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Abstract 
In this paper, we study the complicated dynamics of general Morris-Lecar 
model with the impact of Cl− fluctuations on firing patterns of this neuron 
model. After adding Cl− channel in the original Morris-Lecar model, the dy-
namics of the original model such as its bifurcations of equilibrium points 
would be changed and they occurred at different values compared to the pri-
mary model. We discover these qualitative changes in the point of dynamical 
systems and neuroscience. We will conduct the co-dimension two bifurca-
tions analysis with respect to different control parameters to explore the 
complicated behaviors for this new neuron model. 
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1. Introduction 

Computational neuroscience uses knowledge of biology and combines with 
mathematical modeling to simulate the fluctuations of neuron cells and biologi-
cal physiological characteristics of them [1] [2] [3] [4]. The progress and ad-
vances in computational neuroscience could help scientists to better understand 
the performance of brain and neuron cells and better fight with diseases related 
to neuron cells such as Parkinson’s and depression [5]. Due to the complexity of 
nerve systems, it is impossible to fully understand the various phenomena in 
neuroscience only using the simple linear modeling methods, since it does not 
meet all neuronal properties and complicated behaviors of neurons. Thus, we 
need to use nonlinear methods and models which catch all of the properties of 
neurons using different experimental data which brings biologist and specifically 
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neuroscientists and applied science people all together to develop appropriate 
models to explore all these complex dynamics of neurons [1] [5] [6] [7] [8]. 

The Morris-Lecar model is a two-dimensional biological neuron model which 
produces action potentials and neuronal fluctuations; in dynamical system point 
of view, oscillatory behaviors related to its ionic channels in giant barnacle mus-
cle fibers [9] [10]. Kathleen Morris and Harold Lecar proposed this simple 
two-dimensional model to generate spikes in 1981 [7] [11] [12]. The Morris-Lecar 
model describes the electrical activities of neurons with a system of two nonlinear 
ordinary differential equations and includes different channels. This model reduc-
es the four-dimensional Hodgkin-Huxley model to be a two-dimensional system 
of ordinary differential equations while keeping the major neuronal properties of 
generating action potential but through simpler mathematical model [11] [12] [13]. 
The general Morris-Lecar model includes three channels: a potassium channel, a 
leak and a calcium channel and has the following form [7]  

( ) ( ) ( )( )
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where 

( ) ( )1 2
1 1 tanh ,
2

m V V V V∞ = + −    

( ) ( ) ( )( )3 41 cosh 2 ,n V V V Vτ = −  

( ) ( )( )3 4
1 1 tanh .
2

n V V V V∞  = + −   

and 

( ) ( ) ( ) ( )( ),ion L L K K Ca CaI V n g V E g n V E g m V V E∞= − + − + −  

where V demonstrates membrane potential, and n the activation variable of the 
persistent K+ current, so it is a two-dimensional vector ( ),V n . KE , CaE , and 

LE  denote the Nernst equilibrium potentials. appI  demonstrates the injected 
current and ionI  the ionic current. Parameter φ  is a temperature factor. Lg  
is leak membrane conductance, Kg  is potassium membrane conductance and 

Cag  is calcium membrane conductance. Moreover, MC  is the total membrane 
capacitance. Also, the voltage-sensitive steady-state activation function ( )m V∞  
and ( )n V∞ , and the time constant ( )n Vτ  can be measured experimentally. 

2. Morris-Lecar Model with the Impact of Cl− Fluctuations on 
Firing Patterns 

In this study, we will discover the dynamics of Morris-Lecar model with the im-
pact of Cl− channel that has the following form: 
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     (1) 

where 

( ) ( )( )1 2
1 1 tanh ,
2

m V V V V∞  = + −   

( ) ( ) ( )( )3 41 cosh 2 ,n V V V Vτ = −  

( ) ( )( )3 4
1 1 tanh .
2

n V V V V∞  = + −   

Here, ClE , excE , LE , KE , and NaE  the Nernst equilibrium potentials. 

appI  the injected current, inhg , excg , Lg , Kg , Nag , inhibitory, excitatory, 
leak, potassium and sodium membrane conductance, MC  the total membrane 
capacitance. In Neuroscience point of view, we can describe the electrical prop-
erties of a neuron with the help of an Equivalent Circuit. Here, we can write the 
total current I as the following form 

Na K ClI CV I I I= + + +  Kirchhoff’s Law 

And Then 

Na K ClCV I I I I= − − −  

And also we know 

K Cl NaE E V E< < <  

where NaI  (inward currents) is negative and also ,K ClI I  are positive. Moreo-
ver, The inward currents depolarize the neuron and outward currents hyperpo-
larize it. Here, we have designed an Equivalent Circuit with the help of Simulink 
for model (1) (see Figure 1).  

In this paper, we focus on this novel Morris-Lecar model for a certain range of 
parameters value which demonstrates different types of local bifurcations such 
as Hopf bifurcation and homoclinic bifurcation. We use rigorous analytic dy-
namical systems tools to study the complicated neuronal behaviors of this 
model such as normal form theory. We conduct bifurcation analysis with re-
spect to different parameters to display the effect of various biological param-
eters on spiking dynamics of the system. Moreover, we are interested to discover 
the co-dimension two bifurcations such as Bautin or generalized Hopf and 
Bogdanov-Takens and cusp bifurcations and we present the normal form of 
these bifurcations. 

3. Supercritical Hopf Bifurcation and Subcritical Hopf  
Bifurcation 

In dynamical system point of view, for the Hopf bifurcation, a stable focus loses  
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Figure 1. Equivalent circuit for model (1). ECl, Eexc, EL, EK, and ENa the Nernst equilibrium 
potentials. Iapp the injected current, ginh, gexc, gL, gK, gNa, inhibitory, excitatory, leak, potas-
sium and sodium membrane conductance, CM the total membrane capacitance. 
 
its stability and becomes an unstable focus as we change the parameter for bi-
furcation, and the stable focus which is an attractor becomes a limit cycle that 
this limit cycle in phase space is a closed curve [1] [14] [15]. 

Using the parameters values corresponding to the Hopf case in Table 1 with 
0.25φ = , we could get to the first Hopf bifurcation but unlike [12], this bifurca-

tion happens for larger amount of appI . 
We have demonstrated the time series for Hopf case in Figure 2 and Figure 3. 

As we can see the neuron for firing a spike needs a larger amount of appI  than 
the model original Morris-Lecar Model in Figure 2 of [12]. 

And for other values of appI  near the Hopf bifurcation, we can see the chang-
ing in the behaviors of solutions. The neurons that show the subcritical Hopf bi-
furcation are resonators that exhibit bistability and the neurons that show su-
percritical Hopf bifurcations are resonators that exhibit monostability [1]. 

Continuing further, we compare the trajectories of two types of Hopf bifurca-
tion. For model (1), we have both types of Hopf bifurcation. For supercritical 
Hope bifurcation that occurs for 208appI ≈  a small limit cycle is born at the 
bifurcation point. This limit cycle will grow as we increase further the injected 
current (the amplitude of limit cycle increases with further increase of parame-
ter). In Figure 4 and Figure 5, we can easily distinguish the trajectories of these 
two types of Hopf bifurcation, before and after the bifurcation points. 
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Table 1. Morris-Lecar parameters [7]. 

Parameter Hopf SNLC Homoclinic 

∅  0.04 0.067 0.23 

gCa 4.4 4 4 

V3 2 12 12 

V4 30 17.4 17.4 

ECa 120 120 120 

EK −84 −84 −84 

EL −60 −60 −60 

gK 8 8 8 

gL 2 2 2 

V1 −1.2 −1.2 −1.2 

V2 18 18 18 

CM 20 20 20 

 

 
Figure 2. As we see the neuron needs a larger amount of injected current to spike and then after spike the solutions go back to the 
resting state or equilibrium state. Iapp = 0 (up, left), Iapp = 20 (up, right), Iapp = 30 (down, left), Iapp = 40 (down, right). 
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Figure 3. Time series of model (1) with Iapp = 60 left, and Iapp = 137 right. 
 

 
Figure 4. The trajectories behaviors before and after the subcritical Hopf bifurcation. Stability behaviors for Iapp = 10 (up, left), 
Changing the behavior for Iapp = 90 (up, right), Before subcritical Hopf bifurcation in Iapp = 135 (down, left), After the subcritical 
Hopf bifurcation in Iapp = 140 (down, right). 

 
In a supercritical Hopf bifurcation, we have an equilibrium point that one 

limit cycle bifurcates from it. It means, for the parameter values before the pa-
rameter bifurcation, the limit cycle is degenerate and its amplitude is zero, and 
the amplitude extends as the parameter enhances further. But, in subcritical 
Hopf bifurcation, we have an unstable limit cycle around the equilibrium point, 
and a stable limit cycle surrounds it. This unstable limit cycle is as separatrix cycle  
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Figure 5. The trajectories behaviors before and after the supercritical Hopf bifurcation. Changing the type of Hopf bifurcation is 
clear for Iapp = 185 (up, left), Iapp = 190 (up, right), Before supercritical Hopf bifurcation in Iapp = 200 (down, left), After supercriti-
cal Hopf bifurcation in Iapp = 220 (down, right). 

 
that separates two stable states and we could see the bistability that is not availa-
ble in supercritical Hopf bifurcation and as a result only mono stability occurs in 
this case. The unstable limit cycle in subcritical Hopf bifurcation, degenerates to 
the equilibrium point, and the equilibrium points becomes unstable during this 
bifurcation. This type of bifurcation creates catastrophic changes in the behavior 
as we have suddenly changed the behavior from stable focus to oscillations with 
large amplitude [1] [2] [3] [4]. 

The bifurcation diagram for model (1) has been displayed in Figure 6 using 
the parameters values from Table 1 and with 0.25φ = . 

To rigorous analysis of Hopf bifurcation, as it has been demonstrated in Fig-
ure 6, the continuation of equilibrium points gives us two Hopf points with the 
following values of the normal form coefficients: 

label = H, ( )1.318376 0.488642 207.848139x =  
First Lyapunov coefficient = −2.972401e−04 

label = H, ( )12.596094 0.274268 160.995457x = −  
First Lyapunov coefficient = 8.624905e−05 

As a result, for 160.995457appI =  and ( ) ( ), 12.596094,0.274268V n = −  we 
have the first Hopf point with positive First Lyapunov coefficient, and for 

207.848139appI =  and ( ) ( ), 1.318376,0.488642V n =  we can see the second 
Hopf point with negative First Lyapunov coefficient.  
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Figure 6. Continuation of equilibrium points in model (1) with the parameters similar to 
the Hopf case in Table 1. 

 
Thus, there should exist an unstable limit cycle, bifurcating from the equilib-

rium and it indicates a subcritical Hopf Bifurcation for the first point and for the 
second point we have supercritical Hopf bifurcation a very small limit cycle is 
bifurcated at the bifurcation point. This limit cycle will grow with the further in-
creasing of the injected current.  

For the first point, the eigenvalues are  
( ) ( ) ( )( )1 2, 2.70244 08 0.176907 ,2.70244 08 0.176907e i e iλ λ = − + − − . As we see, 
we have 2 complex conjugate eigenvalues with positive real part. 

We can write the normal form for first Hopf point  
( ) ( ), 12.596094,0.274268V n = −  with the help of eigenvalues and the first 
Lyapunov coefficient as the form below 

( ) ( ) 32.70244 08 8.624905 05r e r e r= − + −  

0.176907θ =  

Here, 0θ >  as we know θ is the angle of oscillations that here is positive and 
increasing because the frequency of damped or sustained oscillations around this 
point 0ω , is positive. But for the following normal form 

( ) ( ) 32.70244 08 8.624905 05r e r e r= − + −  

0.176907θ = −  

Here, 0θ <  as we know θ is the angle of oscillations that here is negative 
and decreasing because the frequency of damped or sustained oscillations 
around this point 0ω , is negative. 
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However, the analysis of normal form is just limited to the first equation of 
normal form. 

( ) ( )
( ) ( )( )

3

2

2.70244 08 8.624905 05 0

2.70244 08 8.624905 05 0

e r e r

r e e r

− + − =

→ − + − =
 

So 

( ) ( ) 20, 2.70244 08 8.624905 05 0r e e r= − + − =  

Here, 0r =  is an equilibrium and because for 0r =  

( ) ( ) ( )3d 2.70244 08 8.624905 05 2.70244 08 0
d

e r e r e
r
 − + − = − >   

As a result, this equilibrium is unstable. The equation  
( ) ( ) 22.70244 08 8.624905 05 0e e r− + − =  does not give us any periodic solu-
tions or oscillatory behaviors. 

For other Hopf point with the eigenvalues  
( ) ( ) ( )( )1 2, 2.39388 07 0.282179 , 2.39388 07 0.282179e i e iλ λ = − − + − − −  we have 
the following normal form (for ( ) ( ), 1.318376,0.488642V n = ) 

( ) ( ) 32.39388 07 2.972401 04r e r e r= − − − − −  

0.282179θ =  

Here, 0θ >  like above we know θ is the phase of oscillations that here is 
positive and increasing because the frequency of damped or sustained oscilla-
tions around this point, 0ω , is positive. But for the following normal form 

( ) ( ) 32.39388 07 2.972401 04r e r e r= − − − − −  

0.282179θ = −  

0θ <  as we know θ is the angle of oscillations that here it is negative and de-
creasing because the frequency of damped or sustained oscillations around this 
point 0ω , is negative. 

But, we know that the analysis of normal form depends on the first equation 
of normal form 

( ) ( )
( ) ( )( )

3

2

2.39388 07 2.972401 04 0

2.39388 07 2.972401 04 0

r e r

r e e r

− − − − − =

→ − − − − − =
 

Therefore 

( ) ( ) 20, 2.39388 07 2.972401 04 0r e e r= − − − − − =  

Here, 0r =  is an equilibrium and because for 0r =  

( ) ( ) ( )3d 2.39388 07 2.972401 04 2.39388 07 0
d

e r e r e
r
 − − − − − = − − <   

As a result, this equilibrium is stable. The equation  
( ) ( ) 22.39388 07 2.972401 04 0e e r− − − − − =  gives us the stable periodic solution 
with amplitude 
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2.39388 07
2.972401 04

er
e
−

=
−

 

3.1. ginh as Bifurcation Parameter 

In this section, we consider inhg  and appI  as free parameters. 
If we continue to increase appI , the period of limit cycle becomes 2-times and 

then 22 and … Here we say that the system undergoes the period-doubling bi-
furcation. As we do continuation of Hopf point, the trajectory repeats itself while 
we passed through PD point and we can see the trajectory is going around the 
loop twice before coming back to PD point. For period-doubling bifurcation a 
new limit cycle creates from the primary limit cycle, and the period of this new 
limit cycle is two times the previous limit cycle (see Figure 7 and Figure 8). 
 

 
Figure 7. Continuation of period-doubling bifurcation from supercritical Hopf bifurcation. 
 

 
Figure 8. Computed limit cycle curve started from a period-doubling bifurcation. 
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If we increase appI  further, the limit cycle that is born from supercritical 
Hopf bifurcation undergoes another period-doubling bifurcation. The Peri-
od-doubling can continue to infinity. But, in this procedure, the values of appI  
at which this bifurcation occurs become closer than before. 

For localization of Branch Points of cycles, a special algorithm which is of 
Newton type Continuation Method has been used to show these singularities. 
Also, the equilibrium curve can have two generic codimension one bifurcation 
limit point and Hopf point and plus continuation of equilibrium curve gives us 
Branch Point that in Figure 9, Figure 10, it has been shown by BPC. 

The branch point 0Z  for the complex valued function ( )f z , has this prop-
erty that the value of ( )f z  does not return to its initial value as a closed curve 
around a point is traced, in such a way that f varies continuously as the pass is 
traced. 

Moreover, In the contex of complex analysis, a branch point of a multi-valued 
function is a point at which the function is discontinuous when it is going in a 
neighborhood of this point. 

If we only consider inhg  as bifurcation parameter, we have 

label = H, ( )19.573692 0.191817 0.071067x = −  
Neutral saddle 

label = LP, ( )4.616109 0.391485 0.187732x = −  
8.199830 03a e= −  

label = H, ( )6.041592 0.566955 0.192795x = −  
First Lyapunov coefficient = 7.969763e−04 

In this case, we have a natural saddle in ( ) ( ), 19.573692,0.191817V n = −  and 
0.071067inhg =  for which 1 2 0λ λ+ = . 

 

 
Figure 9. Continuation of branch point cycles from equilibrium curve. 
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Figure 10. Continuation of branch point cycles from equilibrium curve. 

 
Also for ( ) ( ), 6.041592,0.566955V n =  and 0.192795inhg = −  and for the ei-

genvalues ( ) ( ) ( )( )1 2, 1.75069 07 0.291426 , 1.75069 07 0.291426e i e iλ λ = − − + − − −  
we have a subcritical Hopf bifurcation with the following normal form 

( ) ( ) 31.75069 07 7.969763 04r e r e r= − − + −  

0.291426θ =  

Here, 0θ >  as we know θ is the angle of oscillations that here is positive and 
increasing because the frequency of damped or sustained oscillations around this 
point 0ω , is positive. But for the following normal form 

( ) ( ) 31.75069 07 7.969763 04r e r e r= − − + −  

0.291426θ = −  

Here, 0θ <  as we know θ is the angle of oscillations that here is negative 
and decreasing because the frequency of damped or sustained oscillations 
around this point 0ω , is negative. 

However, the analysis of normal form is just limited to the first equation of 
normal form. 

( ) ( )
( ) ( )( )

3

2

1.75069 07 7.969763 04 0

1.75069 07 7.969763 04 0

e r e r

r e e r

− − + − =

→ − − + − =
 

So 
( ) ( ) 20, 1.75069 07 7.969763 04 0r e e r= − − + − =  
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Here, 0r =  is an equilibrium and because for 0r =  

( ) ( ) ( )3d 1.75069 07 7.969763 04 1.75069 07 0
d

e r e r e
r
 − − + − = − − <   

As a result, this equilibrium is stable. The equation  
( ) ( ) 21.75069 07 7.969763 04 0e e r− − + − =  gives us the stable periodic solution 
with amplitude 

1.75069 07
7.969763 04

er
e
−

=
−

 

The complete bifurcation diagram with respect to inhg  has been demon-
strated in Figure 11. 

In Figure 11, codimension two bifurcations Bogdanov-Takens and Cusp bifur-
cations have been demonstrated. Bogdanov-Takens bifurcation is a codimension 
two bifurcation that has the following normal form 

u v=  

2v a bu u uvσ= + + +  

where, ,a b  are the normal form coefficients, and the parameter 1, 1σ = −  
depends on different types of supercritical and subcritical. 

In another word, when cusp bifurcation happens, we have a Saddle-Node bi-
furcation at an equilibrium point, when for the system ( ),x f x γ=  we have 

0xf =  and 0xxf ≠  and this system is equivalent with ( ) 2x a xγ= + . 
 

 
Figure 11. Complete bifurcation continuation. 
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When we have 0xxf =  and 0xxxf ≠ , then the equilibrium point undergoes 
cusp bifurcation that is a codimension two bifurcation with respect to ,app inhI g  
as bifurcation parameters. The system near the cusp point obeys the following 
normal form 

( ) ( ) 3
1 2x a a x cxγ γ= + +  

So that 

( ) ( ) ( ) ( )1 2, , , , 6 0x xxxa f x a f x c fγ γγ γ γ γ= = = ≠  

If 0c >  we have subcritical cusp bifurcation and if 0c < , we have super-
critical cusp bifurcation. To find the bifurcation set: 

( ) ( )( ) ( )3 2
1 2 2

d 3 0
d

a a x cx a cx
x

γ γ γ+ + = + =  

which gives the following saddle-node curves 

( ) ( ) ( ) ( )2
1

3 2
2

3 2

2
2 2,

3 3
a a

a a
a a

γ γ
γ γ

   
= + = −   

   
 

Also, we know that if ( )1 0a γ =  and ( )2a γ γ= , we have the following nor-
mal form 

3x x cxγ= +  

which is the normal form for Pitchfork bifurcation. 
Here, for the first point 

label = CP, ( )10.008656 0.309902 221.927487 0.996196x = −  
5.411489 04c e= −  

( ) ( )( ) ( ) ( )1 2, , 221.927487,0.996196app inha a I gγ γ = =  

So that we can easily write the normal form for this equilibrium point and we 
can find the bifurcation set and saddle-node curves. 

3.2. gexc as Bifurcation Parameter 

In this section, we consider excg  and appI  as free parameters. 
At first, we assume excg  as bifurcation parameter (see Figure 12).  
In Figure 12 we have: 

label = H, ( )7.210500 0.351140 1.975854x = −  
First Lyapunov coefficient = −9.396562e−04 

label = H, ( )12.596098 0.274268 0.209999x = −  
First Lyapunov coefficient = 8.625008e−05 

For the first Hopf point ( ) ( ), 7.210500,0.351140V n = −  and 1.975854excg =  
and the eigenvalues  
( ) ( ) ( )( )1 2, 3.66907 08 0.232446 , 3.66907 08 0.232446e i e iλ λ = − − + − − −  we have 
a supercritical Hopf bifurcation with the following normal form 
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Figure 12. gexc as free parameter, continuation of Hopf points. 

 

( ) ( ) 33.66907 08 9.396562 04r e r e r= − − − − −  

0.232446θ =  

Here, 0θ >  as we know θ is the angle of oscillations that here is positive and 
increasing because the frequency of damped or sustained oscillations around this 
point 0ω , is positive. But for the following normal form 

( ) ( ) 33.66907 08 9.396562 04r e r e r= − − − − −  

0.232446θ = −  

Here, 0θ <  as we know θ is the angle of oscillations that here is negative 
and decreasing because the frequency of damped or sustained oscillations 
around this point 0ω , is negative. 

However, the analysis of normal form is just limited to the first equation of 
normal form. 

( ) ( )
( ) ( )( )

3

2

3.66907 08 9.396562 04 0

3.66907 08 9.396562 04 0

e r e r

r e e r

− − − − − =

→ − − − − − =
 

So 

( ) ( ) 20, 3.66907 08 9.396562 04 0r e e r= − − − − − =  

Here, 0r =  is an equilibrium and because for 0r =  

( ) ( ) ( )3d 3.66907 08 9.396562 04 3.66907 08 0
d

e r e r e
r
 − − − − − = − − <   

As a result, this equilibrium is stable. The equation  
( ) ( ) 23.66907 08 9.396562 04 0e e r− − − − − =  gives us the stable periodic solution 
with amplitude 

3.66907 08
9.396562 04

er
e
−

=
−

 

For other Hopf point with the eigenvalues  
( ) ( ) ( )( )1 2, 2.6594 11 0.176907 ,2.6594 11 0.176907e i e iλ λ = − + − +  we have the 
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following normal form (for ( ) ( ), 12.596098,0.274268V n = −  and  
0.209999excg = ) 

( ) ( ) 32.6594 11 8.625008 05r e r e r= − + −  

0.176907θ =  

Here, 0θ >  like above we know θ is the phase of oscillations that here is 
positive and increasing because the frequency of damped or sustained oscilla-
tions around this point, 0ω , is positive. But for the following normal form 

( ) ( ) 32.6594 11 8.625008 05r e r e r= − + −  

0.176907θ = −  

0θ <  as we know θ is the angle of oscillations that here it is negative and de-
creasing because the frequency of damped or sustained oscillations around this 
point 0ω , is negative. 

But, we know that the analysis of normal form depends on the first equation 
of normal form 

( ) ( )
( ) ( )( )

3

2

2.6594 11 8.625008 05 0

2.6594 11 8.625008 05 0

e r e r

r e e r

− + − =

→ − + − =
 

Therefore 

( ) ( ) 20, 2.6594 11 8.625008 05 0r e e r= − + − =  

Here, 0r =  is an equilibrium and because for 0r =  

( ) ( ) ( )3d 2.6594 11 8.625008 05 2.6594 11 0
d

e r e r e
r
 − + − = − >   

As a result, this equilibrium is unstable. The equation  
( ) ( ) 22.6594 11 8.625008 05 0e e r− + − =  does not give us the periodic solutions. 

Also, at 0.071067341inhg =  and considering excg  as bifurcation, parameter 
with changing the period we have the result in Figure 13 and Figure 14. 
 

 
Figure 13. gexc as free parameter, computed limit cycle curve started from a Hopf bifurca-
tion. 
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4. The Homoclinic Case 

In this section, we study the homoclinic bifurcation using the parameter values 
from Table 1. 

When a saddle homoclinic bifurcation occurs a limit cycle disappears or born. 
A saddle point has two stable and unstable submanifolds. When we change the 
parameters for bifurcation, these two submanifolds collide and create one 
homoclinic orbit as we see clearly in Figure 15. After and before the moment of 
bifurcation we do not have this homoclinic orbit. 
 

 
Figure 14. gexc as free parameter, Continuation of limit point cycle from Hopf point in 
( ),V n -plane. 

 

 
Figure 15. Saddle homoclinic bifurcation. Iapp = 40 (up, left), Iapp = 46 (up, right), Iapp = 50 (down, left), Iapp = 60 (down, right). 
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In neuroscience point of view, before the beginning of bifurcation, all trajec-
tories go back to the resting state after a counter-clockwise excursion (firing 
spike) and we have limit cycle attractors corresponding to periodic spiking. At 
the moment of bifurcation, we have periodic spiking activity with the period that 
goes to infinity (the period of limit cycle goes to infinity). After the bifurcation 
the state of the system again goes back to the rest and we do not have tonic 
spiking. 

There is another bifurcation similar to saddle Homoclinic bifurcation and in 
both of them we have a Homoclinic orbit that begins and finishes in the same 
equilibrium point. But saddle-Homoclinic is of codimension 1 and saddle-node 
Homoclinic is of codimension two. For saddle-node Homoclinic we must have 
the condition for occurrence of saddle-node bifurcation 1 0λ =  and also the 
saddle-node quantity 1 2 0λ λ+ <  it means that 2 0λ < . As a result, in sad-
dle-node Homoclinic, we observe the appearance or disappearance of a stable 
limit cycle. 

5. Discussion and Conclusion 

In this study we discovered the biological and spiking behaviors of Morris-Lecal 
neuron model including a new more channel, chloride channel, and we com-
pared it to the original model. Morris-Lecal neuron model with two ordinary 
differential equations is a reduction version of Hodgkin-Huxley model. We have 
shown that for different biological parameters values, the model displays quies-
cent and spiking behaviors. To explore the exciting behaviors of neuron, we 
conducted different numerical simulations and bifurcation analysis. We ob-
tained numerically the Hopf bifurcation and homocinic bifurcation at larger 
values for injected current compared to the original model and we derived them 
analytically by finding their normal forms. Specifically, we conducted rigorous 
bifurcation analysis and continuation of equilibrium point with respect to the 
injected current or changing other biological parameters and we explored the 
complicated and interesting dynamics of new Morris-Lecar model such as dif-
ferent fluctuations neuronal patterns. 

In supercritical Hopf bifurcation, when we changed the control parameters 
(bifurcation parameters), we could see a stable equilibrium point lost its stability 
and a stable limit cycle bifurcated from it. In this case, the state of the system 
stayed near the equilibrium and we could see only small amplitude oscillations 
around the equilibrium point. When we changed the parameter in the opposite 
direction the limit cycle degenerated to a point and we reached the previous 
equilibrium point. We noticed that as it is expected this neuron that has under-
taken supercritical Hopf bifurcations did not show an immediate spike and it 
remained quiescent (it displayed small amplitude sustained oscillations). 

In other cases, for subcritical Hopf bifurcation, when we changed the bifurca-
tion parameter, we noticed the immediate spike or a large amplitude jump in 
time series of system equations. In this case, when we changed the parameter in 
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opposite direction, the equilibrium became stable again but the state of the sys-
tem went back to its similar saddle-node bifurcation or saddle-Homoclinic bi-
furcations. 

As we have seen for model (1), there are different types of codimension-two 
bifurcations which occurred when we had two bifurcation parameters. One of 
them was the Bogdanov-Takens bifurcation which is a codimension-two bifur-
cation of an equilibrium point in a two-dimensional system for which the equi-
librium point has two zero eigenvalues. Near the bifurcation parameter, we have 
two equilibrium points, a saddle point and others that are not a saddle point 
which collides and disappears via a saddle-node bifurcation. For the equilibrium 
that was not saddle, we have seen Hopf bifurcation that produced a limit cycle. 
This single limit cycle degenerated to a Homoclinic orbit to the saddle and dis-
appeared via a saddle homoclinic bifurcation. Bogdanov-Takens bifurcation can 
occur when an equilibrium undergoes Hopf bifurcation and saddle-node bifur-
cation simultaneously and also it occurs when we have two-dimensional systems. 
Therefore, for this model we showed that we have a transition between integra-
tor and resonator as the neuron that undergoes saddle-node bifurcation is an 
integrator (without damped subthreshold oscillations) and the neuron that un-
dergoes Hopf bifurcation is a resonator (with damped subthreshold oscillations). 

Continuation of limit cycles from the Hopf point, gave us the limit point 
(Fold/Saddle Node) bifurcation. Limit point cycles are a set of limit cycles that 
bifurcate from the Hopf point, and moreover, limit point cycle (LPC) is a fold 
bifurcation for which two limit cycles with different periods are near the LPC 
point. Likewise, as we saw, the continuation of cycles from a Hopf point also 
gave period doubling (flip) bifurcations. Period doubling bifurcation is a bifur-
cation for which a new limit cycle creates from the limit cycle that exists and the 
period of the new limit cycle is twice the first limit cycle. Moreover, we have 
shown changing the type of Hopf bifurcation from supercritical to subcritical 
which means that the type of stability changes from monostability in supercriti-
cal to bistability in subcritical Hopf bifurcation. 
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