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Abstract 
Many black box functions and datasets have regions of different variability. 
Models such as the Gaussian process may fall short in giving the best repre-
sentation of these complex functions. One successful approach for modeling 
this type of nonstationarity is the Treed Gaussian process [1], which extended 
the Gaussian process by dividing the input space into different regions using 
a binary tree algorithm. Each region became its own Gaussian process. This 
iterative inference process formed many different trees and thus, many dif-
ferent Gaussian processes. In the end these were combined to get a posterior 
predictive distribution at each point. The idea was that when the iterations 
were combined, smoothing would take place for the surface of the predicted 
points near tree boundaries. We introduce the Improved Treed Gaussian 
process, which divides the input space into a single main binary tree where 
the different tree regions have different variability. The parameters for the 
Gaussian process for each tree region are then determined. These parameters 
are then smoothed at the region boundaries. This smoothing leads to a set of 
parameters for each point in the input space that specify the covariance ma-
trix used to predict the point. The advantage is that the prediction and actual 
errors are estimated better since the standard deviation and range parameters 
of each point are related to the variation of the region it is in. Further, 
smoothing between regions is better since each point prediction uses its pa-
rameters over the whole input space. Examples are given in this paper which 
show these advantages for lower-dimensional problems. 
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1. Introduction 

A common complication in the analysis of data is changes in variability, either in 
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the smoothness of the underlying function or as heteroscedasticity. Fully mod-
eling this variability can be computationally prohibitive. The Gaussian process is 
commonly used as a nonparametric model for complex data, especially in the 
context of computer simulation modeling or estimation of black box functions, 
as discussed in [2] [3]. A limitation of the Gaussian process is that it may not 
represent all regions of the functional domain well when there are regions of 
different variability. The Treed Gaussian process was developed to handle this 
situation in a computationally efficient manner [1]. 

Other examples of non-stationary Gaussian processes include [4]-[11]. Many 
of these are more computationally intensive than the Treed Gaussian process. [4] 
uses non-stationary spatial dependence as explained through a constructive 
“process-convolution” approach, ensuring the resulting covariance structure is 
valid. [5] introduces a new class of nonstationary covariance functions which al-
low the model to adapt to spatial surfaces whose variability changes with loca-
tion. [6] uses a process convolutions-based GP model by convolving a smooth-
ing kernel with a partitioned nonstationarity latent process in the Gaussian pro-
cess obtained by allowing the variability of the latent process and the kernel size 
to change across partitions. [7] uses a method which automatically decomposes 
the spatial domain into disjoint regions within which the process is assumed to 
be stationary but across regions the data is assumed independent. Uncertainty in 
the number of disjoint regions, their shapes, and the model within regions is 
dealt with in a fully Bayesian fashion. [8] uses clustering to determine different 
regions of variability and a nonstationary Gaussian process across the clusters. [9] 
uses an approach described as spatially clustered coefficient regression to model 
variable functions. [10] uses a nonstationary covariance function constructed 
based on selected partitions to model functions of variability. [11] uses piecewise 
Gaussian processes to model sharp changes in the covariance matrix due to the 
change in rock types for geological structures. 

The Treed Gaussian process [1], which we compare to our Improved Treed 
Gaussian process in this paper, models functions with regions of different varia-
bility by an iterative inference process which divides up the input space into re-
gions using a binary tree approach to isolate the regions of different variability. 
Each tree region, for a given iteration, has its own Gaussian process. In the end, 
the predictions for points in the input space for each iteration are combined to 
get a posterior predictive distribution for each point. There can be these prob-
lems with the Treed Gaussian Process (TGP): 1) The results can vary considera-
bly for different calls to the Treed Gaussian Process (TGP); 2) The smoothing of 
the different sets of tree iterations near tree boundaries may not emulate the 
function as well as desired; 3) The errors of the predictions and the error esti-
mates may be larger than desirable in some cases. It does have the advantage that 
the processing is very efficient with regard to the time it takes for results. 

Our Improved Treed Gaussian process takes into account the different regions 
of variability by dividing the different regions of variability based on a set of 
gridded training points. This is done using a binary tree algorithm. It differs 
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from the Treed Gaussian process in that we use a single main tree. The Gaussian 
process for each tree region is determined providing the process variance and 
the range parameters. Then the parameters of the different regions are smoothed 
where they interface each other. This way, each predicted point has its own pa-
rameters, whether it lies within a tree region or on the boundary between tree 
regions. Now each point is predicted based on its own unique covariance matrix. 
Although the time for processing is increased, there are these advantages: 1) The 
results can be reproduced with only minor random variation; 2) Smoothing oc-
curs at the region boundaries which emulates the function nicely since the pre-
diction process uses the whole input space; 3) The estimated errors (σ values) are 
closer to the actual errors. This approach works well in low-dimensional prob-
lems, one or two dimensions, although we expect that further research can ex-
tend this method to larger dimensions. 

The details of this Improved Treed Gaussian emulator are discussed in Section 
2. After these details are discussed, Section 3 presents two illustrations of the Im-
proved Treed Gaussian process (herein called the Improved TGP) and compares 
its results with those of the Treed Gaussian Process (TGP). Lastly, in Section 4, 
the Improved TGP is applied to real data. Conclusions follow in Section 5. 

2. Improved Treed Gaussian Process 

The algorithm begins with the evaluation of gridded training points covering the 
function’s input space. The reason for such a grid is that now the point values 
can be used to get a variance matrix. This variance matrix is made up of the 
variances of each grid point. The variance of each grid point is the variance of 
the function values for the given point and all neighboring points within the grid 
distance including those on the diagonals. Next the variance matrix and the 
gridded training points are displayed in perspective views to give the user an 
idea of what the binary tree might be. There are four types of functions: 1) Irreg-
ular, 2) variable, 3) smooth, and 4) very smooth. Figure 1 shows an example of 
each type of function.  

The user decides which type of function he/she is emulating. Then the binary 
tree algorithm is run to determine the binary tree that suits the function best. 
This algorithm is explained in Subsection 2.2 with details given in Subsection 2.3. 
After the binary tree is obtained, the individual regions of the binary tree are 
processed. This is a straightforward application of the Metropolis-Hastings algo-
rithm. For each region, this algorithm determines the process variance, σ2, the 
range parameters θ1 and θ2 for 1x  and 2x  (or just for 1x  if one dimensional), 
and the nugget, τ. A prior for the range parameters has been developed for this 
processing step which will be explained in Subsection 2.4. The parameters for 
each region are smoothed at their interfaces of other tree regions to obtain a co-
variance matrix for each predicted point. Smoothing is discussed in Subsection 
2.1. The final step is the prediction of points and their errors. This is discussed in 
Subsection 2.5. 
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Figure 1. Illustration of four function types: the irregular function 
is the motorcycle stopping data discussed in Section 4; the variable 
function is discussed in Section 3.1; the third function is an exam-
ple of a smooth function; the fourth function is the very smooth 
Rosenbrock Banana function. 

2.1. Smoothing Process Parameters at Region Interfaces 

For the Treed Gaussian process [1], smoothing depends on averaging many iter-
ations of different binary trees which center around the regions of different var-
iability of the function. Now we have a single tree and we want smoothing at the 
interface of specific tree regions. There are two types of smoothing: 1) Smooth-
ing for the process variance; 2) Smoothing for the range parameters. The differ-
ence between these two types is due to the fact that we expect a region with a 
larger process variance should raise the process variance of a smaller process 
variance region at their interface. The reason for this is that, at the interface of 
the two regions, errors are likely to be larger than predicted by the smaller pro-
cess variance. If this smoothing is left out, errors at the boundaries are often un-
derestimated. Figure 2 shows how smoothing takes place at this interface be-
tween a region with a larger process variance than the region it interfaces with.  

At the interface of two regions with different range values, a smooth transition 
is made in which both regions are modified at the interface. The region with 
larger range has its range reduced while the region with smaller range has its 
range increased. The idea is that the points predicted at the region boundary 
should share equally in the two ranges. This smoothing allows for the Gaussian 
process points near the boundary region to better share in the final estimation of 
points near the boundary. Figure 3 shows this smoothing.  

Two dimensional smoothing is more complicated since the smoothed value at 
a point near a boundary depends on more neighboring points. However, at two 
region boundaries it turns out to be the same as the one dimensional case. 

https://doi.org/10.4236/am.2020.117042


J. Guenther, H. K. H. Lee 
 

 

DOI: 10.4236/am.2020.117042 617 Applied Mathematics 
 

 
Figure 2. Smoothing for the process variance: the one dimen-
sional view shows how smoothing is done for the interface be-
tween a region with a larger process variance and one with a 
smaller process variance. The larger process variance region 
modifies the smaller process variance region by raising its vari-
ance near the interface. 

 

 
Figure 3. Smoothing for range: the one dimensional view shows 
how smoothing is done for the interface between a region with a 
larger range than the one it interfaces with. Both ranges are 
smoothed at the interface. 

2.2. Overview of the Binary Tree Algorithm 

The Gaussian process does not model a function very well that has regions of 
different variability. Many approaches have been taken to circumvent this diffi-
culty [1] [4]-[11]. Our method divides the function input space into different re-
gions using a variance matrix determined by a set of gridded points over the 
function’s input space.  

This is illustrated by a simple case where the function varies by only a small 
amount in one region and varies by a large amount in the other region. The 
function is shown in Figure 4 on the left side. The variance matrix is on the 
right side. There is a significant change in the variance of points moving from  
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Figure 4. Perspective of simple function and variance matrix: 
the function is on the left. The variance matrix is on the right. 
The variance at any grid point is the variance of the function 
values nearest the point. 

 
left to right along variable 1x . This change divides the function space into two 
regions as shown in the perspectives. Two Gaussian functions with smoothing at 
the region boundary are expected to be a better fit to the surface than one 
Gaussian function. The proposed binary tree algorithm divides the function into 
two regions of differing variability. The function is: 

( ) ( )
( )

1 1

1 1
1 2

1 1

2 1 2

if 0 1
1 2 1 if 1 1.2
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, 0 2

x x
x x

f x x
x x

x x x

≤ ≤
 + − < ≤=  + − < ≤
 = ≤ ≤

 

The binary tree algorithm uses the log of the variance matrix and sums the log 
values of 2x  moving from 1 0x =  to 1 2x = . When a significant change in the 
log sum occurs, a region boundary is determined. In this case, the log sum 
changes by a difference of 0.847 between 1 0.8x =  and 1 1x =  and by a differ-
ence of 1.386 from 1 1x =  and 1 1.2x = . A binary tree boundary can be estab-
lished either at 1 1x =  or 1 1.2x = . Having divisions at both 1x  values is not 
desirable because there would be two boundaries as close as one grid distance. 
The binary tree algorithm determines where the boundary should be on the basis 
of an optimization function. 

There are two considerations for an optimal binary tree: 1) variability of the 
tree regions; 2) the number and sizes of the tree regions. Of the many trees 
computed by the algorithm, the tree chosen is the one with the best balance be-
tween variability and complexity. The first step is to sum the mean variances of 
the two regions formed by making a tree division at 1 1x =  as opposed to mak-
ing a tree division at 1 1.2x = . This approximation holds: 

2 2
i is A s A≈∑  

where 2
is  is the mean variance in region i, iA  is the area of region i, 2s  is 

the mean variance of the input space, and A is the area of the input space. The 
area is computed by multiplying the number of grid distances of length times the 
number of grid distances in width. Raising the 2

is  and 2s  to the power 3/2, 
gives  
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( ) ( )3 2 3 22 2
i is A s A≥∑  

The ratio ( ) ( )( )3 2 3 22 2
i is A s A∑  increases as the differences in the 2

is   

increase. Powers greater than 3/2 would further increase the differences in these 
two sums. The power of 3/2 was selected based on experimentation with several 
functions. In this example, the first division at 1 1x =  with two areas of 50 grid 
distances squared has a sum ( ) ( )3 2 3 22 2 116.359i is A s =∑ . The second divi-
sion at 1 1.2x =  with two areas of 40 and 60 grid distances squared has a sum 

( ) ( )3 2 3 22 2 124.456i is A s =∑ . Here, ( )3 221 s  is used as a normalizing factor. 
This indicates, by this criterion, that the division at 1 1.2x =  may be the better 
choice. However, we need to consider tree complexity which involves the num-
ber of regions and the sizes of regions. A smaller number of similarly sized re-
gions may represent a function better than a large number of regions with dif-
ferent sizes. The trade off can be determined by computing a penalty for com-
plexity. The penalty assessed for different size regions and the number of regions 
is given by 

( ), 2 2 1i j regionsi jPenalty A A n= − + −∑   

This penalty is subtracted from ( ) ( )3 2 3 22 2
i is A s∑  to get the optimal 

value. For the first tree boundary with the division 1 1x = , the penalty be-
comes ( ), 2 2 2 1 2i ji jPenalty A A= − + − =∑  since 0i jA A− = . For the 
second tree boundary with the division at 1 1.2x = , the penalty becomes 

( ), 2 2 2 1 22i ji jPenalty A A= − + − =∑  since 20i jA A− = . With the penal-
ty subtracted, the optimum values become 114.359 and 102.456, respectively. 
So, by including this penalty, the division at 1 1x =  is optimal. Different 
weights could be applied to the values for ( ) ( )3 2 3 22 2

i is A s∑  and the Penalty 
to get different results. We found, based on several functions, that equal weights 
for both provided trees for several different functions that were reasonable. 

The algorithm for dividing the input space into binary trees supplies many 
different trees. It does so by looping through a vector of lower cutoff values. 
Then, for each lower cutoff value it loops through a vector of step sizes. For each 
cutoff value and step size a binary tree is computed. Each binary tree created is 
assessed for its optimal value. The one with the highest optimal value is the one 
selected. The details of this are discussed in Subsection 2.3. 

2.3. Binary Tree Algorithm in Detail 

The binary tree algorithm is composed of five functions: optimize.tree.regions, 
get.tree.regions, split, split.region, and get.optimum.value.  

The main function optimize.tree.regions is called with the input space di-
mension (1 or 2), the variance matrix, and input region size. It does the follow-
ing steps:  
• 1) Computes the logs of the variance matrix maximum and minimum. Sets 

the maximum lower cutoff to the maximum log of the variance matrix. Sets 
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the minimum lower cutoff to the maximum of the minimum log of the vari-
ance matrix or the maximum lower cutoff minus 10. Computes a vector of 
lower cutoff values by incrementing from the minimum lower cutoff to the 
maximum lower cutoff. Does the following for each lower cutoff:  

• 2) Sets a minimum step size (δ) and a maximum step size. The maximum 
step size is half the maximum lower cutoff minus the minimum lower cutoff. 
Computes a vector of step sizes by incrementing from the minimum step size 
to the maximum step size. Loops through all step sizes of this vector for the 
current lower cutoff.  

• 3) Calls get.tree.regions with input space dimension, variance matrix, lower 
cutoff, and step size, which returns the tree regions.  

• 4) Calls get.optimum.value with the input space dimension, tree leaf regions, 
variance matrix. It returns the optimum value for the tree.  

• 5) If the optimum value returned is larger than any previous value, stores this 
optimum value and the associated tree regions.  

• 6) When processing is completed, returns the regions with the optimum val-
ue to the main program.  

The function get.tree.regions is called with the input space dimension, vari-
ance matrix, lower cutoff, and step size. It does the following steps:  
• 1) Initializes the tree regions matrix with the grid size of the variance matrix. 

Randomly selects a split direction if it is a two-dimensional space. Initializes 
the whole input space as a binary tree node with starting and ending indices 
for each dimension. Sets the region count to 1.  

• 2) Calls split with the input space dimension, current region index, tree re-
gions, variance matrix, cutoff, and step size.  

• 3) If a split for the current region does not occur, changes split direction (if 
two dimensional) and calls split again.  

• 4) Increments the region count. If region count in greater than the regions 
constructed (no new regions occurred with the last calls to split), ends split 
processing.  

• 5) With the regions constructed, extracts leaf regions from the tree regions 
and returns the leaf regions to optimize.tree.regions.  

The function split is called with input space dimension, current region index, 
tree regions, variance matrix, lower cutoff, step size. It does the following:  
• 1) Sets the starting, ending and extents for the current region indices.  
• 2) Calls split.region with input space dimension, current region index, tree 

regions, current split direction, starting, ending, and extents for the current 
region, lower cutoff, step size.  

• 3) Returns the current tree regions to get.tree.regions.  
The function split.region is called with the input space dimension, current 

region index, tree regions, current split direction, starting, ending and extents 
for the current region, variance matrix, lower cutoff, step size. It does the fol-
lowing:  
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• 1) Computes the sums for the trace of the variance matrix in the specified di-
rection for the current region.  

• 2) Computes the logs of these trace sums and gets the maximum log of these 
sums. Smooths the log sums of the trace using R’s “lowess” function.  

• 3) If the trace extents are ≥5 and the maximum log sum > lower cutoff, de-
termines if there is a step size difference between adjacent log sums. If such a 
difference exists, it splits the region at that index where the difference occurs 
provided the difference occurs after (starting index +1) and before the (end-
ing index −1).  

• 4) Sets the two new regions to leafs and the split region to a node. Sets the 
two new leaf split directions opposite to the direction of the split region.  

• 5) Returns the tree regions including any newly split regions to split.  
After the tree regions are determined, the function get.optimum.value is 

called with input space dimension, regions (only leaf regions at this point) and 
variance matrix. It does the following:  
• 1) Determines the means of the variance matrix for each leaf.  
• 2) Sums the means raised to the 3/2 power times the tree region areas/lengths 

divided by the mean of the input space variance raised to the power 3/2. This 
result is component one of the optimal value.  

• 3) Computes the sum of the differences in area/length of all region pairs and 
adds to this sum two times the number of regions minus one to get compo-
nent two. (Note: This quantity measures the complexity of the tree.)  

• 4) Returns the optimum value obtained by subtracting component two from 
component one to optimize.tree.regions.  

2.4. Tree Region Processing 

Each tree region is processed individually using the Metropolis-Hastings algo-
rithm to get its individual process variance, σ2, range parameter(s), θ1 and θ2 if 
two dimensional, and nugget, τ. The posterior distribution for each region is 
given as  

( )
( ) ( ) ( ) ( ) ( ) ( )

2
1 2 1 2

2 T1 2 12
1 2 1 2 1 22

, , , | , ,

1, exp ,
2

t t t

n t t

f

f f

σ θ θ τ

σ θ θ θ θ θ θ
σ

− − − ∝ − 
 

x x y

R y R y
 

where 

( )
( ) ( )2 2

1, 1, 2, 2,
1 2 ,

1 2

, exp
t t t t

i j i j

i j
θ θ

θ θ

  − −  = − +      

x x x x
R   

and 

( )1 2 ,
, 1

i i
θ θ τ= +R  

where .nuggetτ =   
The posterior distribution, except for the priors for θ1 and θ2, is a standard 

Gaussian process with a 0 mean. The priors are determined for four types of 
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functions: 1) irregular, 2) variable, 3) smooth, and 4) very smooth. (The user es-
timates the type of function at the beginning of processing when the variance 
grid and training point perspectives are displayed.) There are four considera-
tions in the choice of the range priors:  
• The grid distance is prominent in the prior selection. Grid points (also re-

ferred to as training points) near the point being predicted are the most in-
fluential in determining the predicted point. So the range parameters are of-
ten close to this distance squared except for regions where the functions are 
smooth or very smooth. When the function values are relatively small with 
little variation, the best predictions often use only the very nearest grid points.  

• For cases where tree regions have variances much smaller than the region 
with the maximum process variance, it was discovered that an exponential 
prior with a mean of 1 λ  dominates their range values.  

• There are two classes of smooth functions: 1) smooth and 2) very smooth. 
These functions need larger range values and smaller nuggets to increase the 
accuracy of the emulator.  

• Irregular functions require larger nuggets since actual points are scattered 
discontinuously through the function domain.  

These considerations lead to the following priors for θ for each type of func-
tions. The prior for θ for all but very smooth functions is:  

( ) ( ) ( ) ( )2 2 2 1
max min max| , , , , exp expgridf d K K

α
αβθ σ σ λ λθ θ βθ

α
−= − −

Γ
 

We will proceed to define the parameters and constants appearing in this pri-
or.  

• 
1 42

max
2

σ
λ

σ
 

=  
 

 where 2
maxσ  is the maximum process variance of the tree re-

gions and σ2 estimates the process variance of the current tree region.  
• ( )2 21 priorK dβ =  where priorK  is either minK  or maxK  or a value in be-

tween these constants. The computation of priorK  will be discussed last.  
• The parameter 2d  is related to λ  and the distance between grid points, 

gridd , by the formula 2 2 0.44
gridd d λ= .  

• The parameter 21 priorKα =  implies that the Gamma prior has a mean of 
2d .  

This leaves priorK  to be defined. Two constants are chosen that bound priorK . 
They are min 0.075K =  and max 1K = . When a function is estimated as smooth, 

priorK  is set to maxK  for both θ1 and θ2. Also, for a correlated variable, priorK  
is set to maxK . When the function being estimated is variable or irregular, 

priorK  is given by the following formula which can only be justified empirically.  

( )max min
min 1

7prior
K KK K λ

−
= + −  

If maxpriorK K≥ , then maxpriorK K=  

If minpriorK K≤ , then minpriorK K=  
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What this says is when λ  is close to 1, minpriorK K=  and the θ values are 
dominated by the Gamma prior. As the current process σ2 gets smaller com-
pared to 2

maxσ , λ  gets larger and the exponential prior with λ  dominates. 
For functions estimated to be very smooth, the prior for θ1 and θ2 is:  

( ) ( )2 1000, 1000f Gamma wθ α β= = × =  

where the mean of the Gamma function is 2w , the square of the size of the do-
main, and its standard variance is 2 1000w . This allows the ranges to include 
most of the whole domain. 

After each tree region is processed to get their parameters σ2, θ1, θ2, and τ, the 
parameters are smoothed (except for τ which is set to the average of τ’s for the 
regions) at the region interfaces. Smoothing has been discussed previously in 
Subsection 2.1. 

2.5. Prediction and Error Analysis 

The smoothed parameters for the whole input space are now used to construct 
the covariance matrices for each predicted point. Standard Kriging formulas are 
then used to predict the point and its standard deviation. The formulas for pre-
diction of the point ( )1, 2,,p p

i jx x  are:  

( ) ( ) ( )T 1
1, 2, 1, 2, 1, 2,, , ,p p p p p p t

i j i j i j
−=y x x r x x R x x y   

where 

( ) ( ) ( ) ( ) ( )2 2

1, 2, 1, 1, 1 1, 2, 2, 2, 2 1, 2,,
, exp , ,p p t t p p t t p p

i j k l i j k l i jk l
θ θ  = − − + −    

R x x x x x x x x x x  

( )1, 2, ,
, 1p p

i j k k
τ= +R x x  

and 

( ) ( ) ( ) ( ) ( )2 2

1, 2, 1, 1, 1 1, 2, 2, 2, 2 1, 2,, exp , ,p p p t p p p t p p
i j i k i j j k i jk

θ θ  = − − + −    
r x x x x x x x x x x  

In the formulas above, the subscripts ,i j  are for the predicted point and the 
subscripts ,k l  are for the training point data. For the error prediction (σ) we 
have:  

( )
( ) ( ) ( ) ( )( )

2
1, 2,

T 12
1, 2, 1, 2, 1, 2, 1, 2,

,

, 1 , , ,

p p
i j point

p p p p p p p p
i j i j i j i jprocess

τ
−

= + −

x x

x x r x x R x x r x x

σ

σ
 

( ) ( )2
1, 2, 1, 2,, ,p p p p

i j i jpoint point
=x x x xσ σ  

For a one dimensional input space, the formulas are simplified since there is 
only one vector, 1x , one range vector, 1θ , and one standard deviation vector 
σ . 

3. Illustrations of the Improved Treed Gaussian Process 

Two illustrations of the Improved Treed Gaussian process are discussed in this 

https://doi.org/10.4236/am.2020.117042


J. Guenther, H. K. H. Lee 
 

 

DOI: 10.4236/am.2020.117042 624 Applied Mathematics 
 

section and their results compared to the Treed Gaussian process. 

3.1. First Illustration of the Improved Treed Gaussian Process 

Here we demonstrate how the Improved Treed Gaussian process (abbreviated 
Improved TGP) produces better predictions and error estimates than the Treed 
Gaussian process (abbreviated TGP) for the variable function shown in Figure 5.  

The equation of the function is  

( ) ( ) ( ) ( )( )2 2
1 2 1 1 2, 4 2 exp 4 2 4 2f x x x x x= ∗ − ∗ − ∗ − − ∗ −  

where 10 2x≤ ≤  and 20 2.x≤ ≤   
For this function, a 10 by 10 grid of training points is computed. (This grid 

size is chosen by the user.) Next the variance matrix is computed. Figure 6 
shows perspectives of the variance matrix and the training points for the func-
tion. Then the binary tree algorithm is run to get the binary tree shown in Fig-
ure 7. 

Each region is now processed with the Metropolis-Hastings algorithm to get 
its process variance (σ2), ranges (θ1, θ2), and nugget τ. The smoothing is done on 
the prediction grid. In this case, the prediction grid is a 41 by 41 grid of points. 
(This is chosen by the user based on what size he/she thinks represents the func-
tion best.) 

The last step is the prediction of these gridded data points and their standard 
deviations. A covariance matrix is computed for each predicted point and the 
standard kriging formulas discussed in Section 2.5 are used to compute the point 
estimates and their error estimates, σ. Figure 8 illustrates the perspective of the 
predicted points, the perspective of the actual point values, the perspective of the 
standard deviations (error estimates), and the perspective of the actual errors.  
 

 
Figure 5. Perspective of first illustrated function: this 
function has one quadrant with variation while the oth-
er three quadrants have very little variation. 
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Figure 6. Perspectives for first illustration of the variance matrix and training points: the 
perspectives of both the variance matrix and the training points, which give a rough view 
of the function, indicate one region of variance and an L-shaped region of very little var-
iance. A binary tree of size three is computed. 

 

 
Figure 7. Binary tree for the first illustration: the binary tree has three leafs numbered in 
the order of their approximate process variance. The black circles are the training points. 

 
Comparing the results for our Improved TGP with those for TGP, Figure 9 

shows TGP results for the perspective of the predicted points, the perspective of 
the actual point values, the perspective of the standard deviations, and the per-
spective of the actual errors. Notice that on the side of the region with variation, 
the predicted surface varies from the actual surface. There is a little wave which 
is sort of like a speed bump. Also, it can be seen that there is a large difference in 
TGP estimated errors (σ) and its actual errors. The Improved TGP estimated 
errors are more closely related to its actual errors.  

The main difference between our emulator results and TGP lies in the errors 
and error estimates. A simulation study of the errors and error estimates was 
done using 100 runs of both the Improved TGP and TGP. Table 1 shows the 
Improved TGP models the surface better than TGP. The Improved TGP mean 
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absolute error is much smaller than that of TGP. The maximum absolute error 
for Improved TGP is smaller by nearly a factor of 4 and the estimated errors are 
smaller for the Improved TGP than for TGP. Also of interest, the Improved TGP 
had 0 points with absolute error to σ ratios > 2.5 while TGP had an average of 
6.07 points with ratios > 2.5. We note that the standard deviations for all these  
 

 
Figure 8. Perspectives of the predicted points and estimated errors compared to the actu-
al function and actual errors: the perspective on the upper left has the predicted point 
values, the perspective on the upper right has the actual point values, the perspective on 
the lower left is the estimated errors (σ) and the perspective on the lower right is the actu-
al errors. 

 

 
Figure 9. Perspectives of the predicted points and estimated errors compared to the actu-
al function and actual errors: the perspective on the upper left has the predicted point 
values, the perspective on the upper right has the actual point values, the perspective on 
the lower left is the estimated error (σ) and the perspective on the lower right is the actual 
error. Notice that the estimated errors are much larger than the actual errors. 
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Table 1. Table comparing the improved TGP and TGP results: the first row has our Im-
proved TGP data and the second row has the TGP data. Each statistic is the mean for the 
100 runs. The last column is the mean number of predicted points with 2.5error σ > . 

Process 
Mean Absolute 

Error 
Mean Max  

Absolute Error 
Mean σ Mean Max σ Mean Points 

Improved TGP 0.00308 0.06018 0.01302 0.04693 0 

TGP 0.01223 0.23351 0.10559 0.42050 6.07 

 
statistics are considerably smaller for the Improved TGP compared to TGP con-
veying the superior stability of the Improved TGP.  

3.2. Second Illustration of the Improved Gaussian Process 

Here we demonstrate how the Improved TGP produces better predictions and 
error estimates than TGP for the variable function shown in the perspective view 
(Figure 10).  

For this function, 1x  and 2x  are translated and rotated by 45˚ to get the 
variables u and v. The function is then expressed in terms of u and v. In these 
variables, it is similar to the first function illustrated. The equations for the func-
tion are:  

( ) ( )1 2cos 4 sin 4 1 2u x x= π − π +  

( ) ( )1 2sin 4 cos 4 1 2v x x= π + π +  

( ) ( ) ( ) ( )( )2 2
1 2, 4 2 exp 4 2 4 2f x x u u v= ∗ − ∗ − ∗ − − ∗ −  

where 10 2x≤ ≤  and 20 2.x≤ ≤   
For this function a 10 by 10 grid of training points is computed. Next the var-

iance matrix is computed. Figure 11 shows the perspectives of the variance ma-
trix and the training points for the function. Then a binary tree algorithm is run 
to get the binary tree in Figure 12. 

Each region is now processed with the Metropolis-Hastings algorithm to get 
its process variance (σ2), ranges (θ1, θ2), and nugget τ. The smoothing is done on 
a prediction grid of 41 by 41 points. The last step is the prediction of these grid-
ded data points and their standard deviations. A covariance matrix is computed 
for each predicted point and the standard Kriging formulas discussed in Section 
2 are used to compute the point estimates and their error estimates, σ. Figure 13 
shows the perspective of the predicted points, the perspective of the actual point 
values, the perspective of the standard deviations (estimated errors), and the 
perspective of the actual errors.  

Comparing the results with what we get from TGP, Figure 14 shows the TGP 
results for the perspective of the predicted points, the perspective of the actual 
point values, the perspective of the standard deviations, and the perspective of 
the actual errors.  

There are some differences in the TGP surface and the actual surface around 
the edges of the variable region. However, the main difference compared to the  
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Figure 10. Perspective of second illustrated function: this function has variation in the 
center region of the input space while around the edges of the input space it has little var-
iation. 
 

 
Figure 11. Perspectives for second illustration of the variance matrix and training points: 
the perspectives of both the variance matrix and the training points, which give a rough 
view of the function, has a central region of variance surrounding by a region of very little 
variance. 
 

 
Figure 12. Binary tree for the second illustration: the binary tree has five leafs numbered 
in the descending order of their approximate process variance. The black circles are the 
training points. 
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Figure 13. Perspectives of the predicted points and estimated errors compared to the ac-
tual function and actual errors: the perspective on the upper left has the predicted point 
values, the perspective on the upper right has the actual point values, the perspective on 
the lower left is the estimated error (σ) and the perspective on the lower right is the actual 
error. 

 

 
Figure 14. Perspectives of the predicted points and estimated errors compared to the ac-
tual function and actual errors for TGP: the perspective on the upper left has the predict-
ed point values, the perspective on the upper right has the actual point values, the per-
spective on the lower left is the estimated actual error (σ) and the perspective on the lower 
right is the actual error. 

 
Improved TGP lies in the errors and error estimates, σ. A comparison of the er-
rors and error estimates was done for 100 runs of both the Improved TGP and 
TGP. Table 2 shows the Improved TGP models the surface better than TGP. 
The Improved TGP mean absolute error is much smaller than that of TGP. The 
maximum absolute error for the Improved TGP is smaller by about a factor of 10. 
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Table 2. Table comparing the improved TGP and TGP results: The first row has the im-
proved TGP data and the second row has the TGP data. Each statistic is the mean for 100 
runs. The last column is the mean number of predicted points with 2.5error σ > . 

Process 
Mean Absolute 

Error 
Mean Max  

Absolute Error 
Mean σ Mean Max σ Mean Points 

Improved TGP 0.00162 0.01994 0.01598 0.05310 0 

TGP 0.01675 0.26825 0.15457 0.50168 7.87 

 
Also, the estimated errors are smaller for the Improved TGP than for TGP, and, 
the Improved TGP had 0 points with absolute error to σ ratios > 2.5 while TGP 
had an average of 7.87 points with ratios > 2.5. The standard deviations for all 
these statistics are considerably smaller for the Improved TGP over the TGP 
conveying the superior stability of the Improved TGP.  

4. Analysis of Motorcycle Stopping Data with Improved 
Treed Gaussian Process  

Here we compare the Improved TGP predictions and error estimates to those of 
the TGP for the function represented by the data of time versus acceleration for 
the stopping of a motorcycle. The data from [12] has been modified to have in-
crements of 0.2 seconds. The modified data is shown in Figure 15. Where more 
than one data point existed in a time increment, the average of these points is 
used. For increments where no data existed, the acceleration has been deter-
mined as a weighted average of the closest time accelerations. 

This irregular function has no associated analytic function. For this irregular 
function a grid of 19 data points is used. Next the variance matrix is computed. 
Below, plots are shown in Figure 16 of the variance matrix and the training 
points for a 19 point grid of the irregular function’s data. 

The binary tree algorithm returned a binary tree with one leaf. The input 
space is now processed with the Metropolis-Hastings algorithm to get its process 
variance σ2, range θ1, and nugget, τ. No smoothing is required for one leaf. Next 
the 265 data points are predicted along with their standard deviations. A single 
covariance matrix is computed for all data points predicted. Figure 17 shows the 
plot of the predicted points, the plot of the actual point values, the plot of the 
standard deviations, and the plot of the actual errors. 

For comparison to the Improved TGP, Figure 18 shows the plots of the pre-
dicted points, the actual point values, the standard deviations, and the actual er-
rors for TGP.  

The predicted surfaces of the Improved TGP and TGP are very similar. Our 
Improved TGP and TGP were run 100 times to get the data in Table 3. On av-
erage, the Improved TGP has a lower value for the absolute mean error and ab-
solute maximum error. Furthermore, the mean for σ is a closer estimate of the 
mean absolute error. The means for the number of points with ratios of absolute 
error to σ greater than 2.5 are both 0. 
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Table 3. Table comparing improved treed gaussian process and TGP results: the first row 
has the improved TGP data and the second row has the TGP data. Each statistic is the 
mean for 100 runs. The last column is the mean number of predicted points with 

2.5error σ > . 

Process 
Mean Absolute 

Error 
Mean Max  

Absolute Error 
Mean σ Mean Max σ Mean Points 

Improved TGP 14.23 80.98 40.79 41.36 0 

TGP 15.78 89.29 71.48 83.55 0 

 

 
Figure 15. Plot of one dimensional motorcycle stopping data: this represents an irregular 
function with the first portion being uniform speed followed by abrupt deceleration. The 
last portion slowly approaches zero acceleration. 

 

 
Figure 16. Plots for motorcycle stopping variance matrix and data points: the plots of 
both the variance matrix and the training points, which give a rough view of the function, 
reveal an irregular variable function. 
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Figure 17. Plots of the predicted points and estimated errors compared to the actual 
function and actual errors: the plot on the upper left has the predicted point values, the 
plot on the upper right has the actual point values, the plot on the lower left is the esti-
mated error (σ) and the plot on the lower right is the actual error. 

 

 
Figure 18. Plots of the predicted points and estimated errors compared to the actual 
function and actual errors for TGP: the plot on the upper left has the predicted point val-
ues, the plot on the upper right has the actual point values, the plot on the lower left is the 
estimated error (σ) and the plot on the lower right is the actual error. 
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5. Conclusions 

We propose an improved TGP for efficiently modeling functions with regions of 
different variability.  
• It has been shown that the improved TGP gives better results than TGP for 

low-dimensional functions with regions of different variability.  
• The predictions of points and their associated standard deviations are stable. 

TGP can vary considerably from one call to another for the same target func-
tion and training points.  

• The improved TGP has better smoothing between the predicted points in 
different tree regions than TGP.  

• For functions with multiple regions, there is a different covariance matrix for 
each predicted point providing predictions with smaller actual errors and er-
ror estimates more compatible with those actual errors than TGP.  

• Although processing time is greater, processing time can be benefited by 
making use of a more accurate and efficient matrix inverter.  

Future research needs to be done to extend the binary tree algorithm for 
higher dimensional applications.  
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Appendix A—Pseudo Code for Improved Treed Gaussian 
Process and Binary Tree Functions 

Pseudo Code for the Improved Treed Gaussian Process: 
Compute grid of training points and the associated variance matrix. 
Set flag to process the function as irregular, variable, smooth, or very smooth. 
Call optimize.tree.regions to compute binary tree. 
For each tree region run Metropolis-Hastings to compute ranges, process var-
iance and nugget. 
Smooth range parameters and process variance between regions. 
Predict points and standard deviations for each point. 

Pseudo Code for Binary Tree Algorithm Functions: 
Call optimize.tree.regions with input space dimension (1 or 2), variance 
matrix, and input space size. 

Compute the logs of the variance matrix maximum and minimum 
and set an increment (δ) for the lower cutoffs. 

Set the maximum lower cutoff to the log of the variance matrix maximum. 
Set the minimum lower cutoff to the maximum of the log of the 

variance matrix minimum or the maximum lower cutoff minus 10. 
Make a lower cutoff vector by incrementing from the minimum lower 

cutoff to the maximum lower cutoff. 
For each lower cutoff value from the vector of lower cutoff values do the fol-
lowing: 

Set a minimum step size (δ) and maximum step size and a step size in-
crement (δ). 

Note: Step size maximum is 1/2 times the maximum lower cutoff 
minus the minimum lower cutoff. 

Make a step size vector by incrementing from the minimum step size to 
the maximum step size. 
For each step size and current cutoff value do the following: 

Call get.tree.regions with input space dimension, variance matrix, 
lower cutoff,  

and step size, returning tree regions. 
Call get.optimum.value with the input space dimension, tree re-
gions, variance matrix, 

returning optimal value. 
If optimal value returned is larger than any previous value, store op-
timum value and tree regions. 

End step size loop. 
End lower cutoff loop and return tree regions with optimal value to the main 
function. 

Call get.tree.regions with input space dimension, variance matrix, lower 
cutoff, and step size. 

Initialize the tree regions matrix with the grid size of the variance matrix. 
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Randomly select a split direction for a two dimensional input space. 
Initialize the whole input space as a leaf. 
Set the region count to 1. 
While the tree regions are not complete: 

Call split with input space dimension, region count, tree regions, vari-
ance matrix, 

lower cutoff, and step size. 
If a split does not occur, change split direction (if two dimensional) and 
call split again. 
Increment region count. 
If region count in greater than regions constructed, exit while loop. 

With regions constructed, extract leaf regions from region matrix. 
Return leaf regions as index limits to optimize.tree.regions. 

Call split with input space dimension, region count, tree regions, variance 
matrix, lower cutoff, and step size. 

Set the starting, ending and extents for the current region indices. 
Call split.region with input space dimension, region count, tree regions, cur-
rent split direction, 

starting, ending, and extents for the current region, lower cutoff, and step 
size. 

Return tree regions to get.tree.regions. 
Call split.region with the input space dimension, region count, tree regions, 
current split direction, starting, ending and extents for the current region, 
variance matrix, lower cutoff, and step size. 

Compute the sums for the trace of the variance matrix in the specified direc-
tion. 
Compute the logs of these trace sums and get the maximum log of these sums. 
Smooth the log sums of the trace using R’s “lowess” function. 
If the trace extents are ≥ 5 and the maximum log > lower cutoff: 

Determine if there is a step size difference between region’s adjacent log 
sums  

occurring after (starting index +1) and before the (ending index −1). 
If such a difference exists: 

Split the region at that index where it occurs. 
Set the two new regions to leafs and the split region to a node. 
Set the two new regions split directions different from the split re-
gion, 

if the input space is two dimensional. 
Return tree regions to split. 

Call get.optimum.value with input space dimension, regions(only leaf re-
gions at this point) and variance matrix. 

Determine the means of the variance matrix for each leaf. 
Sum the means raised to the power 3/2 times the tree region areas/lengths di-
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vided by the mean of  
the input space raised to the power 3/2 to get component one of the op-
timal value. 
Note: The mean of the input space raised to the power 3/2 is a normaliz-
ing factor. 

Compute the sum of the differences in area/length of all region pairs 
adding two times the number of regions minus one to get component 
two. 
Note: This quantity measures the complexity of the tree. 

Return the optimum value, component one minus component two, to opti-
mize.tree.regions. 
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Notations 

A—area of input space in grid distance squared units 

iA —area of input region i in grid distance squared units 
2s —average variance of input space 
2

is —average variance of region i 
Penalty—variable quantifying the complexity of a binary tree 

1x —“x” coordinate for a one or two dimensional function being emulated 

2x —“y”coordinate for a two dimensional function being emulated 

1
tx —vector of grid training points on “x” axis 

2
tx —vector of grid training points on “y” axis 
ty —function training point values 
2σ —variance of a region's Gaussian process 
2
maxσ —maximum variance for the regions 

σ —matrix of standard deviations for input space point predictions 
2σ —matrix of variances for input space point predictions 

λ —ratio of 2
maxσ  to region with 2σ  to 1/4 power 

gridd —grid distance: input space length divided by number of divisions 
( )1 2,θ θR —covariance matrix 
( )1 2,θ θr —vector of covariances used for kriging 

1θ —range of variable 1x  for region’s Gaussian process 

2θ —range of variable 2x  for region’s Gaussian process 

1θ —matrix of 1x  range variables for input space point predictions 

2θ —matrix of 2x  range variables for input space point predictions 
τ —nugget for region’s Gaussian process 

minK —constant lower limit for θ  priors 

maxK —constant upper limit for prior for θ  priors 

priorK —constant for θ  prior computed from min max, ,K K λ  
2d — 2 0.44

gridd λ -used in prior function for θ ’s 
β — ( )2 21 priorK d -used in prior function for θ ’s 
α — 21 priorK -used in prior function for θ ’s 
w—length and width of input space 

1
px —vector of predicted points on the “x” axis 

2
px —vector of predicted points on the “y” axis 
py —matrix of predicted point values 
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