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Abstract

In this paper, the global properties of a classical Kaposi’s sarcoma model are
investigated. Lyapunov functions are constructed to establish the global as-
ymptotic stability of the virus free and virus (or infection) present steady
states. The model considers the interaction of B and progenitor cells in the
presence of HHV-8 virus. And how this interaction ultimately culminates in
the development of this cancer. We have proved that if the basic reproduction
number, R, is less than unity, the virus free equilibrium point, £, is global-
ly asymptotically stable (GAS). We further show that if R, is greater than
unity, then both the immune absent and infection persistent steady states are
GAS.
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1. Introduction

AIDS-related malignancies such as Kaposi’s sarcoma, non-Hodgkin’s lymphoma,
Hodgkin’s disease, primary effusion lymphoma, remain a significant burden for
people living with HIV virus. Kaposi’s sarcoma (KS) is the most common neo-
plasm associated with AIDS.

There are four different forms of known Kaposi sarcoma (KS): Classical (sporad-
ic), African (endemic), acquired immune deficiency syndrome (AIDS)-associated
(epidemic), and Transplant or immunosuppression-associated (iatrogenic) KS. The
development of each of these forms is dependent on prior infection with Ka-

posi’s sarcoma-associated Herpesvirus (KSHV) also called Human Herpesvirus-8
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(HHV-8). However, KSHV/HHV -8 infection alone is insufficient for the devel-
opment of KS. Some form of immunodeficiency is also necessary for disease
progression.

Several studies [1] [2] have indicated that additional factors contribute to the
development of KS in asymptomatic as well as symptomatic KSHV/HHV-8 in-
fected persons. It is known that not every AIDS patient develops KS even in the
face of profound immunosuppression, only a minority of KSHV/HHV-8 infect-
ed transplant recipients develop iatrogenic KS, and people with classical or en-
demic KS are not typically immunosuppressed [3] [4]. Most individuals not in-
fected with HIV-1 with strong immune responses have remained latently in-
fected with KSHV/HHV-8 throughout their lifetime [5]. The co-factors involved
in classic and endemic KS have yet to be definitely elucidated. Different envi-
ronmental and genetic factors have been implicated, including age, sex and
malnutrition. The progression of KSHV/HHYV-8 infection to KS disease depends
on a complex and as yet incompletely understood interplay between KSHV and
the host immune system that allows for the establishment of a tumor-promoting an
environment that influences cellular proliferation, survival, migration, angio-
genesis and cytokine/chemokine production. Currently, HIV-1 related KS is the
fourth largest killer of people living with HIV/AIDS in sub-Saharan Africa [6].

KS is characterised by abnormal neoangiogenesis, inflammation and prolifer-
ation of tumor cells (KS spindle cells—SCs). The review by Foreman et al [1],
has suggested that the infection of progenitor cells by Human Herpesvirus-8
(HHV-8/KSHV) is the pre-requisite for the development of KS.

According to Foreman et al [1], KS SCs are poorly differentiated endothelial
cells (ECs), similar to lymphatic ECs, that are mistakenly infected by the
KSHV/HHV-8.

This infection is transmitted either sexually or via saliva and its development
is known to be enhanced in individuals with suppressed immune systems. Since
HIV-1 is an immunosuppressive virus, it promotes the development of KS in in-
dividuals dually infected with both HIV-1 and KSHV/HHV-8.

The HIV-1 growth factors are known to stimulate the immune cells including
the healthy and infected B-cells in response to signals from the T cells to prolif-
erate. The response of the actively infected B-cells and the activation of latently
infected B-cells to the signals to proliferate leads to the production and increase
of KSHV/HHV-8.

The paper is structured as follows: In Section 2, we develop a mathematical
model for the pathogenesis of classical Kaposi’s sarcoma based on [1]. We then
show that our model is biologically well posed. That is to establish that all model
solutions are positive and none of them grows unboundedly. The three model
equilibria are found and the basic reproduction number is derived.

In Section 3, we establish the local and global stability of the virus free steady
state. The global stability is proved via a Lyapunov function. In Section 4, we es-

tablish the local and global stability of the immune absent steady state. This fixed

DOI: 10.4236/am.2020.117040

580 Applied Mathematics


https://doi.org/10.4236/am.2020.117040

0. M. Chimbola

point represents a scenario where the cancer is established and the CD8+ cyto-
toxic T lymphocytes are dysfunctional due to persistent antigenic stimulation.
This phenomenon is prevalent in chronic viral infections [7]. In Section 5, we
prove the local and global stability of the infection persistent steady.

In an endeavour to understand the pathogenesis of the KS, we develop an
in-host model of KS and find the steady states and establish their local and glob-
al stability.

2. Model Formulation

In this study we present a mathematical model of the progression of KS in the
absence of HIV-1 (classical KS), by including the interactions of B-cells, HHV-8
infected B cells and progenitor cells, effector cells such as the cytotoxic T lym-
phocytes (CTLs).

Suppose we first assume that the progenitor cells are as equally prone to
HHV-8 infection as the B-cells are. And we further presume that once infected,
the progenitor cells proceed directly to the infectious compartment, P. To
simply the model, we ignore the latent infection of these cells.

B-cell and HHV-8 Dynamics

B=S,—- 4BV, -xB (1)
B =BV, -, B, — B,BE (2)
vs = Nﬂbi B, — BBV, - 5,PV, _ll’lV3V8 (3)

Equation (1) describes the dynamics of the susceptible B-cells subjected to
HHV-8 infection. The first term represents the constant source for these cells.
The second term represents the rate at which the B cells are getting infected by
HHV-8. We have assumed a constant infection rate f and the third term rep-
resents the natural death rate constant, .

Equation (2) represents a class of productively infected B cells. The first term
represents infected B cells that become productively infected at a constant rate
B,. Most of the infected B cells become latently infected, nevertheless, to lessen
the complexity of the model, we have ignored the activation dynamics of latently
infected B cells. The second term represents the constant lytic death rate, 4, , of
infected B cells due to bursting of HHV-8. The third term accounts for the lysis
of the infected B cells by the HHV-8 specific effector cells, £.

Equation (3) represents a class of the concentration of HHV-8 virions. The
first term accounts for the production of HHV-8 virions from the infected B
cells where N is regarded as the average number of viral particles produced by
the infected B cell during its lifespan. The second and third terms account for
the loss of HHV-8 virions as they infect the B and progenitor cells and the fourth
term denotes the constant clearance rate, y, .

Progenitor and KS cells Dynamics

P=S,—u,P-BPV, (4)
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Iji :ﬁspvs_,upipi_ﬁﬂ.PiE (5)
K.:/apipi_lukK (6)

Equations (4) to (6) describe the dynamics of the progenitor cells and KS cells.
Upon activation by the cytokines secreted by activated immune cells, progenitor
cells predispose themselves to HHV-8 infection [for details see Foreman, et al].
Then, through autocrine and paracrine mechanisms, progenitor cells progress to
KS. Equation (4) represents a class of susceptible progenitor cells. The first term
denotes the constant source of these precursor cells from the bone marrow. The
second term accounts for the natural death rate of progenitor cells and the third
term accounts for the rate at which the progenitor cells get infected by the
HHV-8.

Equation (5) represents the class of productively infected progenitor cells. The
first term accounts for the progenitor cells that get infected by HHV-8. The se-
cond term denotes the constant nature death rate of progenitor cells. The third
term accounts for the loss of infected progenitor cells due to killing by effector
cells, E.

Equation (6) represents the class of KS cells. The first term accounts for the
gain from the infected progenitor cells as they transform into KS cells and the
second term denotes a loss due to natural death. This natural death rate is quite
negligible due to the fact that these cells produce cytokines that interfere with
the apoptosis program.

T-cell Dynamics

E =rBE—4E )

Equation (7) describes the dynamics of the HHV-8 specific effector cells that
kill infected B and progenitor cells. The first term represents the proliferation of
these cells due to infected B cells’ stimulation at a constant rate r and the second
term is the constant natural death rate.

The above dynamics are illustrated in the following schematic diagram repre-
sented in Figure 1. We summarize the parameter definitions and their values in

Table 1 and Table 2, respectively.

2.1. Positivity of Solutions and Boundedness of Solutions

2.1.1. Positivity of Solutions

For the model system above to be epidemiologically meaningful, it is important
to prove that all its state variables are non-negative for all times. In other words,
solutions of the model above with positive initial data remain positive for all
t>0.

We thus show that our model is well posed in the sense that the populations do
not become negative, and the populations are bounded. Also, the non-negative
orthant is positively invariant, in other words, any trajectory that begins in the
non-negative orthant remains there for all time.

For simplicity of notations, let
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Figure 1. Schematic diagram of classical KS dynamics.

Table 1. Model parameters and their definitions.

Variable Definitions

X, (O) Initial healthy B cells

x,(0) Initial healthy progenitor cells

X, (0) Initial HHV-8 specific effector cells

x,(0) Initial infected B cells

X, (O) Initial infected progenitor cells

%, (0) Initial HHV-8 viral concentration

X, (0) Initial KS cells

Parameter Definitions

S, Source of healthy B cells
S, Source of healthy progenitor cells
A Death rate constant of healthy B cells
H, Death rate constant of healthy progenitor cells
M, Death rate constant of HHV-8 effector cells
H, Lytic death rate of infected B cells due to burst of HHV-8
My Removal rate of KS cells
o KS progression rate constant
M Death rate constant of HHV-8 virions
y7a Death rate constant of KS cells
B Infection rate constant of healthy B cells
B, Killing rate constant of infected B cells
B, Infection rate constant of healthy progenitor cells
B, Killing rate constant of infected progenitor cells
r Proliferation rate of HHV-8 specific CD8 T cells
N Burst size of HHV-8
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Table 2. Estimation of parameters.

Variable Initial value Source
X, (0) 2 x 10° cell ml™* [8]
x,(0) 10° cell ml™ (8]
%, (0) 500 cell ml™ (8] [9]
x,(0) 0 cell ml™! (81 [9]
%, (0) 0 cell ml™ (81 [9]
%, (0) 1 virion ml™ (81 [9]
x, (0) 0 cell ml™ (81 [9]

Parameter Value Source
S, 48,000 cell ml™ day™! [8]
S, 2000 cell ml™ day™! (8]
H 0.24 day™! (8]
1, 0.02 day™! (8]
1 0.01 day™* [10]
2, 0.33 day™! [10]

s 0.1 (8]
H 0.57 day™* (8]
1, 0.21 day™! (8]
B 4.5 x 107 ml virion™' day™! (8]
5, 107 ml cell ™ day™ (8]
B 4.5 x 107 ml virion™ day™! (8]
B, 5x 10 ml cell” day™ (11]
N 10 - 1000 virion cell™ [8] [12]
r 0.047 day™ (8]

% ()= B(1), %, (1) = P (1), % (1) = E(t), x, (1) =B, (1),
% ()= B (0), % (£) =Vs (1), %, (1) = K (1)

Sy =80 Sy =Sy =ty My = My My = My My = My
Hs = Moo Hs = o ls = [l ly = L

Denote by R’ the set of points
7
X = (Xy X0 Xg0 X4, X6, X5, X, ) € R (8)
with positive coordinates and consider the system with initial values
0 1 42 3 4 5 (6 7 7
X0 = (%5555, %5 %5, X5 % ) € R 9)

Lemma 1 Let x>0,i=1,2,3,---,7. Then the solution x R’ forall t>0

in the region

T7 = {(X X X5 X1 X X6, X%, ) | X, €R V0,1 =1,2,3,-, 7} < R,

The systems (1)-(7) can be rewritten in terms of two sub-systems as follows:
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Susceptible States

% =Sy = X = fiX X (10)
X, =S, = Xy — PoXyXs (11)
Xy = XXy — L3 Xq (12)

Infected States

Xy = BiXXe — Xy — Py Xs X, (13)
Xs = PoXyXg — HsXs — PyXoXs (14)
Xo = N 11, X, = BX Xs — PaXyXe — HgXs (15)
X, = fsXs — Ly Xq (16)

Proof. The system with Equations (10)-(12) can be written as a system of dif-

ferential inequalities

dx, !
—t2l A=Y Bx; % +S, (17)
dt =
where B, >0, S=(S, S, S,(t)) >(0 0 0)".
Suppose the assertion x (t)>0,i=1,2,3 is not true. Then there exists a

smallest number t;, such that

X (t)>0 for 1<i<3,0<t<t,
X (t,) =0 for at least one i, say .

Then, x, isa decreasing function and
dx, (t) y
d
From the differential inequality (17) for X (t) we get
dx_ (t
— () 27z, >0
dt
which is a contradiction.
Hence, if x,(0)>0,i=1,2,3 then, x(t)>0 forall t>0, i=12.3.
The system with equations (13)-(16) representing the infected states can be

written in matrix form as

Y (t) = MY (18)
where
T

Y=[X, X X X] (19)

_(/u4 +ﬂ2X3) 0 BiX 0
M = 0 _(/15 +ﬂ4X3) BoX, (20)

N 4, 0 _(ﬂe"'ﬁlxﬁ‘ﬂsxz) 0

0 A 0 “H;

M is a Mertzler matrix. Hence, the infected states x, (t)>0,i =4,5,6,7 . O
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2.1.2. Boundedness of Solutions
We already have a lower bound given by the above lemma 1 for the solutions of
model (10)-(16) with nonnegative initial values. We now show that the solutions
are bounded from above.

We denote by C, (1) the set of all continuous and bounded functions de-
fined on the interval /taking values in R’ .

Lemma 2 Let ¢:[0,00) > R’ be a solution of system (10)-(12). It ¢(0)eR7,
then ¢ eC,[0,).

Proof. Because of Lemma 1, it only remains to prove the existence of an upper
bound to the nonnegative solutions of system (10)-(16). Let 'y, (t)=x, (t)+X,(t)
be the total concentration of the B cells. Then,

yl(t): Xi(t)+x4 (t)
=S, = BXiXs — Xy + BiXXs — g Xy — PaXaX,
<SSy X~ HyXy (21)
<S,—d,y, (t), where d, =min{z, 1, }
S
=y (t)< yl(0)+d_1: M,.
1

Let y,(t)=x,(t)+x(t) be the total concentration of the progenitor cells.
Then,

326 =%, 1)+ 5 (1)
=S, = BXoXs — 1y Xo + P3XoXe — HsXs — ByXeXs
< S, = Xy — HsXs (22)
<S,—d,Y,(t), where d, =min{su,, 15}

S
= )/2('{)S y2(0)+d_2:M2-
2

For the KS cells,

X, = flgXs (t)—,u7X7 < M, = %

— %, (1) < %, (0)+ AsMz =
7
We now consider the HHV-8 dynamics equation,
Xe = N a1, X, = BxyXe = BXoXg — teXe < Nty My — 1%
— % (1) <M,, where M, = x,(0) + £aMz (24)
Hs
For the HHV-8 specific effector cells, X,, we argue as follows:
% (1) < (M, — 1) %, 45 <TM,, 03)
= 0<x(t) <0,
O

2.2. Equilibria

To find the steady states of the model system (10)-(16), we set each differential

DOI: 10.4236/am.2020.117040

586 Applied Mathematics


https://doi.org/10.4236/am.2020.117040

0. M. Chimbola

equation to solve and solve the resulting system simultaneously from which we
obtain three equilibria. These are virus free equilibrium, &£°, immune absent
equilibrium, & and the endemic equilibrium &~ in which are the coordi-

nates are strictly positive.

%= (X0, %0, %, %4, X, X6, X7 ),

(26)
where X10 :i, Xg :i, Xi0 =0,i=3,4,5,6,7.
H

H,

2.2.1. Derivation of the Basic Reproduction Number, R,
The method of Castillo-Chavez et al [13] is used to compute the reproductive

number for the model (10)-(16) and representing the total number of newly in-
fected B cells arising out of one infected B cell.

Heterogeneity is defined using groups defined by fixed characteristics:

ax_

f(X.Y,2),

" ( )

dy

2 _g(X,Y,2), 27
" a( ) (27)
dz

—=h(X,Y,Z).

dt ( )

where X eR®, YeR?®, ZeR,and h(X,0,0)=0. Assuming that
g (X*,Y , Z) =0 implicitly determines a function Y = Q(X*, Z) . Let
A=D,h ( X", g ( X, 0) , O) and further assume that A can be written in the form
A=M -D, with M >0 (thatis m; = 0) and D >0, a diagonal matrix. The
reproduction numbers are then evaluated from the matrix MD™.
The cell population subgroups are divided between X uninfected cells, Y in-
fected cells and ZHHV-8. Then, X =(X,%,,%;)> Y =(X5,%X,,%,) and Z =X;.
Let U, = (X 0, 0) denote the virus free equilibrium, that is,
f(X",0,0)=g(X",0,0)=h(X",0,0)=0 and Y =g(X",Z), where
BSx
g(x"z)=| 2 (28)
ﬂ5_X5
Hy

Computing A= Dzh(X*,g(X*,O),O) gives

M — Nﬁlsl
H (29)
D= Ha o s + BiSity + BaS,y 14
H M,
Therefore,
— N luZlglsl . (30)
Ity s + BiSitty + PoS, 1t
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Let us now determine respectively, the immune absent and infection persis-
tent equilibria
1) g:(x1x2x3x4x5x6x7)

ok

2) & =60 e ),

where

X; = Lﬂ«y
+ BiXe

X, % =
Ly + B3Xs

x; =0,

X = ﬁ1s1xzsk (31)

4 *\ !

Hy (,Ui +ﬂlx6)

X; _ ﬁsszxg _,
Hs (/‘2 +ﬂ3X6)

Hq

where x; is a positive solution to the following quadratic equation

Ql(xﬁ):Aixg+A2X6+A3 =0,

where
A =-p B <0,
A, =NBBS, = BiSsS, — to s By — 1 s By — Bi3Sy, (32)
A= (/’7151,“2 + BSy + 1y g )(Ro _1)-
X, 3 =
y+ BiXe
. S
Xz = 2 *x )
Hy + ByXs
A Sl Lo Y
3 T e ’
Hs /5, (r‘ﬁ + Pi%s ) (33)
o M
X, =—,
Y
RS
. = = —.
(ﬂs + 0% )(Nz + P )
o
Hq
where x;  is a positive real solution to the following cubic equation
Q, (%s) = ByxS + B,x; + By + B, =0,
where
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B, =—B.psr s <0,
N
B, :M_ﬂll@szr = Bi¥ iy s = P 1y i — B Sy

N N 34
B, = Bty s 144 — RS, — Bapus iy , (34)
r

;
B, = Nulﬂrzusm 0.

M fly fls = ByS, Ty +

We need to establish the existence of a positive value of x; .
Note:
Q,(0)=B, >0, and lim Q,(X;)=—,
Xg—>©

Due to continuity of Q,, it follows that there exists a positive value of X, say,
X; €(0,0), such that Q, (X:) =0.
Note also that the existence of x; requires that

X: >M :M,then X;* =0 (35)
ﬂl(rsl _ﬂ3ﬂ4) :Bl(rsl _/‘3,”4)

and we obtain the immune absent equilibrium point, & .

,and if X

Lemma 3 Consider the system (10)-(16). Then immune absent equilibrium
point, ¢, exists if R, >1, and unstable otherwise.
Proof. Note that

Q,(0)=A, >0, since R, >1 and lim Ql(x;) - o,
Xg—>0

Hence, there exists a positive value Xg e(O,+oo) , such that QI(X; ):0. In

particular,
AR -4AA
X5 = >0.
2A
However, if R, =1, then x; =0 is a root and we get the virus free equilib-
rium, &0,
And if R,<1, then Q(X)<0,vx>0. O

3. Stability Analysis of Virus Free Equilibrium Point, £°

3.1. Local Stability of Virus Free Equilibrium Point, £°

Theorem 1 For system (10)-(16), if R, <1, then the virus free equilibrium, &,
is locally asymptotically stable and unstable otherwise.

Proof. Consider the Jacobian matrix, J (80) , evaluated at &°, of the system
(10)-(16).

4 0 0 0 0 ~px 0
0 -u 0 0 0 —ﬂ3x§ 0
0 0 —u 0 0 0 0
()= O O O -m O BX 0 | (36)
0 0 0 0 —u ,B3X§ 0
0 0 0 Ng 0 —(m+BX+BX) 0
0 0 0 0 s 0 — 14
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The corresponding characteristic equation has the following eigenvalues
A=ty Ay ==y Ay ==y Ay =1y

and the other three eigenvalues are obtained from the following reduced matrix,

‘]1

0

—H 0 Bix
=] 0 —u ﬁsxg (37)
Ng, 0 _(/Ue +ﬂ1X10 +:83X3)

From (37), we obtain the characteristic equation and investigate the nature of

the roots (or eigenvalues).
f(1)=2°+BA%+B,A+B, =0, (38)

where

B, :ﬂ4+ﬂ5+ﬂs+&+&>o!
H Hy

B, =,U5(,U4+,Ue + 45 +—ﬂ382]+u4[ﬂ6+—ﬂ181 +—ﬁ352J[1—73o]
H H, H Hy

>0, if Ry <1.
By = sy i ts + ﬂl/u4/u5X10 + ﬂ3ﬂ4ﬂsxg - Nﬁllu4y5X10

HyHs 2| 1 :
=05 RS {——1} >0, since R, <1.
N B.1,S, Ry

BB, -B; = (,u4 + s+ s + BX + BoXs )(ﬂzuus + e + P ple + B X,
+ﬁ1ﬂsxlo +ﬁ3ﬂ4xg +,33/15X2 - Nﬂl:uéle)

— HyHs Hg _ﬂlﬂAﬂsxlo _ﬁ3ﬂ4ﬂsxg + Nﬂl/u4/usxlo

BS, | BsS BiSi
1Ly i2 /14:u5+/15/16+,u52+ ——

H,

L BSatte w(ﬂe +@+@J[1_RD]J
H

:(ﬂf"ﬂe"'

Hy Hy
> 0.

(39)
Based on Hurwtz criterion, all roots of (38) have the negative real parts. Thus,

if R, <1, the virus free equilibrium &°, is locally asymptotically stable.
If

Ry >1, let f (/1) =A%+ Blﬁ.z +B,A+B;, (40)
then it is obvious that

f(0)=B, <o’}ijﬂo f(1)=c0. (41)

Hence, there must exista A, >0 such that f(4,)=0. This shows that equa-
tion (38) has at least one root with positive real part. Thus, if R, >1, the virus
free equilibrium ¢° is unstable. (]
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3.2. Global Stability of the Virus Free Equilibrium, &0

Theorem 2 For the system (10)-(16), if R, SM<1, then &° is
BiSity + B3S, 14

globally asymptomatically stable (GAS).

Proof. Define the Lyapunov function

VO:xf’[X—é—l—lnﬁoJ+x§[x—g—l—lnx—§J+ NG, X,
X X X

N N 1 N s,
+ X, + Xs + Xe +—= X;,
N-1 N-1 N-1 yS(N —1)

(42)

Differentiating along the solutions of system (10)-(16), we get

0 0
V,=[1- 2 5 +[1-2 g, +—NA g o N
X, X, r(N-1) N-1

N | 1 \J7A
+ Xs + X6+[15(N—1)
0

N -1
X, X5
= 1‘2 [Sl_ﬂlxlx6_/l'1’lxl]+ 1_X_ [Sz_ﬁsxzxe_ﬂzxz]

NS,
BT

X7

(43)

N
[rX3X4 _ﬂ3X3]+m[ﬂ1X1X6 = BoXsX, _/"4)(4]

N
+m[ﬁsxzxe = BaXsXs — HsX ]

N st
Hs ( N _1)
Applying S, = 4,x° and S, = u,x, we obtain

. XX Xe X N 3, 1 N
Voz,uixlo(Z—Zl—E Xy | 2- 222 _r(NZ—i)X3_N—1ﬂ4X3X5

+

1 -
N _l[N,U4X4_IB1X1Xe_ﬂsxzxe_ﬂsxe]"‘ [,u5X5—Iu7X7].

Hs ( N — 1) ! M, ( N — 1) BiSiu,
<0.

Since the arithmetic mean is greater than or equal to the geometric mean,
0
XX :
2-—-—<0,i=12 And the global stability follows from the LaSalle’s invar-
X.

iance principle [14]. O

_ Nugpy L BiSity + B3Soth + iy s [(1 +/3332MJRO_1} X, (44)

4. Stability Analysis of Inmune Absent Equilibrium Point, £*

4.1. Local Stability of Immune Absent Equilibrium Point, £

M
B ( N - 1)
immune absent equilibrium point, ¢ , is locally asymptotically stable and un-
stable otherwise.

H3

Theorem 3 For system (10)-(16), if x; < and X: <=, then the
r

Proof. Consider the Jacobian matrix, J (8*), evaluated at &, of the system
(10)-(16).
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(1 + %) 0 0 0 0 -Bx 0

0 (4, + By%s ) 0 0 0 -B:% 0

0 0 ~(-r) 0 0 0 0

J( ) = . . .

(8 ) Bixs 0 —BiX, —Hy 0 B 0 (45)

0 ﬁs Xg _:B4 Xg 0 —Hs ﬂs X 0

~BiX ~BaXs 0 Ng, 0 _</”6 +Bx% ""ﬂsX;) 0

0 0 0 0 s 0 -1,

The corresponding characteristic equation has the following eigenvalues
=ty Jy ==, =1%;), Ay ==t

and the other four eigenvalues are obtained from the following reduced matrix,

J,
_(/ui +,B1X;) 0 0 -Bx
3, - 0 ) _(,Uz +,33Xg) 0 _ﬂa)f; (46)
B 0 —Hy Xy
~BiXs ~PaXs Nz, _(/16 + A%+ :33)(;)

From (45), we obtain the characteristic equation and investigate the nature of
the roots (or eigenvalues).
G(4)=4*+CA*+C,2*+C;4+C, =0, (47)
where
Co = 4y + Hy + g + s + X + PoXy + BiX + PiX >0,
Co =ttty + by + ol + Ja bl + Mo fls + Mty + P Xy + Bty Xs + BusX + Bty Xo + Bty X + Bty Xs + PattsX,
+ BottXs + BibtyXs + PubleXs + PottaXs + ButisXe + BSoXs + BB X + BBXoXs — N Bigx,
= phfy + i+ oy + e+ o + Bl X + B X + BaXo + BatyXo + Bty Xg + PattXg + BittaXs
+ PutteXg + ButtXs + BattsXs + BXs + BB Xe + BBXoXe > 0.
Cy = iy s+t flo s + Il fls + oy Ml + Pt X + Pt g + Bty X + Bap X + Bt fyXo + Batto 1, X,
+ Bttty Xg + Bat g + Bty HsXe + Patt s Xe + Bty tisXe + Patts s Xe + BiPatty s’ + BBsstsXs — N Buan X
=N Bt 1%+ BBsth X X + BBty X Xe + B Batts X Xs + BiBattaXoXs = N B Bs 1% %
= ffy g + Hoflo H + Bt X + Pyt X + ity X + B iy Xe+ Bty s Xg + Bost e Xs + Bty s Xe
+ BBy ng + BBl ng + ﬂlﬂaﬂlexg + BB, X, XZ >0.
C = Mt by e + Bt bo 1y X + Poth o 1 X + Pblo by X + Potb fa s X + B BattabisXs = N Bttty 1%
+ BBkt iy X X + BBty 11X X — N B oty 1 X X
= BotnttXe (115 + BXs = NBX )+ BBskio1ta X Xe + oty o tisXe + BByt igXs” > 0.
(48)
Based on Hurwitz criterion, all roots of (47) have the negative real parts. Thus,
the immune absent equilibrium &, is locally asymptotically stable.

Hs

— 76 1etG(A)=21"+C A3 +C,1*+C,A+C,, (49)
ﬁl(N_]-) ( ) 1 2 3 4

X >

DOI: 10.4236/am.2020.117040 592 Applied Mathematics


https://doi.org/10.4236/am.2020.117040

0. M. Chimbola

then it is obvious that

G(0)=B, <O’}HRO P(4)=c. (50)

Hence, there must exist a A~ >0 such that G (/1*) =0. This shows that
equation (47) has at least one root with positive real part.
* Hg
X >
B ( N _1)

the immune absent equilibrium point & is unstable. O

(51)

4.2. Global Stability of the Immune Absent Equilibrium Point, &

In the ensuing proof we neglect the loss of HHV-8 virions due to the infection
process of both the healthy B and progenitor cells.

Theorem 4 For the system (10)-(16), if R, >1, then the immune absent
steady state, &, is GAS.

Proof. Consider the Lyapunov function, V,, defined by

. s o X B o e X
V,=| X —X — Iné+x—x—xln—i+l Clx. =X —x. In=&| (52
1 (Xl Xl Xl XlJ [4 4 4 X4] N/U4X4( 6 6 6 Xej ( )

Differentiating along the solutions of the system (10)-(16), we obtain

v, =[1—ﬁ}'<1 +[1—ﬁ]x4+&xi(1—ﬁ]x6 (53)
X X N z,%, Xs
Using the relations at equilibrium point and relabeling vy, = iL,i =12,---,7,

we get

. 1 . 1
V=% [2_y1_7]+ﬂlxlxe [1_ Y1¥e _7"' yej

1 1

+/7’1Xfxg[ylye—y4—%HJJFMXIXZ(W—YG—%HJ (54)

N 5
=MX;[2—y1—yiJ+ﬂlxng [3_%_£_ y1y6j< 0
1

Since the arithmetic mean is greater than or equal to the geometric mean,

2-y, 1 <0 and 3—i—ﬁ—M <0. And the global stability follows
Y1 i Yo Y
from the LaSalle’s invariance principle [14]. O

5. Stability Analysis of Infection Persistent Equilibrium
Point, £~

5.1. Local Stability of Infection Persistent Equilibrium Point, £
Theorem 5 For system (10)-(16), if X, S% and Xl—*,, < Nﬂ—e, then the infec-
X3 Hy

tion persistent equilibrium point, & , is locally asymptotically stable and un-
stable otherwise.
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Proof. Consider the Jacobian matrix, J (6‘**) , evaluated at &, of the system
(10)-(16).

& 0 0 0 0 -Bx O

0 8 0 0 0 -gx, O

0 0 a, ™ 0 0 0
J (g**) = ﬂlX: 0 _ﬂzxr Ay 0 ﬂle 0 (55)

0 BX% -Bx 0 a; Bx 0

~BXs  —BiX 0 Ny, O Ags 0

0 0 0 0 s 0 v
where

a, = _(M + ﬁlX:)! Ay, = _(ﬂz +,33X:), ;= (rxf —/13>, 56

8y = _(/14 +ﬂ2X;*)v 855 = _<,U5 +,H4X?), 855 = _(ﬂe + X +ﬂ3X:)
The corresponding characteristic equation has the following eigenvalues
b=y, by ==( 15+ BX)

and the other five eigenvalues are obtained from the following reduced matrix, J,

b11 0 0 0 —ﬁle
0 by, 0 0 -4 XZ*
J;=| 0 0 b, g 0 (57)

,Bl X: 0 _182 X:* b44 ﬁlxl**
_131)(: _ﬂ3X: 0 N, by
where
by, :_(ﬂl +ﬁ1X2*)v b, :_<,u2 +ﬁ3X:), bs =(rXZ* _/13)'
by, = _(/14 +ﬁ2X:)v bys = _(/16 + X +ﬂ3X;*)

From (55), we obtain the following characteristic equation and investigate the

(58)

nature of the roots (or eigenvalues).

H(2)=4°+DA"+D,4° +D,A* + D,A+ D, =0, (59)

where

Dy = 1y + ply + ply + 1y + fls + BX; + BiXS + BoXy + BiXs + BXg —1X, >0,

D, = thly + ity + Ly + o fly + oy + o Jlg + i fly + Ly s + Hs s + L flg + PEX Xy + BIX X + BuinXy

+ LY+ BunXs + BnX + BinXs + X + BapyXy + BiisXs + Pty Xy + PatlsXy + B Xe

+ BatdyXy + PisXs + PiisXs + PathXs + Bt Xs + PatlsXe + PitteXs + BaptaXs + PatlXs + PaklsXe
- sox - o g - - - .

=T iyXy =YXy =YXy =V Xy + B BXs ~ + BiflsXy Xg + BBsX Xe + BBsXoy Xs + BifsXs Xs

—BirX Xy = BalXy Xy = BilXy Xg — BalXy Xg — N Sy X

= oy Ty oy s L g ﬂlz XI*X: + ﬂ12 X:X: + ﬂlﬂle + By XI* + Bt X1** + By X;*

B+ PathXy + BisXe + Patto Xy + BiyXs + PattyXy + PaphXs + PituXe + PitleXs + BatXs
- - wxp . - . .
+PatyXe + PatigXe + PifisXe T+ PifiXo Xa + BifX Xe + PBiSX Xg + L% X
> 0.

(60)
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Dy = Sl 11y + oy g + fyflafly + Lyl + Ly flafly + L fs s + fy flyfle + My Mo s + flo fl fle + Lol fls + PLitf1r X,

+ BN+ Bt Xs + B X, + Bt + Bib Xy + B X + Buth X+ Bt X5
+ Bttty + P isXo + PathpiyXo + B tsXs + B lieXs + Pobl Xy + BitlppisXe + Biblo Xy
+ ottt Xy + BittolyXe + PuttailsXs + ot ptsXs + PittspiyXe + BathtiXe + PitopleXe + PibstleXe
+ Lot tleXs + BakisbyXs + Pty bleXs + PabiafieXs + PotlybiXs — T paflaXy — Tl ptyXy =V lpflyXy
— Xy =V ptXy =V piXy + Bifatts X + BfatteXe + BBstteXs - + BLanX Xs + Bl X5
+ B sXXg B ayXs Xg + B sXs Xg + B eXs Xg + B BoXs Xg - = NS xy =N Bty 1,
N Bt X + BBt Xs X5 + BifattoXs X5 + Bt X Xg + BBsttsXs Xa + BifutnXs Xs + BBt Xs X
+ BBakisX Xs + BBt Xy X + BiButtaX Xs + BBatisXs X5+ BifitaXs X + BiBstteXs X — LY X X
=BT Xy = B X Xy = Bal 10X Xy = BaF 1%, Xy = BV, Xg X = Bal 1y X5 X3 = Bal 14Xy Xg
=B XE X = BT Xy X = Bal Xy Xg = Bal tigXy Xg. = BTy X o+ B BoX X3 Xg + B X %5 X
-NBSsu,y Xl**X: + Ny, Xf*xf -Bbs rxfxfx;* -Bbs I’X? X:X:

= o g+ flo Mg+ o fy s + By fle + B X + B tpXs + Bt X + Bt X + B pisXs + Bt X,
+ Bttt X; + By 1y X;* + By X; + Batbo 1y X: + Bty X: + Bttty X: + Bty X: + Patby Hg X:
+ Bty g X: + Bakly Mg X: + BBty Xg*z + BBt X:Z + ﬂf!ﬁXfX: + ﬂlzluz Xl**x: + ,BZ,USXJ*X? + 1312/12 X:X:
+ B X+ Bl keXs Xg + BEPXs X -+ BuBattXo Xo + Bt Xo Xg + BBtk Xy X + BifattyXo Xs
+ ﬂ1ﬂ3,¢11x;* X: + B P, X;* X: + Bty XI* X: + B Pty X: X: + BB, X; X: + ﬂlz B Xl** X: X:
+ ﬂlzﬂS X;* X:X: +NAru, XI*XZ*

> 0.

(61)
Dy = bty fha iy + 1o o il + J Ly Jly fls + L4 Hla Ly He + o Ly fy Ll + ﬂlzﬂsﬂax:x:;z + ﬁfﬂsﬂeX:X:z + ﬂl/‘ﬁﬂzﬂe,XlH

+ Bt X+ P ot X + Bty X + Bt st X + Bopt o Xy + Bath o 1 X5+ Bt o s X
+ Lot sy Xy + Pt pspleXs + oty tsfiaXo + Pty o pleXs + BitloflatlyXe + PothpatleXe + Pty tsfisXs
+ Bt tigXs + PathtablsXs + PuttatllsXe + Bt fublsXe + PabloplyplsXs — T oy Xy =T o X,
— Tl Xy, =V iy leXy + BiPBattaityXs © + BBatistteXe ” + BiBsttabisXs - + BLiniy X Xs + L inpnX X5
+ ,Blzﬂz,usxlﬁx: + ﬂ12ﬂ2ﬂ3X:X: + ﬂfﬂzﬂeX:X: + ﬂ12ﬂ3ﬂeX:X: =B, Xfxf —Bir iy XI*XT
_ﬁ1r:uzluaxlﬁxr _ﬂsr/ﬁﬂzxg*xr _ﬂ3rﬂ1ﬂ4X;Xr _ﬁ3r:u2,u4X;Xr —ﬂlrﬂszfX: _,Bar%ﬂ4xrx:
= B 1y 1 Xy X _ﬂarﬂlﬂs)(:x: —ﬂlfﬂwsxfxé* _ﬂsr;uéquX::X: _ﬁlﬂsr/hxz:*x:z _ﬂlﬂsrﬂexrxg*z
+ ﬂlzﬁsﬁﬁxlﬂx:x: + ﬂ12ﬂ3/12 X?X:X: + :Blzﬁsﬂaxrx:x: + ﬁlzﬂ:inX;X:X: - Nﬂllﬁﬂz!ﬁx{* - Nﬂlﬂlﬂahxf*
=N B st X+ BBotttsXs Xs + BiBottbtsXs Xs + BBatto X X + Bt tisX Xg + BiBath it Xy Xg
+ ﬁlﬂsﬂl#ax: X: + 131,33/12/13)(;*)(: + BBty 1y X; X: + BBttty Xl*kX: + BBttty X;X: + B Patby 1 X: X:
+ B BottattsXs X =N B Synpr X X =N B Baptapt X X5 +NBIE X X5 +NBE a1, %%
— BBt X Xy Xs = BB X5 Xy Xg = BB X Xy Xg = BT 14X X4 X + N BB 1,3 X, X

=ty ol + B Byts X Xg © + B BotteXs Xs - + Bty it Xy + Bt iy s X+ Bophpy b1 Xs + Pty by s Xe
+ Both g tisXe + BPobatteXs” + BLIXXs + BLILIX X + B X X + B o X X
+ ,Blzﬂzﬂe X: X: + 1312,”3/16 X;* X;* + ﬂlzﬂ&ulx:k X: X: + ﬁfﬂaﬂz X;X;* X:: + ﬂlzﬂsﬂa X1H X: X:
+,312ﬂ3ﬂ3X:X: X: + B Pstu iy X;* X: +ﬁ1ﬂ3/‘1/13X; X: +ﬂ1ﬂ3/¢zﬂ3xy X;* +ﬂ1ﬁ3ﬂ1ﬂ4xlﬁ X:

+ﬂ1ﬂ3/‘1/‘3X:X: +ﬂ1ﬂ3ﬂ2ﬂ4X?X: + Nﬂlr/ﬁﬂzlxi**XZ* + Nﬂlr#zﬂmﬁxr + NﬂlﬂSry4xfxfx:
> 0.
(62)
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D5 =ty s fl s + Pt ol Xy + Bath o flsfly Xy + But o s lsXe + By sl o X + Potl tsflyfieXs.

— Vol 1%y, + B Pt plapleXs * + Bt X Xg + B o i lsXs X + B BotatlsXs Xg ©
=N Bty 1, X" + ﬂlﬁsﬂlﬂz#sX?X? + BBt X X5 + BBsttoths1aXs X + BBt s g X X,
~ BT by X Xy = Bal oo 13X Xy = BVt ply s Xy Xg. = Pl by fly s Xy Xg = BT HytsXy X *
+ B Bath X X5 X + B Bty 115X X5 X — N B Bost ptopty X Xg +N BT ity 1,5 X,
~ BB X X Xg = BB ot X X3 Xg +N BB iy 1% X X -

= ﬂlzﬁﬁﬂzﬂ’a’x;*x: + ﬂlzﬂzﬂsﬂexg*xe** + ﬁ12ﬂ3u3y6 X;*X:Z + ﬂ1ﬂ3%ﬂ2ﬂ3xrxj + ﬁlzﬂaﬁﬁﬂaxlﬂxg*x:
+ B Batta 1% X5 Xg + NSttt 11X %y + N B SF i pty XX, %

>0.

(63)
Note that D, >0,i=12,3,4,5.

By using the Routh-Hurwitz [15], the five roots of the characteristic equa-
tion will have negative real parts if and only if D, >0,i=12,3,4,5 and
D,D,D, > D? + D/D,.

One can also show that D,D,D, > D? + D?D,, so the Routh-Hurwitz criteria
are always satisfied, implying that the eigenvalues are invariably negative. This
means that the steady state is stable and that the infection is established chroni-
cally in an infected individual. Based on Hurwitz criterion, all roots of (59) have
the negative real parts. Thus, the immune absent equilibrium &, is locally as-
ymptotically stable.

My

It is also evident that if X, >*2,then b,, >0 and the endemic equilibrium

point is unstable. O

5.2. Global Stability of the Infection Persistent Equilibrium, £*

In the ensuing proof we neglect the loss of HHV-8 virions due to the infection
process of both the healthy B and progenitor cells.

Theorem 6 For the system (10)-(16), if R, >1, then the infection persistent
steady state, ¢, is GAS.

Proof. Consider the Lyapunov function, V,, defined by

V, =| X — xlln ﬁzx—x —x;*lnx—f*
X Xg
* * X * 0 X
+[x4—x4—x4lnx—ﬁ] fix 6[xe—xe—xﬁln—‘i]
X, ) Npx Xs
Differentiating along the solutions of the system (10)-(16), we obtain
v, (1——}%/32( % J [l——jx ELE [1—&]5(6 (65)
X X Xy N %, X5

Using the relations at equilibrium point and relabeling y, = L,L,i =12,---,7,
X

(64)

we get
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T )

1

+%(l—yij|irxrxr()’3y4 - ys)]

3

1 o on x
+ (1_7] [,lel Xg (Y1YG — Y ) + BoXs X (Y4 —Y3Y, ):| (66)
4
Bx % (, 1 -
+ == 1—— || Ng,X -
N ,%, Yo |: Has (Y4 & )]
o 1 o 1 v, %Y
=X 2—y——J+ﬂx1x [3 ————— — 1<0.
[ o) U e
Since the arithmetic mean is greater than or equal to the geometric mean,
2-Yy, — L <0 and 3 _1 Ve N < 0. And the global stability follows from
Y i Yo VY
the LaSalle’s invariance principle [14]. d

6. Numerical Simulation

We now demonstrate the existence of the virus free steady state that we observed
in our mathematical analysis. The figure below depicts the dynamics when the
reproduction number R, =0.8403<1.

7. Discussion and Conclusion

The purpose of this paper is to investigate the qualitative behaviour of a classical
KS model such as positive invariance, boundedness, and global stability of steady
states. The global stability of the virus free and infected steady states are estab-
lished by direct Lyapunov method. The basic reproduction number R, is ob-
tained, and it determines the dynamics of the classical KS model. We have
proved that if the basic reproduction number, R, is greater than unity, then
both the immune and infection persistent steady states are globally asymptoti-
cally stable (GAS). The immune absent equilibrium mirrors a scenario where an
individual has a classical Kaposi’s sarcoma but the cell mediated immunity
through the CD8+ cytotoxic T lymphocytes is dysfunctional. This is a popular
phenomenon among individuals suffering from chronic viral diseases.

The simulations in Figure 2 illustrate the development of classical KS. In Fig-
ure 2(a) we depict the dynamics of uninfected and infected progenitor cells for a
period of 800 days. After about 250 days the infected progenitor cell population
rises rapidly before it attains a steady state value after about 600 days. The pro-
genitor cells are erroneously infected by HHV-8 and these infected cells are ones
that change their morphology and become KS cells. The KS cells begin to secrete
inflammatory cytokines that act on these cells in either an autocrine or paracrine
manner. In Figure 2(b) we illustrate the relation between the infected progeni-
tor cells and the KS cells. Figure 2(c) depicts the dynamics of the B cells as tar-
gets of HHV-8 infection. The uninfected B cell concentration declines to low
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levels as HHV-8 infects them. The HHV-8 virion population is sustained by the
infected B cell population. Most infected HHV-8 infected B cells remain latently
infected and hence do not contribute to the growth of HHV-8. However, after
activation, these cells undergo a lytic program in which HHV-8 is replicated
which in turn contributes to the development of KS.

The simulations in Figure 3 illustrate the infection free steady state for the
basic reproduction number R, =0.8403, less than a unity. In this particular
case the disease fails to establish itself. Note that the infected populations de-
crease to zero while the healthy populations return to their original steady states,
their levels, before the infection was introduced in the host.

We are convinced that if the lytic program could be disrupted then infected

people could harbour the virus without ever developing the disease.
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Figure 2. Population dynamics during the first 800 days with R, =1.1765. (a) Uninfected and infected progenitor cells; (b) In-

fected progenitor and KS cells; (c) Uninfected and infected B cells; (d) HHV-8 virions.
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Figure 3. Population dynamics during the first 800 days with R, =0.8403. (a) Uninfected and infected progenitor cells; (b) In-
fected progenitor and KS cells; (c) Uninfected and infected B cells; (d) HHV-8 virions.
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