system and set their 1id = . After this pre-
selection, the global optimization strategy is employed to select the reactions 
which can be removed from the system. Finally, the reduced and full models 
are simulated with Gillespie’s algorithm over a large ensemble of trajectories. 
The results are used for comparing the evolution of the mean and standard dev-
iation of the molecular amounts for each species, in the original and simplified 
models. 

4.1. Infectious Disease Model 

The infectious disease model is a simple example of a two species reaction net-
work [23]. The reaction channels of the infectious disease model and their rate 
parameters are given in Table 1. The model is simulated on the interval [ ]0,10  
with initial conditions ( )1 0 20S =  and ( )2 0 40S = . 

The parametric sensitivities with respect to c2 are estimated using the CRN 
and the CFD methods on 10,000 sample paths. Figure 1 depicts the evolution in 
time of the fully normalized sensitivities of the species S1 and S2, with respect to 
the kinetic parameter c2. The approximations obtained with the two finite-difference 
sensitivity estimators, the CFD and the CRN algorithms, are in good agreement. 
We note that, for i = 1 and 2, the normalized sensitivities with respect to c2 are 
very small. Thus, reaction R2 is a good candidate for elimination, and this is va-
lidated by solving the optimization problem. 

The full and reduced (without reaction R2) models are simulated with the SSA 
on 10,000 trajectories. The means and standard deviations of the molecular 
counts of S1 and S2 as functions of time, for the full and reduced models, are 
plotted in Figure 2 and Figure 3, respectively. The match between the numerical 
results for the reduced, in which reaction R2 is deleted, and the full models is ex-
cellent in each case. 
 
Table 1. The infectious disease model: the reaction channels and their rate parameters. 

 Reaction channel Reaction rate 

R1 1S →∅  1 2.0c =  

R2 2S →∅  2 0.1c =  

R3 1S∅→  3 25c =  

R4 2S∅→  4 75c =  

R5 1 2 1 1S S S S+ → +  5 0.05c =  
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Figure 1. The infectious disease model: the evolution in time of the normalized sensitivi-

ties for S1 and S2 with respect to c2, namely 
( )( ) ( )( )2

2
i

i

c X t
X t c

∂
∂




, for 1,2i = . The 

simulations are done over 10,000 paths, with the CRN and the CDF schemes. The inte-
gration interval is [ ]0,10 . 

 

 

Figure 2. The infectious disease model: the comparison of the evolution in time of the 
means for the molecular amounts of the species S1 and S2, for the full system and the re-
duced one, in which the reaction R2 is eliminated. The simulations are over 10,000 paths 
and the integration interval is [ ]0,10 . 
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Figure 3. The infectious disease model: the comparison of the evolution in time of the 
standard deviations of the molecular amounts of the species S1 and S2, for the full system 
and the reduced one, in which the reaction R2 is eliminated. The simulations are over 
10,000 paths and the integration interval is [ ]0,10 . 

4.2. Epidermal Growth Factor Receptor (EGFR) Model 

The epidermal growth factor receptor signalling pathway participates in cell dif-
ferentiation and proliferation. The role of the epidermal growth factor in cancer 
cell proliferation has recently been the subject of intense research. The biochem-
ical reaction network which models the EGFR signalling pathway consists of 23 
molecular species undergoing 47 reaction channels [24]. 

The EGFR model reactions and their rate parameter values are given in Table 
2. The molecular species and their initial molecular counts are listed in Table 3. 
Assume a cellular volume of 3 × 10−12 liters, with a nano-Mole concentration = 
1800 (i.e., 23 12 96.023 10 3.00 10 10+ − −× × × × ) molecules per cell. For computa-
tional purposes, we shall consider molecular amounts rather than concentrations 
of the species. This requires rescaling the rate parameters. The problem is solved 
numerically on the time interval [ ]0,100 . Remark that the EGFR model is stiff, 
given that it spans multiple time-scales; indeed, some reactions are slow others 
are fast. Stiffness is a major challenge for numerical simulation [25]. 

Initially, we use finite-difference approximations of the sensitivity by employ-
ing the CRN scheme with 2000 trajectories. We identify a set of reactions with 
small normalized parametric sensitivities for all molecular species. A sample plot 
of the evolution in time of the normalized sensitivities of various species with 
respect to one of the parameters, c21, is displayed in Figure 4. The set identified 
at this step constitutes an initial selection of reactions which are good candidates  
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Table 2. The epidermal growth factor receptor (EGFR) signaling pathway model: the 
reaction channels and the rate parameters. First- and second-order rate parameter values 
are expressed in s−1 and nM−1∙s−1. Here [MM] denotes the reaction rate parameters for 
Michaelis-Menten kinetics ( [ ]1 smV  and [ ]nMmK ). 

 Reaction channel Reaction ratea 

R1 EGF R Ra+ →  3.0E−3 

R2 Ra EGF R→ +  6.0E−2 

R3 Ra Ra R2+ →  1.0E−2 

R4 R2 Ra Ra→ +  1.0E−1 

R5 R2 RP→  1.0 

R6 RP R2→  1.0E−2 

R7 [ ]RP R2 MM→  4.5E+2, 5.0E+1 

R8 RP PLCg RPL+ →  6.0E−2 

R9 RPL RP PLCg→ +  2.0E−1 

R10 RPL RPLP→  1.0 

R11 RPLP RPL→  5.0E−2 

R12 RPLP RP PLCgP→ +  3.0E−1 

R13 RP PLCgP RPLP+ →  6.0E−2 

R14 [ ]PLCgP PLCg MM→  1.0, 1.0E+2 

R15 RP Grb RG+ →  3.0E−3 

R16 RG RP Grb→ +  5.0E−2 

R17 RG SOS RGS+ →  1.0E−2 

R18 RGS RG SOS→ +  6.0E−2 

R19 RGS RP GS→ +  3.0E−2 

R20 RP GS RGS+ →  4.5E−3 

R21 GS Grb SOS→ +  1.5E−3 

R22 Grb SOS GS+ →  1.0E−4 

R23 RP Shc RSh+ →  6.0E−2 

R24 RSh RP Shc→ +  6.0E−1 

R25 RSh RShP→  6.0 

R26 RShP RSh→  6.0E−2 

R27 RShP RP ShP→ +  3.0E−1 

R28 RP ShP RShP+ →  9.0E−4 

R29 [ ]ShP Shc MM→  1.7, 3.4E+2 

R30 RShP Grb RShG+ →  3.0E−3 

R31 RShG RShP Grb→ +  1.0E−1 

R32 RShG RP ShG→ +  3.0E−1 

R33 RP ShG RShG+ →  9.0E−4 

R34 RShG SOS RShGS+ →  1.0E−2 
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Continued 

R35 RShGS RShG SOS→ +  4.5E−3 

R36 RShGS RP ShGS→ +  1.2E−1 

R37 RP ShGS RShGS+ →  2.4E−4 

R38 ShP Grb ShG+ →  3.0E−3 

R39 ShG ShP Grb→ +  1.0E−1 

R40 ShG SOS ShGS+ →  3.0E−2 

R41 ShGS ShG SOS→ +  6.0E−2 

R42 ShGS GS ShP→ +  1.0E−1 

R43 GS ShP ShGS+ →  2.0E−2 

R44 RShP GS RShGS+ →  9.0E−3 

R45 RShGS RShP GS→ +  4.29E−2 

R46 PLCgP PLCgPI→  1.0 

R47 PLCgPI PLCgP→  3.0E−2 

 
Table 3. The epidermal growth factor receptor (EGFR) signaling pathway model: the 
molecular species and their initial amounts. 

Sid Species N 

1 EGF 23,040,183 

2 R 335 

3 Ra 11,774 

4 R2 9514 

5 RP 1360 

6 R-PL 59 

7 R-PLP 91 

8 R-G 947 

9 R-G-S 300 

10 R-Sh 23 

11 R-ShP 618 

12 R-Sh-G 195 

13 R-Sh-G-S 124 

14 G-S 1776 

15 ShP 152,296 

16 Sh-G 56,545 

17 PLCg 1195 

18 PLCgP 2160 

19 PLCg-I 185,357 

20 Grb 32,547 

21 Shc 2634 

22 SOS 4689 

23 Sh-G-S 52,301 
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Figure 4. The epidermal growth factor receptor (EGFR) signaling pathway model: the 
evolution in time of the normalized sensitivities for several species with respect to c21. 
 
for deletion. Given the large dimension of the EGFR model, we also carry a sen-
sitivity analysis to choose several reactions which are very important. We assign 
the value of their coefficients as 1id = . At this step, we selected a group of 17 
such reactions from a total of 47 reactions. This reduces the dimension of the 
optimization problem. Subsequently, we solve the optimization problem (4) to 
find a reduced biochemical model. We used the following parameter values: 

2=� , 42u =  and r close to 1. As a result, the following reactions are selected 
for elimination 6 19 20 21 22 34, , , , ,R R R R R R  and 35R . 

Finally, we run Gillespie’s algorithm over 2000 trajectories for the original and 
the reduced model and compare the output. The means and standard deviations 
of the molecular amounts of various species, computed for the full and reduced 
models, are plotted as functions of time in Figure 5 and Figure 6, respectively. 
Similar results are obtained for the remaining species (not shown, for brevity). 
Notice the excellent agreement between the results produced with the reduced 
(with reactions 6 19 20 21 22 34, , , , ,R R R R R R  and 35R  turned off) and the full sys-
tems. Consequently, the proposed model reduction strategy provides very good 
results on this large size, stiff biochemical reaction network. 

4.3. Gemcitabine Model 

The final numerical experiment is performed on the gemcitabine (2,2-difluoro- 
deoxycytidine, dFdC) biochemical network, which is a critical, real-world model 
[26] [27] designed to study the mechanisms of resistance to gemcitabine effec-
tiveness. Gemcitabine is a chemotherapy drug, commonly administered for the 
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Figure 5. The epidermal growth factor receptor (EGFR) signaling pathway model: the 
mean number of molecules for different species as a function of time, for the full and re-
duced model. The following reactions are eliminated: 6 19 20 21 22 34, , , , ,R R R R R R  and 35R . 
The species shown are: (a) EGFR, (b) R, (c) Ra, (d) R2, (e) RP, (f) PLCg, (g) RPL, (h) 
RPLP and (i) PLCgP. The simulation of 2000 trajectories is performed. 
 

 

Figure 6. The epidermal growth factor receptor (EGFR) signaling pathway model: the 
standard deviation of the number of molecules for several species, as a function of time, 
for the full and reduced model. The reactions 6 19 20 21 22 34, , , , ,R R R R R R  and 35R  are re-
moved from the system. The species shown are: (a) EGFR, (b) R, (c) Ra, (d) R2, (e) RP, (f) 
PLCg, (g) RPL, (h) RPLP and (i) PLCgP. The computations are over 2000 trajectories. 
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treatment of non-small cell lung cancer, breast, pancreatic and prostate cancers 
[26]. Reactions 1, 2, 3 and 4 illustrate how the gemcitabine is carried into cells. 
Then, in reaction 5, it is phosphorylated by the enzyme (dCK) to become the 
gemcitabine monophosphate (dFdC-MP). The species dFdC-MP is phosphory-
lated to its diphosphorylated form (dFdC-DP) in reactions 7 and 8. The tri-
phosphorylated form (dFdC-TP) is created in reactions 9 and 10. Gemcitabine is 
metabolized to 2,2-difluorodeoxycytidine (dFdU), which can be phosphorylated 
to its diphosphate (dfdU-DP) and triphosphate (dFdU-TP), these processes are 
depicted in reactions 11 - 16. Reaction 19 is the DNA incorporation of dFdC-TP, 
while reaction 21 indicates the synthesis of CDP. Reaction 23 is nucleoside di-
phosphate kinase. The inhibition of dCK by binding to dCTP is presented in the 
25-th reaction. 

This is a large model, consisting of 22 species undergoing 29 reactions. The 
reactions and their rate parameters are listed in Table 4. The initial molecular 
counts of all species are zero, except for dCK = 1000, RR = 1000, dCMPD = 
1000, CDP = 2000 and dFdC-out = 10,000. The model is studied on the time in-
terval [ ]0,20 . 

We begin by performing a local sensitivity analysis of the Gemcitabine model. 
To approximate its parametric sensitivities, we apply the common reaction 
number (CRN) algorithm with 1000 trajectories. At this step, we select some 
reactions which local sensitivity analysis predicts to be possible choices for dele-
tion. These reactions are then considered an initial collection, when solving the 
optimization problem for this system. The model has many parameters and find-
ing the global minimum in its large-dimensional parameter space is a challenge. 
Therefore, we use sensitivity analysis to determine a set of reactions deemed criti-
cal in driving the behaviour of the system. For this model, we selected 14 impor-
tant reactions (and set their 1id = ) out of a total of 29. Also, we choose the fol-
lowing parameter values for the optimizer: 2=�  and 23u =  and 1r ≈ . Solv-
ing the optimization problem suggests that reactions 2 3 12 14 16, , , ,R R R R R  and 18R  
may be eliminated without a significant impact on the accuracy and stability proper-
ties of the model. 

To validate the solution of the optimizer, we apply the SSA with 1000 runs to 
simulate both the reduced (resulted after turning off reactions 2 3 12 14 16, , , ,R R R R R  
and 18R ) and the original biochemical network. In Figure 7 and Figure 8, we 
compare the plots of the time-evolution of the the means and standard devia-
tions for the molecular counts predicted by the full and the reduced model. In 
the reduced network, the following reactions were eliminated: 2 3 12 14 16, , , ,R R R R R  
and 18R . As with the previous models, the proposed reduction technique gene-
rates a very accurate simplified model, when compared to the original one. The 
Gemcitabine model exhibits stiffness and has many reactions and species. Hence, 
it is quite challenging to simulate and analyze in its original formulation. In con-
clusion, the proposed simplifying strategy performs very well on this complex 
and computationally demanding biochemical model. 

https://doi.org/10.4236/am.2021.125031


S. Gholami, S. Ilie 
 

 

DOI: 10.4236/am.2021.125031 465 Applied Mathematics 
 

 

Figure 7. The gemcitabine biochemical reaction model: the time-evolution of the mean 
number of molecules for several species, for the full and reduced systems. The following 
reactions are eliminated according to the proposed reduction scheme: 2 3 12 14 16, , , ,R R R R R  
and 18R . The species shown are: (a) dFdC, (b) dFdU, (c) dFdU-out, (d) dCK, (e) dFdC-MP, 
(f) dFdC-DP, (g) dFdC-TP, (h) dFdU-MP and (i) RR. The simulation is performed on 
1000 trajectories. 
 

 

Figure 8. The gemcitabine biochemical reaction model: the time-evolution of the stan-
dard deviation of the number of molecules of different reacting species, for the full and 
reduced system. Reactions 2 3 12 14 16, , , ,R R R R R  and 18R  are turned off in the reduced 
model. The species shown are: (a) dFdC, (b) dFdU, (c) dFdU-out, (d) dCK, (e) dFdC-MP, 
(f) dFdC-DP, (g) dFdC-TP, (h) dFdU-MP and (i) RR. The simulations are done on 1000 
trajectories. 
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Table 4. The gemcitabine biochemical reaction model: The reactions and the values of 
their rate parameters. 

 Reaction channel Reaction Rates 

R1 1dFdC-out dFdCk→  1 99.7234k =  

R2 2dFdC dFdC-outk→  2 2.61675E 3k = −  

R3 3dFdC-out dFdUk→  3 4.72336E 5k = −  

R4 4dFdU dFdU-outk→  4 5.08194E 1k = −  

R5 5dFdC dCK dFdC-MP dCKk+ → +  5 1.04994E 2k = −  

R6 6dFdC-MP dFdCk→  6 8.75208E 1k = −  

R7 7dFdC-MP dFdC-DPk→  7 23.7162k =  

R8 8dFdC-DP dFdC-MPk→  8 2.12216k =  

R9 9dFdC-DP dFdC-TPk→  9 25.2037k =  

R10 10dFdC-TP dFdC-DPk→  10 14.4908k =  

R11 11dFdU dCK dFdU-MP dCKk+ → +  11 9.68E 3k = −  

R12 12dFdU-MP dFdUk→  12 5.60415E 4k = −  

R13 13dFdU-MP dFdU-DPk→  13 0.7844k =  

R14 14dFdU-DP dFdU-MPk→  14 4.20541E 2k = −  

R15 15dFdU-DP dFdU-TPk→  15 1.64322k =  

R16 16dFdU-TP dFdU-DPk→  16 9.05139E 4k = −  

R17 17dFdC dFdUk→  17 4.76746E 3k = −  

R18 18dFdC-MP dCMPD dFdU-MP dCMPDk+ → +  18 4.559E 5k = −  

R19 19dFdC-TP dFdC-TP-DNAk→  19 0.544456k =  

R20 20dFdU-TP dFdU-TP-DNAk→  20 7.37496E 3k = −  

R21 21 CDPk∅→  21 100k =  

R22 22CDP RR dCDP RRk+ → +  22 0.5k =  

R23 23dCDP dCTPk→  23 252.037k =  

R24 24dCTP CTP-DNAk→  24 5k =  

R25 25dCTP dCK dCTP-dCKk+ →  25 1.0E 4k = −  

R26 26dCTP-dCK dCTP dCKk→ +  26 0.1k =  

R27 27dFdC-DP RR dFdC-DP-RRk+ →  27 1.0E 4k = −  

R28 28dFdC-TP dCMPD dFdC-TP-dCMPDk+ →  28 100k =  

R29 29dFdC-TP-dCMPD dFdC-TP dCMPDk→ +  29 0.1k =  
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5. Conclusions 

In the present work, we proposed a numerical procedure for model reduction of 
homogeneous, discrete stochastic biochemical networks. The dynamics of these 
networks are governed by the widely used model of the Chemical Master Equa-
tion. This model has a diverse range of critical practical applications. Numerous 
biochemical networks arising in practice are complex, consisting of a large num-
ber of species subject to many reaction channels. In addition, the network of in-
teractions of some components of the biochemical system may be quite compli-
cated. Furthermore, biochemical processes present at the cellular level typically 
entail slow and fast reactions, meaning that their mathematical models are stiff. 
Stiffness and/or high dimensionality constitute significant challenges for numeri-
cal simulation and analysis of these models. 

The model reduction procedure developed in this paper utilizes sensitivity 
analysis of stochastic discrete models of biochemical systems and requires solv-
ing a nonlinear optimization problem. The procedure is expected to have an ex-
cellent performance on a broad class of biochemical systems, with moderate le-
vels of noise, and various degrees of stiffness. We tested the reduction metho-
dology described above on three realistic biochemical networks, two of these 
having applications to cancer research. The numerical experiments carried out 
on these models show that the reduced biochemical network retains the proper-
ties of the original version while preserving its overall behaviour.  
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