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Abstract

In this paper, a class of nonlinear stochastic partial differential e-
quations with discontinuous coefficients is investigated. This study
is motivated by some research on stochastic viscosity solutions un-
der non-Lipschitz conditions recently. By studying the solutions of
backward doubly stochastic differential equations with discontinu-
ous coefficients and constructing a new approximation function f,,
to the coefficient f, we get the existence of stochastic viscosity sub-
solutions (or super-solutions). The results of this paper can be seen
as the extension and application of related articles.
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1. Introduction

The notion of (deterministic) viscosity solution was first introduced
by Crandall and Lions [1] as an extension of the classical solutions
of partial differential equations (PDEs in short). It is widely used in
optimization control, differential game, font-end evolution problems
and so on. The existence and uniqueness of viscosity solutions have
been extensively studied in the past few decades (see e.g. [2] and [3]).
Based on the fact that almost all the deterministic problems in the
above applied fields have corresponding stochastic problems, Lions and
Souganidis [4] introduced the notion of stochastic viscosity solutions
for the first time. They used ”stochastic characteristics” to eliminate
the stochastic integrals in the stochastic partial differential equations
(SPDEs in short), so as to solve the difficulty of defining the stochas-
tic viscosity solutions caused by the existence of the martingale term.
With the same purpose, Buckdahn and Ma [5] transformed SPDEs into
ordinary PDEs with random coefficients by using a nonlinear version
of Doss-Sussmann transformation, so that stochastic viscosity solu-
tions of SPDEs can be connected with solutions of backward doubly
stochastic differential equations (BDSDEs in short).
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Backward stochastic differential equations (BSDEs in short) were
introduced by Pardoux and Peng [6], which have wide connections
with mathematical finance and PDEs, and then they introduced a new
class of BDSDESs under Lipschitz conditions to produce a probabilistic
representation of certain quasilinear SPDEs in [7]. Many literatures
have made efforts to obtain the existence and uniqueness results of
solutions to BDSDE under relaxed Lipschitz conditions. Shi, Gu and
Liu [8] proved the existence of minimum solution of BDSDE and ob-
tained the corresponding comparison theorem under the condition that
f is continuous with respect to (y,z) and satisfies the linear growth
condition. Lin [9] got the same results under the condition that f is
left-continuous with respect to y, non-decreasing and bounded. Re-
cently, Zhang, Xiao and Fan [10] considered the condition that f is
left-continuous and left-Lipschitz with respect to y, linear growth on
(y,2), and {f(t,0,0)}.c[0,17 is square integrable. Today, BDSDEs are
one of the most useful tools in the study of SPDEs. Boufoussi, Van
Casteren and Mrhardy [11] gave the existence of stochastic viscosi-
ty solutions for semi-linear SPDEs with a Neunann boundary con-
dition by establishing the relationship between generalized BDSDEs
and SPDEs as [5] did, when the coefficients are Lipschitz continuous.
After that Djehiche, N'zi and Owo [12] relaxed the Lipschitz continu-
ity conditions and considered the existence result to nonlinear SPDEs
with continuous coefficients, but with Dirichlet boundary conditions.

In this paper, we consider the existence of stochastic viscosity solu-
tions for nonlinear SPDEs with discontinuous coefficients. The non-
linear SPDEs we deal with in this paper are of the form:

T
u(t,z) = l(z) —|—/t {Lu(s,x) + f(s,z,u(s,z),oc"(x)Du(s,z))}ds

T —
+1 g(s,x,u(s,x))st,t € [O’T]’
(1)

—
where Du denotes the gradient of u; dB; integral is a backward s-

tochastic Kunita-Ito integral; [, f, g are some measurable functions; L
is a second-order differential operator defined by

1< 02 0
L=- Vi i
2 Z (UU ) J 8%18.%] + Zﬁ alL’z
i,j=1 i=1
From [5], we can connect the SPDE (1) with the following BDSDE
(2) by using a Doss-Sussmann transformation.

T
Y= 1(Xh) + / Fr, XL Y, 2 dr

’ t t s ’ t (2)
+ [ gt XtYdB,— [ ztaw,,

t<s<T,

where dW; integral is a forward Ité integral and {X!;t < s < T} is
the solution of SDE:

Xi(z) =2+ /t b(XL(x))dr + /75 o(XL(x))dW,,t < s <T.

We prove that the minimal solution of BDSDE (2) is exactly a s-
tochastic viscosity sub-solution of SPDE (1) when the coefficient f
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is left continuous, non-decreasing and linear growth with respect to
(z,y,2). We propose a new approximation function f,, of the coef-
ficient f such that f, is Lipschitz continuous with respect to y, thus
solving the problems caused by discontinuity. Our work generalizes the
result of [11] and of [12], which can also be seen as some applications
of the results in [10].

The present paper is organized as follows. In Section 2, some pre-
liminaries, notations and the definition of stochastic viscosity solutions
are shown. The existence results of stochastic viscosity sub-solution
for SPDE (1) is given in Section 3, and the conclusion is given in
Section 4.

2. Preliminaries and Definitions

2.1. Notations and Assumptions

Let (Q, F1,P!) and (92, F?,P?) are two complete probability spaces
where two mutually independent Brownian motions {W; : 0 <t < T}
and {B; : 0 <t < T} are defined, respectively. T > 0 is a fixed final
time. Let F', = o{n, —ns : s <r <t} VN for any process {7}, where
N denotes the class of PP-null sets of F'. Define F, = F}V \/FfT. Note
that F} is not a filtration. Set F¥ £ {F }Yoci<r, F" £ {F[ }o<i<r-

Let (2, F,P) denote the product space, where Q = Q! x Q2
F=F'®F? P="P ®P2 Any random variable £(w),w; € Q!
(resp.n(wsz),ws € 0?) is considered as a random variable on Q if
£(w) = &(wr)(resp. n(w) = N(w2)), w £ (w1,w2). Throughout this
article, we denote E and E; be generic Euclidean spaces and |- | be the
norm in E. M(]iT denotes the set of F'P-stopping times 7 such that
0<7<T, P2-a.e.

We denote C*"([0,T] x E;E;) to be the space of all E;-valued
functions defined on [0,7] x E which are k-times continuously d-
ifferentiable in ¢t and n-times continuously differentiable in « € E;
CF™([0,T] x E; Ey) is the subset of C*"([0,T] x E; E;) where all ;-
valued functions have uniformly bounded partial derivatives.

Ckn(FB0,T] x E;El)(resp.C;f’"(FB, [0,7] x E;Eq)) denotes the
space of random fields ¢ € C*"(FB [0, T] x E; E;)

(resp.Cf’"(FB, [0,7] x E;Eq1)) such that (t,ws) + @(t,x,ws) is FB-
progressively measurable for fixed = € E.

LSC([0,T] x E;Eq)(resp. USC([0,T] x E;E,q)) is the space of all
E-valued functions defined on [0, T] x E which are lower (resp.upper)
semi-continuous. Similarly, we can define LSC(FZ,[0,T] x E;E;) and
USC(FB[0,T] x E; Eq).

For sub-o-field G € FF and constant p > 0, let LY (G;E) denote
G-measurable random variables £ which are valued in E and satisfy
E|¢]P < 0.

Henceforth, for ease of notations, we denote D = D, =
(0/0z1,...,0/0xq), D, = 0/0y, Dy = 0/0t and D,y =
(82;162-96]-)1-’]-:1,“_’(1. We have to point out that K is some constant,
allowing differences here and there.

In this paper, we assume that g always satisfies the following as-
sumptions:

(H1) g € CP*3([0,T] x RY x R; RY);

The function f : Q% x [0,7] x R? x R x R? +~ R is a random
field which is discontinuous in y and continuous in z, such that for
all (wo,t,z,9,2) € Q2 x [0,T] x RY x R x R, f(wa,t, 2,9, 2) is Fj-
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measurable. Moreover, f(ws,-,-,0,0) is square-integrable. We give
the following assumptions:

(H2) The function f(ws,t,x,-,2) is left continuous and non-
decreasing;

(H3) There exists a positive-valued and Fi-measurable process h(-)
satisfying E( fOT |h(t)|? dt) < oo and a positive-valued constant K, such
that

|f (wa, t, 2,9, 2)| < h(t) + K(Jz] + |y| + |2])
for each (wa,t,z,y,2) € Q2 x [0,T] x R? x R x R?;

(H4) There exists a constant K > 0 such that for all (w2, y) € Q2 xR

and (t;,7;,2;) €[0,T] x RT x R i = 1,2,

|f(CLJ2, tlv x1,Y, Zl) - f(w27 t2; x2,Y, Z2)'
< K(ty — ta| + 1 — @2 + |21 — 22).
(H5) The functions o : R? +— R?*? and § : R? — R are uniformly
Lipschitz continuous with Lipschitz constant K > 0.
(H6) I(x) is a continuous function such that for some p > 0, it

satisfies
lI(z)] < K(1+ |z|"),z € RY.

2.2. Definition of Stochastic Viscosity Solutions

In the light of the definition of stochastic viscosity solutions in [5], the
following stochastic flow n € C%%0(FB [0, T] x R? x R;R), which is
the unique solution of the following BSDE in the Stratonovich sense,
plays an important role.

—

T
n(t,z,y) =y + / o(s,2,1(s,,)) o dB, 3)

We can rewrite BSDE (3) to its equivalent It6 form:

1 T
n(taxay) =Y + 5/ 9(57%U(Saxay))DyQ(Saxan(S,x,y))ds
t

T —
+/ g(s,x,m(s,2,y))dBs,0 <t < T,
t

where the mapping y — 7n(¢, x,y) is a diffeomorphism under assump-
tion (H1). Therefore, let E(t,z,y) denote the y-inverse of n(t,z,y).
We can get easily that E(t,z,y) is the solution of the following BSDE:

T —
E(t,z,y) =y — / DyE(s,x,y)g(s,z,y) o dBs;.
t

For any random field ¢ : [0,T] x R? — R, we can introduce the
transformation

@(t 1') = E(t7 €T, w(tv JL‘)),

namely ¥(t,z) = n(t, z, ¢(t, ), then v € COP(FB [0,T] x R) if and
only if ¢ € COP(FB,[0,T] x R R), for p = 0,1, 2.
Applying Ito’s formula to (¢, x), it follows that

w(tv $) = n(tv T, w(t7 x))

1 T
—o(Ta) 5 [ glsanlo . p(s,0) Dygls, (s, p(s,2)ds
t

T - T
+/ g(s,m,n(svfc,y))st—/ Dyn(s,z, (s, x))Dip(s, x)ds.
t t
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According to the discussion on constructing stochastic viscosity so-
lution in [5], it is natural to compare

Lp(t, ) + f(t, 2,9 (¢, x), 07 (2) D (¢, x))

and

1
§g(t7 x, 77(t7 xz, (P(t7 x))Dyg(ta x, 77(t7 x, (p(tv x))_Dyn(t7 x, w(tv x))Dt@(t7 {17)
Thus, we give the following definition:

Definition. A random field

u € LSC(FB,[0,T] x R R)(resp.USC(FE,[0,T] x R%;R)) is called a
stochastic viscosity sub-solution (resp. super-solution) of SPDE (1) if
w(T,z) < I(z) (resp. u(T,x) > l(x)), for all x € R? and if for any
T e ME, & € LO(FFP;R?) and ¢ € C2(FF,[0,T] x R%;R) satisfying

u(wa, t, z) — n(wa, t,x, p(t,x)) < (resp. >)0
= u(7(w2), {(w2)) — (7 (w2), {(w2), p(T(w2), {(wa))

for all (,z) in a neighborhood of (7, &), P?-a.e. Then, on {0 < 7 < T},

L(7,€) + f(.€ 0(7,€). 0" (©)Du(7,)) > (resp. <)
S9TE(r ) Dyg(r € 9(7,6)) — Dy, €, 9(7,€)) Deg (1, ),

where (¢, ) £ n(t, z, p(t, )).

3. Existence of Stochastic Viscosity
Sub-Solutions (or Super-Solutions)

We are now in position to discuss the existence of stochastic viscos-
ity sub-solutions of SPDE (1). To begin with ,it is indispensable to
introduce two sets that are widely used in BDSDE study, such as [7].

For any n € N, M?(0,T;R") denotes the set of (dP x dt a.e. equal)
n dimensional jointly measurable random processed {y; : 0 <t < T}
satisfying

o Ej;T le| dt < oo
e ; is Fi-measurable for a.e. ¢t € [0, 7).

Let S2([0,T]; R™) denote the set of continuous n dimensional ran-
dom processes satisfying:

2
o E(supgci<r|pt|”) < 00
e ¢, is measurable for any ¢ € [0, T].

We consider the following two BDSDEs:
T T -
Yil = 1(Xh) +/ flr, Xt YR ZEYdr +/ g(r, XL Y21 dB,

T
—/ Zaw,, t <s < T,

S

(4)
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T
yi? :z(X%H/ () + K (| X7 ] + Y72+ 1222
s (5)

T - T
+/ g(r,Xi,Yf’Q)dBr—/ Z2dW, t <s<T,

where the function f in (4) satisfies assumptions (H2)-(H4), and ¢ in
both (4) and (5) satisfy assumption (H1).

By Theorem 3.1 in [10], BDSDE (4) has at least one solution.
Moreover, there exists a minimal solution (Y%! Z%!) of BDSDE (4)
in the sense that for any other solution (Y!!,Z1) of (4), we have
Yl <yttt <s<T.

It is easy to check that BDSDE (4) and BDSDE (5) meet the condi-
tions of the comparison theorem in [10] under assumptions (H1)-(H5),
then if we denote the minimal solutions of BDSDE (4) and (5) by
(Xi’l, Zg’l) and (XZ’Q, Zg’z), respectively, we have Xi’l < 22’2. Thus
we can turn to study the boundedness of Y2 rather than Y directly.
On the boundedness of Y2, we have the following lemma:

Lemma 1. There exists a constant B > 0 depending on K,T and
I(X}) such that E(supy<,<r |X§’2|2) < B.

Proof. The proof of this lemma is parallel to that of Lemma 4.2 in [§].
So we omit it. O

In addition, the following lemma is necessary to prove stochastic
viscosity sub-solution.

Lemma 2. {f,},>0 is a sequence of functions defined by
fu=intln [ St e 0k ly - ul).
ue u—L

Then it follows that
(1) [fult,2,y,2)] < A(t) + K(|lz| + [y + |2]);
(11) |f77 t,l’,yl,Z) - fn(t,1’7y2,2)| < nK|y1 - yQ‘a

(
(111) |fn(t17xlayazl) 7fn(t23x23ya22) < K(|tl *t2| + |$1 71‘2| + |Z1 -
22)

)

(iv) if sequence vy, increases to y, then lim, oo frn(we,t,x,ypn,z) =
fwe, t,z,y, 2), a.s..
Proof. The proof of this lemma is mainly inspired by [13] and [14].

Indeed, f, < f < h(t) + K(|x| + |y| + |2]) is obvious, and on the other
hand, we obtain

u

fozintln [ (h(0) < K(la] + 7]+ [e)dr + nK]y ~ ul)}

> inf{—h(t) — K(|z| + |2]) - nK/ irldr + K]y — ul}
u u—L

> inf{~h(t) — K(jz| + |u| + |2]) + Ky — ul}
> —h(t) — K(|z| + [y| + |2]).

Thus, (i) holds. From the definition of f, and inequality
|infrep fi(x) —infoep fo(2)| < sup,ep [f1(2) — f2(2)], we can readily
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get (ii). (iii) is an immediate result of (H4). Now we start to prove
(iv). In the light of the definition of f,, we can deduce that there
exists a sequence {u,} which converges to y such that dP x dt-a.e.

Un 1
n/ F(t 2,7, 2)dr + I ([ — ) — =
w— L n

non

< fn(t,x,yn,z) < f(t7x7ynaz)' (6)

By Lemma 3.1 in [14], we obtain

Yn
tim o [ (k= f(ta,2)

Yn—Y yn,%
for any fixed y € R. Moreover, because of the left continuity of f,
we obtain that limy, ., f(t,2,yn,2) = f(t,2,y,2). Taking the limit
on both sides of (6), we get lim, o0 frn(t, 2, yn,2) = f(t, 2,9, 2), for
which (iv) holds. O

Now, we are going to verify that Xi’l is a stochastic viscosity sub-
solution of SPDE (1).

Lemma 3. Let u, : Q2 x [0,7] x R? — R be a random field defined
by
U (t7 I’) £ X?l

for all (t,z) € [0,T] x R9. Then u, € LSC(F?Z,[0,T] x R%;R).

Proof. Let (fn)n<1 be the non-decreasing sequence of Lipschitz con-
tinuous functions as defined in Lemma 2 to approximate f.
Let (Yt Z™t t < s <T) be the solution of the following BDSDE:

T T —
Ysmt = l<X%) + / fn(rv Xﬁa}/rn7t7Z:ht>dr+/ g(r, X;E’Yr"’t)dBr
s s

T
- / Zrt AW,
(7)

Similar to the proof of Theorem 3.1 in [10], we can verify that
(Yt Z™t) converges to (Y9!, Z%') which is the minimal solution of
BDSDE (4).

Let uy, : [0,T] x R? — R be a random fields defined by

un(t, ) = Y, (t,2) € [0,T] x RY.

It is obvious that (uy,),>1 is a non-decreasing sequence and it con-
verges to u,. Thus, u, € LSC(F?Z,[0,T] x R%;R). O

Remark. BDSDE (4) has a maximal solution 72’1 when the coeffi-

cient f is right continuous and non-decreasing. Using the similar proof
1

of Lemma 3 where f,, is replaced by f, £ sup,cp{n f;H_W flt,z,r z)—

t,1

nKly — u|}, we can prove that u*(t,z) £ Y,
USC(FB[0,T] x R4 R).

satisfies u* €

Next, we will state our main result. The technique of Theorem 3.2
in [12] is used in the proof of the following theorem. But for sake of
the readers’ convenience, we still give a short proof.
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Theorem 4. Under assumptions (H1)- (H6), the random field u, €
LSC(FB,[0,T] x R%;R) defined by u, 2 Y!'" is a stochastic viscosity
sub-solution for SPDE (1). Further, for each classical solution v €
CY2(FB [0,T] x R%;R) of SPDE (1), we have u.(t,z) < v(t, x).

Proof. For all x € R?, we readily have that u(T,z) < {(z). Now, we
consider under the condition that if for any 7 € M(fT, ¢ e LO(FE;RY)

and ¢ € CL2(FP,[0,T) x R";R) such that
ui(t,z) = n(t,z, ot 2)) <0=u(r,£) — (7. & (1,£))

for all (¢,7) in a neighborhood of (7, &), P2-a.e. It is not hard to check
that BDSDE (7) meets the conditions in [11] under assumptions (H1)
- (H6). Thus, u, is a stochastic viscosity solution for SPDE:

T
u(t,x) = l(x) +/ {Lu(s,x) + fu(s,z,u(s,x),c"(x)Du(s,x)}ds
T ' —
—|—/t g(s,x,u(s,z))dBs,t € [0,T].

Therefore, if 7, € Mgy, &, € L°(FFP,R?) and @, € CY2(FF, [0, T]x
R%; R) satisfying
un(t>$) - 77(157% (Pn(t’m)) <0= 'U:n(Tn,fn) - n(Tnafnv <Pn(7'mfn)),

for each (t,r) in a mneighborhood of (7,,&,), P?-a.s.such that
(Tns ény on) = (1,€, ). Tt follows that P?-a.s.

Ld’n(ﬁn fn) + fn(Tnyfm %(Tm fn)a U*(fn)Dwn(Tnv gn))
> %Q(Tnagmwn(Tnafn))Dyg(Tmfmdjn(ngn)) (8)
- Dyn(Tna &n, ‘Pn(Tm fn))DﬂPn(Tna fn)v

where (t, 2) = 1(t, 2, ¢a(t, 7)) comverges to ¥(t, z) = n(t, z, o(t, 2))
in [0,7] x R?. Sending n — oo in (8), we get

Li(7,€) + (7,6 ¥(7,€), 0" () Du(7,€))
> 291, & $(7,€) Dy (& Y(r, ) — Dyn(r, & 0, ) Dup(7, ).

Consequently, u, € LSC(FB,[0,T] x R%;R) is a stochastic viscosity
sub-solution of SPDE (1). From [7], {v(s, X!), (c*Dv)(s, X%),0 < s <
t < T} is a solution of BDSDE (4), so v(s, X!) > Y%!. Specially, we
have v(t, ) > u.(t, x). O

Remark. Analogously, if the coefficient f is right continuous and
non-decreasing , then u*(t,z) £ ?i’l is a stochastic viscosity super-
solution for SPDE (1). Moreover, for each classical solution v’ €
C%2(FB.[0,T] x R";R) of SPDE (1), we have u*(¢,z) > v'(t, z).

Finally, we give a corollary about the boundedness of w., (¢, z) which
is an immediate result of Lemma 1.

Corollary 1. Let u.(t,z) € LSC(FB,[0,T] x R%;R) be a stochastic
viscosity sub-solution of SPDE (1), then there exists a constant A > 0
such that E(u.(t,z)) < A.
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4. Conclusion

This paper is devoted to the study of stochastic viscosity solutions
to SPDE (1) whose coefficient f is left (resp. right) continuous, non-
decreasing with respect to y and linear growth with respect to (z, y, 2).
We present a new function f, = infueR{nf;_i ft,zyr z)dr +

1

nK |y —ul} (resp. f. = supueR{nf:+; flt,z,r z) — nKly — ul})
which satisfies Lipschitz conditions to approximate f, thus solving
the trouble caused by the discontinuous coefficient. We get that the
minimal (resp. maximal) solution of BDSDE (2) is a stochastic vis-
cosity sub-solution (resp. super-solution) of SPDE (1) under given
conditions. The results obtained in this paper extend the existence
conditions of stochastic viscosity solutions to more relaxed conditions
and generalize some results in related literature.
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