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Abstract 
In metals, the non-adiabatic mechanism of charge separation into the elec-
tron, cation, and vacancy chains is considered. It includes: 1) the photoelec-
tric effect caused by bremsstrahlung caused by the scattering of conduction 
electrons by impurity ions lying at the ends of these chains and oscillating 
with the frequency of the local phonon mode; 2) knocking out from the metal 
cations of the matrix, sufficiently slow (in comparison with the conduction 
electrons) photoelectrons that pull these cations from the nodes, thereby not 
violating the electroneutrality condition in the model of a free electron gas as 
with the static state of the chains and at their motion (slipping, recrawling) in 
the absence of a thermal field; 3) induced radiation along the line of chains; 4) 
the formation of linear structures in the spatial lattice of octahedral interstitial 
sites. The conditions for the formation of quasistable bound states in the dis-
location core are considered. A hypothesis is advanced that the latent energy 
in the dislocation cores contains a component that is of an electromagnetic 
nature. 
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1. Introduction 

It is known that in metals near edge dislocations there is a difference in bulk 
density above and below the slip plane [1] [2] [3]. For the ground state of a free 
electron gas in metals [4], the Fermi energy 2 3~F enε , where en  is the bulk 
concentration of conduction electrons, is the same at all points of the crystal. 
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Near the dislocation in the compacted sections above the slip plane, there is a 
lack of electrons, and in the rarefaction region there is an excess, which leads to a 
violation of electroneutrality and the appearance of an electric dipole with a di-
pole moment distributed along the dislocation line and directed along the nor-
mal to the slip plane. On the other hand, the solution of the problem of scatter-
ing of conduction electrons near the line of edge [5] and screw [6] dislocations is 
well known, where it was assumed that, firstly, the scattering of conduction elec-
trons by cations is elastic due to its large mass in comparison with the mass of 
the electron and, accordingly, the negligible recoil momentum and displacement 
of the cation at the lattice node during scattering, the energy of an electron in a 
collision can be assumed to be unchanged; secondly, the solution was obtained 
at large distances from the dislocation line 0 02 25a aρ ≈ ÷  ( 0a  is the lattice 
parameter) with the help of asymptotic wave functions and Friedel basis func-
tions [7]. 

Here it is shown that, first of all, regardless of the type of dislocation around 
its line, an oscillating distribution of the excess electric charge of the conduction 
electrons arises 5 2, ~scr edgq q r−  (r is the distance from the dislocation line to 
the collision point) in difference from scattering by a charged impurity ion: 

3~impq r− ; secondly, for an edge dislocation, ~ sin sin 2
4edg Fq kβ π ⋅ + 

 
, where  

Fk  is the modulus of the Fermi wave vector, β  is the angle between the Burg-
ers vector and the radius vector r , which corresponds to the deformation field 
of the defect 1r− ; for a screw dislocation ( )5 2~ cos 2scr Fq r k− +Φ , where Φ  
is the phase shift, which reflects the axial symmetry of the defect. However, the 
distribution ( ),scr edgq q r  [5] [6] caused by the deformation field of the defect 

1r−  in the region of a good crystal does not allow us to reliably determine 
( ),scr edgq q r  inside the cylindrical region around the defect line with the radius 

0.1 0.2 nmr ≈ ÷ , as well as the shape, height and width of the potential barrier in 
these nuclei. In addition, as noted by Friedel [7], the conduction electrons are 
fast particles and, when passing near the dislocation, they do not settle on the 
cations of the dislocation core, but only change the direction of their motion, 
creating a dynamic picture of charge redistribution. As an attempt to remedy the 
situation, work [8] is known, where in the tight-binding approximation, the so-
lution of the Schrödinger time equation was found by numerical methods for a 
two-dimensional distorted lattice of cross section perpendicular to the disloca-
tion line considered in the Peierls-Nabarro model. Here, the distribution of the 
local density of states ( )0N ε  of electrons on the energy scale ε  is obtained, 
which contains two pronounced high peaks, one of which is located in the re-
gion 0ε <  and the other at 0ε > , while the point 0ε =  divides the interme-
diate segment between the peaks, for example, for the s-s bond and the various 
spatial dependences of the transfer integrals ( )T R , ′= −R ρ ρ  in the near-
est-neighbor approximation: for the power 5~T R−  in the relation 1 (in 0ε > ) 
to 1.5 (in 0ε < ); at an exponential ( )~ exp 0.5 1.5T Rα− − . In the same time 
there is no interpretation of this form of ( )0N ε . The results of the numerical 
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calculation show the decisive role of the dislocation core for the electronic 
structure of the defect in comparison with the effect of the long-range part of the 
deformation potential [5] [6]. 

It is also known ([9], p. 99) that, in crystals of the NaCl type, edge dislocations in  

the { }111  plane with a Burgers vector 0 110
2
a

 and a linear (running) charge  

density NaCl 02Q e a= ±  are charged. In semiconductor crystals, particularly in 
n-type germanium and silicon, a chain of unpaired valence electrons along the 
dislocation line forms a negative charge density scQ , NaClm scQ Q Q< <  ([9], p. 
101). In metals, according to [10] [11], this density is ( ) 00.01 0.1mQ e a≈ − ÷  
in contrast to [5] [6], where the total charge of excess density ,scr edgq q  in vo-
lume around the dislocation line at dV →∞  tends to zero. 

The purpose of this paper is to identify the mechanism for separating the 
charges of electrons and metal cations, which allows the generation of disloca-
tion nuclei, and the formation of linear structures, as well as the determination 
of the conditions for the appearance of quasistable bound states in the disloca-
tion core. 

2. Theoretical Model 

First we note that the electric charge, as well as energy, momentum, etc. is the 
integral of motion ([12], p. 505) is preserved in space and in time. Generation 
of dislocations occurs mainly in a perfect crystal, where the total charge ii q∑  
in its individual volumes and in the entire volume is initially zero. Therefore, 
after generating the defect 0ii q =∑ . In addition, as a result of the movement 
(slipping, recrawling), a single defect leaves no trace in the crystal except for 
extrusions and intrusions on its free surface. If we consider the separation of 
charges as a short-lived state for a characteristic period of time T within the 
trial volume V, then the condition 0ii q =∑  must be softened, averaging it 
according to 

,
0ii V T

q =∑ .                         (1) 

On the other hand, the separation of charges in metals mainly occurs under 
the influence of an external electromagnetic field, penetration of which into the 
material is possible only within the skin layer. The question arises: “How does 
the charge separation occur when generating dislocation nuclei outside the skin 
layer?” Here it should be noted that practically all dislocation models, known in 
the literature, reflect adiabatic processes, i.e. at the beginning metal cations are 
shifted, and then electrons are “adjusted” for these displacements. In this paper, 
we abandon this approach and state hypothesis 1: The processes of generation 
and motion of the cationic chain, as well as of the entire core of the dislocation 
as a whole, are nonadiabatic. Here, we will use an intermittent field of electro-
magnetic nature as the generating field of defect nuclei. At the first stage, we 
shall single out the main scheme of the charge separation mechanism during 
generation, where as an intermittent field we take the bremsstrahlung of the 
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conduction electrons, which form the halo of the charge ,scr edgq q , when a 
charged impurity ion moves along a certain periodic law. Here, for simplicity, 
we use the harmonic oscillations cos tΩ  (Ω  is the frequency of the natural 
oscillations of the impurity ion as a local phonon mode ([13], p. 358). This radi-
ation can cause a photoelectric effect for electrons of internal L, K-shells, thus 
forming a sufficiently slow (in comparison with the conduction electrons) pho-
toelectrons, as well as induced radiation along the dislocation line and 
long-wavelength secondary photons that go to the region of a good crystal where 
they are elastically scattered on the metal cations. In other words, we arrive at the 
problem of scattering of bremsstrahlung photons on bound electrons L, K-shells, 
and in the absence of secondary photons to resonant scattering ([14], p. 384). 

To determine the initial generation conditions, let us use the experiment [15] 
to determine the electromagnetic emission (EME) in the process of intermit-
tent deformation in an AlMg6Mn aluminum alloy (Al-6.03 wt% Mg-0.5% Mn), 
where the samples were stretched at a constant rate of increase of the applied 
stress σ . This alloy is a solid solution of Mg and Mn in an aluminum matrix, 
and in the first stage the influence of Mn is neglected. The light impurity atom 
Mg ( Mg AlM M< ) gives both valence electrons to the subsystem of the collectivi-
zated conduction electrons of the whole alloy and forms an single impurity ion 
Mg2+ [16], which creates a local oscillation mode with a frequency [13] 

2
max 1Lω ω= −                         (2) 

at ( )Mg Al 1M M= −   and 0>  without taking into account the change in the 
force constant. We note that the axis along which the impurity ion oscillates has a 
stereographic projection equally distributed in a full solid angle and has a spherical 
polarization as t →∞ . Under the actual conditions of the alloy, the homogeneous 
distribution of the cations Mg2+ takes place on average, for which the average dis-
tance MgR  between them is much larger than the distance lmr  of the amplitude 
of the oscillations decrease to zero: Mg lmR r . If a weak impact (shock) is applied 
to the free surface of the alloy sample, the displacement of the ion Mg2+ is differ-
ent from the displacements of the surrounding cations Al3+ at 0t =  due to the 
difference in ionic radii ( )3Al 0.057 nmionr + =  and ( )2Mg 0.074 nmionr + =  
without taking into account the influence of the coordinate number ([17], p.75), 
which leads to the replacement of the spherical polarization of the oscillations by 
linear polarization. In addition, the main feature of [15] for 0 0,t constσ σ σ =⋅=    
is the linear increase in the EME pulse amplitude ( )EME tϕ  in time t, and the 
time intervals between neighboring pulses, especially in its central part are prac-
tically equidistant. We recall that the energy stored in the crystal as a result of 
pumping at time t is numerically determined by the area under the σ-ε curve, 
which allows us to replace the time coordinate of the energy coordinate: ( )EMEϕ ε . 

2.1. Bremsstrahlung 

Let us consider the law of conservation of energy and momentum ([14], p. 387) 
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in the scattering of conduction electron by an impurity ion  

( )1 2 0,1, 2,3p p k qµ µ µ µ µ− = − = ,                    (3) 

where 1 2, ,p p kµ µ µ  and qµ  are the 4-momentum of the incident electron, the 
scattered electron, the bremsstrahlung photon and the recoil of the ion nucleus, 
respectively. For the time components of these pulses, expression (3) is written 
in the form 

1 2 nrγε ε ε ε− = + ,                           (4) 

1 2, , γε ε ε  and nrε  are the kinetic energy of the initial and final states of the 
electron, the photon energy of bremsstrahlung and the recoil of the nucleus of 
the impurity ion, respectively. For the spatial components of 4-momenta 

1 2− = −p p k q .                          (5) 

In the limiting case of low energies of primary electrons from 3 10 eVFε = −  
in metals up to tens of keV in the problem of the continuous spectrum of x-rays, 
the photon momentum k  small compared with the momentum of the elec-
tron in view of the practically zero rest mass of the photon, and there fore 

( )22
1 2= −q p p .                          (6) 

In the nonrelativistic case, with the initial velocity of the electron e cv  , c is 
the speed of light, the differential bremsstrahlung cross section is equal to the 
product of the Rutherford elastic scattering cross section d sσ  by the photon 
emission probability dwγ  

d d ds wγ γσ σ ⋅= ,                         (7) 

where 

( )
( )

2

1 22

d
d d

2
e ew γ

γ
γ γ

εα ο
ε ε

 
= − 

π   

k v v ,                (8) 

and α  is the fine structure constant, 1 137α ≈ ; 1ev  and 2ev  are the velocity 
vectors of the primary and scattered electron; dο  is the solid angle element. 
Here, the radiation intensity I reaches a maximum in the direction perpendicu-
lar to the plane of motion of the electron ( )1 2,p p  i.e. when k  lies in this 
plane. In accordance with the classical theory of radiation, dwγ  is the ratio of 
the intensity of the dipole radiation dI  at low frequencies to the photon energy 

γε  equal to the average number of photons nγ  per unit time. We note that the 
representation of the bremsstrahlung cross section in the form (7), (8) is possible 
in all those cases in which low-frequency photons are emitted. In this connection, 
the theoretical spectrum of bremsstrahlung in a metal, for example, in aluminum 
([14], p. 398), is of interest in the form of the dependence dI  on eТγε  ( eТ  
is the kinetic energy of the primary electron), taking into account the electron 
shielding of the inner shells of the impurity ion, which allows one to eliminate 
the divergence as 0γε →  in the process of determining the total cross section 

γσ  with the help of (7), (8). Here, in the interval ( )0.2 0.8 eТγε = ÷ , the value 
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of dI  (in relative units) varies from 7 to 4, i.e. in engineering calculations is re-
placed by an average of 5.5, and for light elements of type Al screening is of little 
significance. It becomes clear from the expressions (3)-(8) that by changing the 
components of the 4-momentum of the impurity nucleus qµ  in time by an ex-
ternal action, leading to jumps [ ]0q  and [ ]q , wherein it is possible to achieve 
level jumps [ ]dI , where the jump [ ]q  creates a discontinuous displacement of 
the ion nucleus [ ]l  along an arbitrary axis l. To do this, we place single impur-
ity ion in an ideal crystal at a distance R from its free surface, with 0R a . We 
divide the entire space of the crystal into two half-spaces by a plane parallel to its 
free surface. Here we note that according to the theory of periodic chains of 
bonds between atoms and estimates of the surface energy of the free surface of 
the crystal ([18], p. 14), the crystallographic orientation of the crystal must 
correspond to the most densely packed crystallographic plane. In our case of 
metals with a face-centered lattice this is a family of slip planes { }111  in Al. 
Here, the light ion Mg2+ is in an octahedral interstitial site with six nearest 
neighbors—cations Al3+ ([3], p. 122). The total recoil momentum jj∑ q  that 
imparts to the impurity nucleus the conduction electrons scattered on it from 
the lower half-space ( )LHSjj∑ q  is equal in magnitude and opposite in sign to 
the analogous momentum transferred from electrons from the upper half-space 

( )UHSjj∑ q  without taking into account the influence of thermal oscillations 
and in the absence of external forces. As already noted, there exists a local mode 
of oscillations of the ion Mg2+ with a frequency Lω  by gap from the upper 
spectral phonon band. Here, the dipole moment of the charge system “impurity 
ion-distribution of scattered electrons” is equal to zero due to the symmetry of 
the lattice, while the stereographic projection of the ion oscillation axis is un-
iformly distributed in a full solid angle in time 2L Lt T ω= π . If a weak im-
pact (shock) is made on the free surface of the crystal along the normal to it, 
then the recoil momentum nrq  given to the nucleus of the single impurity is 
equal to the difference ( )LHSjj∑ q  (the coincidence of the directions of the 
external force action and the recoil of the ion nucleus from scattering electrons) 
and ( )UHSjj∑ q  (the above directions are opposite) 

[ ] ( ) ( )LHS UHSnr j jj j−≡ = ∑ ∑q q q q                (9) 

and arises in the form of a jump [ ]q . Here it should be noted that under the in-
fluence of the impact both the impurity ion and its nearest and subsequent ca-
tions Al3+ are displaced, where for the easy Mg2+ this displacement is obviously 
larger. As a result, such a impact (shock) lowers the point symmetry of the lattice 
to the axial symmetry near the impurity ion, but all the characteristics of a free 
electron gas under translational invariance must correspond to periodic boun-
dary conditions within a three-dimensional cube with the side 0L a , and the 
time interval e FL vτ ≈  ( Fv  is Fermi velocity) within the framework of this 
model is proportional to the relaxation time of the free-electron subsystem and 
plays the role of the time for its “adjustment” to the lattice change for a free path 
length of order L and collisions with one impurity ion. On the other hand, the 
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time interval for the amplitude shift of the impurity ion Mg 0 st a v∆ ≈  ( sv  is 
the sound velocity) for a perfect aluminum single crystal at 210 mL −≈  and 

F sv v , and for the intervals eτ  and Mgt∆ , the condition Mg et τ∆   is satis-
fied. In this case, the charged ion is displaced with respect to the spherically 
symmetric distribution of the excess density ,edg scrq q  of the charge of the con-
duction electrons, and a dipole moment of the system arises at the time Mgt t= ∆  

( ) Mg-Als m impP k k e z= − ⋅ ⋅∆ ,                    (10) 

where mk  and impk  are valences of matrix and impurity atoms, respectively; 

Mg-Alz∆  is the displacement amplitude of the Mg ion with respect to the nearest 
neighbors, ( )Mg-Al 00.01 0.1z a∆ ≈ ÷ ⋅ . Hence, the bremsstrahlung intensity dI  in 
the dipole approximation ([19], p. 206) for an single impurity is 

( ) ( )
22

24
Mg-Al33

m imp
d L

e k k
I z

c
ω

−
= ⋅ ⋅ ∆ .                (11) 

In a real aluminum polycrystalline with a grain dispersion of 10 ÷ 100 μm, the 
values of eτ  and Mgt∆  are of the same order Mg et τ∆ ≅ , but Mg et τ∆ > . Here, 
in the expression (11), the frequency Lω  should be replaced by the plasma fre-
quency pω  with implicit replacement of the mass ionM  by em , where the in-
tensity dI  increases by 5 - 6 orders of magnitude and the excitation of cation 
energy levels and knock out photoelectrons becomes possible.  

2.2. Photoelectric Effect 

Let us consider the scheme of the energy levels of the Mg atom ([12], p. 558), 
analogous to the scheme of the Al atom. Here we can distinguish two concepts: 
the binding energy iε  and the ionization energy iI . For an single atom iε  
coincides in absolute value with the length of a energy segment from zero to a 
level corresponding to a given s, p, d, ... electron in the region 0ε < , and the 
quantity i iI ε>  in the region 0ε >  corresponds to the electron state as 
r →∞ , r is the distance from the nucleus. In the crystal, the definition of iε  
remains unchanged, and the determination of iI  as a function of r essentially 
depends on the degree of screening by the conduction electrons. In dielectrics 
and semiconductors, the Coulomb interaction of the knocked out electron and 
the resulting cation can be neglected even at 0 010 100a r a< < . In metals, this 
interval is 0 05 10a r a< < . Consider the absorption of the bremsstrahlung pho-
ton brγ  by the electron of the internal L, K-shells of the cation Al3+ in the case 
when the photon energy γε  exceeds iε  and the knocked out electron passes 
to the continuous spectrum region for 0ε > , i.e. there is a photoelectric effect. 
In this case, the photoelectron in the nucleus of the dislocation must reach a re-
gion roughly 0 02a r a< < . 

The most accurate description of the photoelectric effect is given by quantum 
electrodynamics ([14], p. 360), where in the nonrelativistic case an angular de-
pendence of the differential photoelectric cross section for unpolarized incident 
photons brγ  
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2d ~ sinphefσ ϑ ,                         (12) 

where ϑ  is the angle between the polarization vectors of the photon γe  and 
the photoelectron momentum phep . For polarized incident photons brγ  is re-
placed by 

2 2 2 2sin cos sin cosϑ ϑ ϑ ϕ→ = ⋅ ,                  (13) 

where ϕ  is the angle between the planes ( ),phe γp k  and ( ),γ γk e  ( γk  is the 
wave vector of the incident photon brγ . Analysis (12), (13) shows that the ma-
jority of photoelectrons emerge in the direction of polarization vector γe  of the 
incident photon brγ  (condition*). The total cross section of the photoelectric 
effect on the K-shell in the Born approximation ([14], p. 362) has the form 

7 2
K KA γσ ε −⋅= ,                        (14) 

where ( )5 2
0 1 AlK iA A I⋅= ; 0 64 3 eA mα= ; ( )1 AliI  is the ionization energy of 

the Al atom on the K-shell. In the photoelectric effect on the L-shell, the total 
cross section breaks up into a cross section when it is absorbed by two 
2s-electrons 

4 5
1 2IL A Aγ γσ ε ε− −= ⋅ + ⋅ ,                     (15) 

and the cross section for absorption by six 2p-electrons 
5 5

3 4II IIIL L A Aγ γσ σ ε ε− −+ = ⋅ + ⋅ ,                  (16) 

where ( ) ( ) ( ) ( )31 2 4
1 2 2 2 3 2 4 2, , ,mm m m

i i i iA I A I A I A I  have the same structure as KA , but 
different numerical coefficients and exponents jm  for ( )2 AliI -the ionization 
energy of the Al atom on the L-shell, and ( ) ( )2 1Al Ali iI I< . Here it should be 
noted that when 0iγε ε− → , when the kinetic energy of photoelectrons is small 
in comparison with , iγε ε , resonance scattering takes place ([14], p. 384), where 
a narrow band is cut out from the continuous bremsstrahlung spectrum, which 
when knocking out photoelectrons from the internal L, K-shells of the cation 
Al3+ corresponds to the line absorption spectrum. This is indicated by a compar-
ison of the power dependences of the bremsstrahlung cross sections brσ  and 

,
nK Lσ σ  on γε  in (8) and (14)-(16). 

2.3. Induced Radiation 

According to the definition, the frequency, phase, polarization and direction of 
propagation of the electromagnetic wave incident on the metal cation coincide 
with the same characteristics as the absorbed cation, and after its excitation of 
the emitted wave. Hence, the energy of the induced radiation wave will be trans-
ferred from one cation Al3+ to the neighboring cation without losses, until the 
wave reaches an impurity ion Mg2+, in which another scheme of energy levels, 
which leads to elastic scattering back. If the normals of the effective scattering 
cross sections of two impurity ions lie within the same line, then a standing wave 
of stimulated or induced radiation arises. We assume that parallel to the free 
surface of aluminum is a slip plane, where at the nodes of the square grid of oc-

https://doi.org/10.4236/am.2020.118049


V. L. Busov 
 

 

DOI: 10.4236/am.2020.118049 747 Applied Mathematics 
 

tahedral interstices there are impurity ions and standing waves of induced radia-
tion appear in each section of grid cells under the influence of a weak shock and 
bremsstrahlung. 

2.4. Separation of Charges and Bound States in the Dislocation  
Core 

Let us consider the crystallography of one of the slip planes (111) of a 
face-centered lattice, which intersects the lines of the main diagonals of the cells 
of this lattice along the 111  directions normal to this plane within one cell. If 
the bremsstrahlung photon brγ  is transverse: its wave vector ( )111phe ⊥k n  
( ( )111n  is the unit vector of the normal to the (111) plane) lies in this plane, and 
its the polarization vector bre  is directed along [ ] ( )111111 n , then the photon 

brγ  can produce a photoelectric effect on the inner shells of the first cation Al3+, 
which intersects bre  on the main diagonal of the cell. The photoelectron phee  
ejected by the photon brγ  moves according to the condition (*) in the direction 

bre  and depending on the level of the kinetic energy pheT  obtained from the 
photon, it can settle on the first counter and on the subsequent interstitial sites. 
The possible states of photoelectrons are due to the joint influence of the Cou-
lomb attraction of the cation from which they were knocked out, and the spher-
ically symmetric potential of attraction of the octahedral interstice as a force 
center. To describe these states and the possible structure arising under the in-
fluence of bremsstrahlung, we use the definition of stable bound and quasistable 
bound states ([19], p. 671), where, for the particle system, in our case, the sys-
tems of metal cations and photoelectrons, first, their relative the motion is finite 
for a long time in comparison with the periods typical for the given system; 
second, for the formation of bound states, it is necessary to have attractive forces, 
which for cations and photoelectrons is natural. If the range of distances on 
which these particles are attracted is separated by an energy potential barrier 
from the region in which they repel, then the particles can form stable states. 
Such states lie in the energy region 0ε < , for 0ε >  they do not exist. However, 
in the region 0 bU Uε< <  ( 0U  is the depth of the potential well, bU  is the 
height of the potential barrier), for some values of ε  there can exist qua-
si-stable bound states, the lifetime of 1~qwsb ttwτ −  which is determined by the 
probability of the tunnelling transition ttw  through potential barrier. In this 
connection, we can disclose the physical essence of the local density of electron 
states ( )0N ε  [8], where a quasi-periodic sequence of shallow minima occurs 
between a high lower peak at 0ε <  and a high upper peak at 0ε >  for a 
power-law dependence of the transport integral. With the help of this sequence 
and the whole of ( )0N ε , we can qualitatively estimate the shape of the potential 
relief on the energy scale in the dislocation core if we symmetrically reflect the 
upper half-plane of the graph ( )0N ε  on its lower half-plane with respect to the 
energy axis or, more simply, turn the sheet with the graph by 180˚. Such model-
ing of the potential relief shows that the lower peak corresponds to a narrow po-
tential well of a rectangular shape with a depth of 01U , and the upper one cor-
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responds to the same well with a depth of 02U , and 02 01U U> . Inside the in-
termediate interval between the peaks, firstly, there is a weak growth of the reg-
ular component of the potential relief towards upper peak, and secondly, at the 
beginning and at the end of this energy interval, the Fourier components of the 
above sequence, oscillating against the background of the regular component, 
are substantially higher than analogous components within the interval. The li-
near structure along the 111  and bre  directions, which does not contradict 
the potential relief of the dislocation core obtained from the numerical calcula-
tion [8], is shown in Figure 1. Here at position A there is a site vacancy, at po-
sition B in octahedral interstice—cation Al3+, which passed from node A, to 
position near the node C—photoelectron, at position D—the nearest cation 
Al3+, displaced under the total influence of vacancy A, cation B and photoelec-
tron C. Note that the distance between the positions A and B is 0 0 22b a= ⋅ , 
between B and C does not exceed 0b≤ , and the distance CD is determined by 
the interval ( )3

0Alionr R b+ < < ; all of the matrix metal cations following posi-
tion D shift from the position C to the depth of the material in accordance with 
the law 1r− . 

Under the influence of the bremsstrahlung causing the photoelectric effect, 
the subsequent formation of two systems of bound charges in the space lat-
tice of the octahedral interstices is taking place., where the first system con-
sists of a chain of photoelectrons near the nodes C with a linear charge den-
sity 0phe pheQ k e a− ⋅=  ( phek  is the number of knocked out photoelectrons, 

1,2,3phek = ) and chains of metal matrix cations in interstices B c linear density 
after the departure of photoelectrons from the inner shells of these cations 

0we pheQ k e a+ ⋅= . The second system in the model of a free electron gas (jelly 
model) contains an inhomogeneity in the form of a “ridge” of bulk density nδ  
with a linear density 03nQ e aδ = +  in the interstices B, and along the nodes A 
with 03vchQ e a= −  i.e. “valley” in the homogeneous distribution of a positive 
charge smeared in space, whose density is equal in magnitude and opposite in 
sign to the mean charge density of conduction electrons, so that the system of a 
free electron gas is always electrically neutral. Hence the total linear charge den-
sity of the cationic chain cch we nQ Q Qδ= + . 

To determine the mutual arrangement of the above chains in the 
face-centered lattice Al, we use the crystallography of the {111} slip plane and 
the system of the main diagonals {111} ([20], c. 24). We assume that translation-
al invariance is preserved along the dislocation line between the impurity ions 
bordering it. Hence, along the dislocation line, a periodic sequence of the above 
linear structures arises, both along the normal to the chosen plane (111), and in 
the plane itself along the normal to the dislocation line.  

The analysis shows that consideration of the Coulomb effect of cationic and 
vacancy chains with distributed linear charges on the photoelectron chain in the 
defect nucleus should be carried out together with the influence of the distri-
buted excess charge ,scr edgq q  of conduction electrons. The model representation  
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Figure 1. Linear structure in dislocation core in metals with face-centered lattice. A, B, C, 
D-positions of particles in octahedral interstitial sites. The axis Z is along the direction 

111    of the line of dislocation; axis Y along the direction [ ]111  on of the normal to 

the dislocation line and the plane (111). 
 
of the potential relief dV  in the core of the defect does not allow to obtain from 
the distribution ( )0N ε  a dependence ( ), ,dV zρ ϕ  on the cylindrical coordi-
nates with the help of [8]. 

A description of the dynamics of the above structure in the dislocation core 
and in a good crystal is possible using the theory of the LHOPS method ([2] [13], 
p.208) and [21] [22], in which cations and photoelectrons at positions B and 
near C, with taking into account their orbital, spin and total moments in the 
corresponding interstices and nodes. We carry out a detailed description of this 
dynamics in a separate work.  

3. Discussion of the Results 

The mechanism of charge separation and the formation of linear structures in 
the generation of the dislocation nucleus are more realistic than the known 
adiabatic elastoplastic models of the continual theory of individual dislocations, 
atomic models of dislocation nuclei as it includes the natural processes of 
bremsstrahlung, photoelectric effect, and Coulomb interaction. In the frame-
work of this model, we do not cut and do not move the material on both sides of 
the cut in the appropriate way, we do not remove or relax it after these opera-
tions, but we produce a natural weak shock on the free surface. Here we can 
consider standing electromagnetic waves not only between impurity ions, but 
between impurity ions and the free surface, intergranular, interphase boundaries, 
and also boundaries of deformation origin. In addition, the bremsstrahlung of 
photoelectron chains leads us to the plasma frequency of oscillations, the theory 
of solid-state plasma ([19], p. 539).  

The analysis in Figure 1 also shows that the boundary between the dislocation 
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core and the good crystal passes in the interval CD and is separated from the 
dislocation line on which the centers of impurity ions lie at a distance 

02corer b Y= + , where ( )3AlionY CD r +≤ −  has yet to be found. It is also of in-
terest to supplement the well-known statement for disordered media on the sta-
tistical homogeneity on the average [23] with statistical isotropy in the mean. In 
this case, the intermittent field must be periodic in time and create linear struc-
tures in two opposite directions. 

We compare the experimental dependence of the EME pulse amplitude 
( )EMEϕ ε  [8] with the current-voltage characteristic in the Frank-Hertz experi-

ment ([12], p. 542), where the accelerated cathode electrons undergo inelastic 
scattering by Hg atoms when the anode potential of the tube coincides with the 
critical potential Hg, and elastic scattering in the absence of this coincidence, i.e. 
the energy of the atoms varies discretely. In our case, with plastic deformation 

constσ = , the amplitude ( )EMEϕ ε , and together with it the energy accumu-
lated in the crystal, also varies discretely. The natural question arises: “How do 
the above described linear structures distributed between two impurity ions 
contribute to the accumulation of energy in the crystal?” The answer follows 
from the above: only thanks to the energy level scheme of the cation of the ma-
trix peculiar to him alone. Let us hypothesize 2: The latent energy of a crystal 
accumulated in dislocation cores contains a component that is of an electro-
magnetic nature. 

This raises a natural question: What is the relationship between 
bremsstrahlung intensity dI  and the recoil momentum of the impurity ion 

iiq  and cation matrix miq  on impact? Here we will use work [24] and con-
sider in the generalized space of rectangular pulses the effect of a rectangular 
pulse of the displacements L⎍u on the system “impurity ion—distribution of 
conduction electrons” at a certain point r  in the traveling wave regime, 
where L⎍ = ( ) ( )U x U x τ− −− +  is a linear operator of rectangular pulses; U−  

is jump operator. At the first stage L⎍u, at the time t, a dipole moment 
[ ] ( )0d e u tδ=  occurs, where [ ]u  is a jump in the displacement of the im-

purity ion relative to the surrounding cations of the matrix, then the halo of 
conduction electrons around the impurity ion is redistributed over relaxation 
time ( ) 14 15

00.01 0.03 10 10 sre Fb vτ − −≈ ÷ ≈ ÷ , 610 m sFv =  ( 0 00.7b a= ) before 

inverting [ ] ( )0 red e u tδ τ= +  to zero. Such relaxation at re repTτ   is a source 

of bremsstrahlung of an intermittent field, where the bremsstrahlung intensity is 

( ) 4~ exp ~re reI tγ τ ω− , where 
2

2 2
1 ;
c t

∂
= −

∂
   1

re reω τ −=  is the relaxation fre-

quency of the conduction electron subsystem. At the second stage L⎍u, with 
t τ+ , the radiation algorithm is repeated, but this field changes sign. Here 

Mg-Al Mg Al ~ ii miz u u∆ = − −q q . Hence ( )2 2
0~ ~if

d ii miI E Iγ ≈ −q q . In addition 

the vectors iiq  and miq  are collinear and have the same direction, and the ac-
celeration vectors of conduction electrons ea  and ii mi−q q  are also collinear, 
but directed towards each other, while it is well known from classical electrody-
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namics that 3~d eI a , where e F rev τ≈a . 

The process of charge separation and the formation of linear structures in the 
nuclei of linear defects can be described using a system of dynamic equations for 
the external currents of these charges according to [24] [25]. Here, for the colli-
sion of solids in the generalized space of rectangular impulses of shock loads, a 
discrete model of defect nuclei in crystalline materials is presented, where an 
undeformed perfect crystal is taken as Hilbert space of wave functions of the 
Schrödinger equation, and the core of a dislocation is the rigged Hilbert space of 
step functions as a combination of these functions of different sign, separated by 
a time interval. It was shown in [24] that a system of pairs of cations and pho-
toelectrons knocked out of these cations appears in the core of a linear defect, 
and an intermittent field 0

ifE  in the form of a periodic sequence ( )0
ifE tδ  and 

( )0
ifE tδ τ− +  with the pulse repetition frequency repω  in the standing wave 

regime can interact through the chains of photoelectrons with the electron sub-
system of the solid-state plasma. The features of the motion of charged particles 
and the interaction of chains of photoelectrons with the material's own plasma 
are taken out in a separate work. 
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