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Abstract 
Energy methods and the principle of virtual work are commonly used for ob-
taining solutions of boundary value problems (BVPs) and initial value prob-
lems (IVPs) associated with homogeneous, isotropic and non-homogeneous, 
non-isotropic matter without using (or in the absence of) the mathematical 
models of the BVPs and the IVPs. These methods are also used for deriving 
mathematical models for BVPs and IVPs associated with isotropic, homoge-
neous as well as non-homogeneous, non-isotropic continuous matter. In en-
ergy methods when applied to IVPs, one constructs energy functional (I) 
consisting of kinetic energy, strain energy and the potential energy of loads. 
The first variation of this energy functional (δI) set to zero is a necessary con-
dition for an extremum of I. In this approach one could use δI = 0 directly in 
constructing computational processes such as the finite element method or 
could derive Euler’s equations (differential or partial differential equations) 
from δI = 0, which is also satisfied by a solution obtained from δI = 0. The 
Euler’s equations obtained from δI = 0 indeed are the mathematical model 
associated with the energy functional I. In case of BVPs we follow the same 
approach except in this case, the energy functional I consists of strain energy 
and the potential energy of loads. In using the principle of virtual work for 
BVPs and the IVPs, we can also accomplish the same as described above us-
ing energy methods. In this paper we investigate consistency and validity of 
the mathematical models for isotropic, homogeneous and non-isotropic, 
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non-homogeneous continuous matter for BVPs that are derived using energy 
functional consisting of strain energy and the potential energy of loads. Simi-
lar investigation is also presented for IVPs using energy functional consisting 
of kinetic energy, strain energy and the potential energy of loads. The com-
putational approaches for BVPs and the IVPs designed using energy func-
tional and principle of virtual work, their consistency and validity are also 
investigated. Classical continuum mechanics (CCM) principles i.e. conserva-
tion and balance laws of CCM with consistent constitutive theories and the 
elements of calculus of variations are employed in the investigations present-
ed in this paper. 
 

Keywords 
Energy Methods, Principle of Virtual Work, Calculus of Variations, Euler’s 
Equation, Mathematical Model, Classical and Non-Classical, Continuum 
Mechanics 

 

1. Introduction 
1.1. Literature Review 

Even though this paper does not consider specific aspects of formulation and solu-
tion of composite mechanics problems, but such materials are non-homogeneous 
and non-isotropic, and the energy methods are almost exclusively employed in 
the study of BVPs and IVPs associated with such materials. It is for this reason 
that we present a review of published work related to composites based on either 
energy methods or principle of virtual work. Widespread use of synthesized 
composite materials is incentive to examine the consistency and legitimacy of 
the mathematical models for composites as well as the techniques of obtaining 
their solutions. Broadly, we can categorize composite material in two groups: 1) 
those that consist of a matrix with impregnated particles of a different material. 
Ceramic composites with dispersed metal inclusions fall into this category; 2) 
those that are made by stacking laminas. Each lamina consisting of a matrix 
(resin) may have short fibers dispersed in the matrix or may contain continuous 
fibers oriented in specific directions in the plane of each lamina. Laminas are 
glued and cured with the same epoxy as the matrix of the laminas. Upon curing, 
the interfaces between the laminas are assumed to have the same strength and 
properties as the matrix of the laminas. Regardless of which composite we con-
sider; the composites are obviously non-homogeneous and non-isotropic. This is 
the major source of difficulty in deriving the mathematical models for compo-
sites that describe their deformation physics. In the following we present a brief 
literature review consisting of the development of mathematical models using 
energy methods and principle of virtual work and their numerical solutions 
primarily using finite element method. 

The classical plate theory is based on Kirchhoff hypothesis (kinematic as-
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sumptions) for the deformation of the entire laminated plate cross section [1] 
[2]. Some analytical solutions of the laminated plate problems are represented 
based on series solutions in references [3] [4] [5] [6]. It is well known that due to 
pronounced shear deformation effects in composites, the theories based on 
Kirchhoff hypothesis do not work well. The laminated composite models incor-
porating transverse shear deformation effects either by using an assumed stress 
field [7] [8] [9] or by considering an assumed displacement field [10] [11] [12] 
have been reported. The extension of the displacement based mathematical 
models using higher order functions in thickness coordinate have been reported 
in references [13]-[23]. A summary of many of these works can be found in ref-
erence [24]. Since the advent of p-version of finite element method (earlier 
works can be found in references [24]-[35]), its application for solving laminated 
composite problems grew. More recently the p-version hierarchical finite ele-
ment method has been applied to plates and shells as well as beams including 
laminated composites in references [36] [37] [38] [39]. In these works, hierar-
chical p-approximation for displacements is used in the direction transverse to 
the plane of the laminate. We remark that the mathematical models currently 
used for composite mechanics are:  

1) Mostly derived based on energy methods or principle of virtual work.  
2) Only valid for reversible mechanical deformation.  
3) Based on kinematic assumptions for the deformation of the cross section 

(except references [28]-[35]).  
In a recent paper Surana et al. [40] showed that all currently used beam 

mathematical models for isotropic and homogeneous matter are thermodynam-
ically inconsistent. That is, these mathematical models can neither be derived 
using the conservation and balance laws of classical continuum mechanics 
(CCM) nor non-classical continuum mechanics (NCCM). The authors pointed 
out that the root cause of thermodynamic inconsistency is the use of a priori 
kinematic assumptions. The authors also presented a kinematic assumptions free 
formulation for bending of beams that is accurate for slender as well as deep 
beams and is free of shear correction factors that plague all currently used 
mathematical models. In another recent paper Surana et al. [41] also showed 
that all plate/shell mathematical models for isotropic homogeneous matter used 
currently that are based on kinematic assumption(s) and derived using energy 
methods also are thermodynamically inconsistent. The authors also presented a 
thermodynamically consistent plate/shell formulation with complete 3D defor-
mation physics. This new formulation is free of kinematic assumption(s), is ac-
curate for very thin as well as thick plate/shells and does not require any shear 
correction factors. Thus, we see that introduction of a priori kinematic assump-
tions followed by the derivation of the beam, plate/shell mathematical models 
(generally using energy methods) result in thermodynamically inconsistent 
mathematical models. We remark that in the work presented here, the objective 
is not to embark on developing better or more sophisticated methods for ob-
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taining the solutions of the mathematical models for isotropic and non-isotropic 
matter or development of new approaches for deriving mathematical models 
based on energy methods. This work focuses on determining consistency and le-
gitimacy of the mathematical models themselves for isotropic as well as 
non-isotropic matter that are derived based on energy methods and principle of 
virtual work for BVPs and IVPs as well as the solution methods based on these 
two approaches. 

1.2. Scope of Present Work 

Based on the principles of classical continuum mechanics (CCM) i.e. the con-
servation and balance laws, consistent derivation of constitutive theories based 
on the entropy inequality and elements of the calculus of variations, we establish 
some guidelines that are helpful in the investigations presented in this paper. 

1) Mathematical models consisting of the conservation and balance laws of 
CCM and non-classical continuum mechanics (NCCM) with consistent consti-
tutive theories based on the entropy inequality ensure thermodynamic equilib-
rium during the entire evolution. These mathematical models are meritorious, 
hence preferred if these can be derived for the deformation physics under con-
sideration. This would be the preferred choice for the mathematical models for 
composites.  

2) Calculus of variations considers extremum of functionals and provides a 
consistent and organized mathematical framework for obtaining solutions of the 
mathematical models of the initial value problems (IVPs) and boundary value 
problems (BVPs) regardless of how these models are derived and regardless of 
the nature of the differential operators in these models [42] [43]. 

3) We first consider elements of calculus of variations as applied to BVPs. We 
construct a functional I corresponding to the BVP or corresponding to the 
physics of the BVP. If I is differentiable in its arguments, then δI is unique and 
δI = 0 is a necessary condition for an extremum of I. If 2Iδ  provides a unique 
extremum principle (sufficient condition, 0, 0, 0> = < ), a solution obtained 
from δI = 0 is unique, hence yields a unique extremum of I. The solution ob-
tained from δI = 0 also satisfies Euler’s equation, a differential or partial differ-
ential equation(s) extracted from δI = 0 using fundamental lemma or the fourth 
lemma. Thus, a correspondence between the extremums of functional and solu-
tion of BVP (Euler’s equation) is established. In structural mechanics for iso-
tropic as well as non-isotropic matter one constructs an energy functional I con-
sisting of strain energy and potential energy of loads. δI = 0 is a necessary condi-
tion for an extremum I. At this stage we could use δI = 0: 1) to construct a 
method of approximation such as finite element method to find an approximate 
solution that yields extremum of energy functional I and/or 2) we could derive 
Euler’s equation from δI = 0 using fundamental lemma or fourth lemma. This 
would be the differential form of the mathematical model associated with the 
energy functional I. In this paper we investigate whether this approach of using 
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an energy functional consisting of strain energy and potential energy to derive 
the differential form of mathematical model for BVPs is consistent and valid way 
to derive differential mathematical models for homogeneous, isotropic as well as 
for non-homogeneous, non-isotropic matter. We also investigate the approach 
based on principle of virtual work. 

4) Next we consider elements of calculus of variations as applied to IVPs. In 
this case we construct a space-time functional I corresponding to the IVP or 
corresponding to the physics of the IVP. If I is differentiable in its arguments, 
then δI is unique and δI = 0 is a necessary condition for an extremum of I. If 

2Iδ  provides a unique extremum principle (sufficient condition, 0, 0, 0> = < ), 
then a solution obtained from δI = 0 also satisfies Euler’s equation, a partial dif-
ferential equation in space and time extracted from δI = 0 using fundamental 
lemma or the fourth lemma. Thus, we have a correspondence between the 
extremums of space-time functionals and the solutions of the IVPs (Euler’s 
equation in space and time). In structural mechanics for isotropic, homogeneous 
as well as for non-isotropic, non-homogeneous matter one constructs energy 
functional I consisting of the kinetic energy, strain energy and potential energy 
of loads. δI = 0 is a necessary condition for an extremum of I. At this stage (as in 
the case of BVPs) we could use δI = 0: 1) to construct a method of approxima-
tion such as space-time finite element method to find an approximate solution 
that yields extremum of the energy functional and/or 2) we could derive Euler’s 
equation from δI = 0 using fundamental or fourth lemma. This would be the 
differential form of the mathematical model associated with the energy func-
tional of I. In this paper we investigate whether this approach of deriving 
mathematical models for IVPs in differential form from the energy functional 
consisting of kinetic energy, strain energy and potential energy of loads yields a 
consistent and valid mathematical model in the differential form for homoge-
neous, isotropic as well as for non-homogeneous, non-isotropic matter. Similar 
investigation is also presented for principle of virtual work.  

5) Investigations parallel to 3, and 4 are also presented using principle of vir-
tual work.  

6) Homogenization processes, their validity and their impact on energy 
methods and the mathematical models derived from energy methods are also 
equally important aspects to consider.  

2. Consistency of the Methodologies of Deriving  
Mathematical Models and the Consistency of the  
Resulting Mathematical Models 

We investigate the consistency and validity of following three different ap-
proaches of deriving mathematical models, as well as the consistency and validi-
ty of resulting mathematical models for initial value problems (IVPs) and bound-
ary value problems (BVPs) for homogeneous, isotropic matter and non-isotropic, 
non-homogeneous matter. 
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1) Methodologies based on energy methods.  
2) Methods based on conservation and balance laws of CCM and NCCM.  
3) Methods based on principle of virtual work.  
It can be easily shown that methods under 1) and 2) are a subset of calculus of 

variations, studies in applied mathematics for obtaining extremums of 
functionals as well as solutions of IVPs and BVPs [42] [43]. Thus, it is perhaps 
fitting to discuss methods 1) and 2) within the context of calculus of variations, a 
much broader area of study. 

2.1. Calculus of Variations, Residual and Energy Functionals: BVPs 

To be able to apply elements of calculus of variations to all BVPs rigorously and 
uniformly for obtaining their solutions or to be able to derive mathematical de-
scription of the associated boundary value problem, it is essential to mathemati-
cally classify all differential operators appearing in the BVPs into three possible 
categories: self-adjoint operators (linear and symmetric), non-self-adjoint oper-
ators (linear but not symmetric), and non-linear differential operators (neither 
linear nor symmetric). This mathematical classification allows us to treat all 
BVPs rigorously regardless of their origin or the field of application. We can use 
the elements of calculus of variations: 1) to obtain the solutions of BVPs if the 
mathematical model is known or 2) to derive the mathematical model if the en-
ergy functional associated with the BVP of interest is known. Traditionally the 
calculus of variations begins with  

1) Existence of a functional I (generally by construction)  
2) If I is differentiable in its arguments then δI is unique and δI = 0 is a neces-

sary condition for an extremum of I.  
3) 2Iδ  ( 0, 0, 0> = < ) must yield unique extremum principle or sufficient 

condition. This ensures that a solution obtained for δI = 0 yields a unique 
extremum of I.  

A solution obtained from δI = 0 also satisfies Euler’s equation (PDE(s)) ex-
tracted from δI = 0 using fundamental lemma or the fourth lemma. We consider 
the boundary value problem (1) in which the differential operator A is linear. 

0 xA f xφ − = ∀ ∈Ω                         (1) 

with some boundary condition, x xΩ =Ω Γ  is closure of xΩ , Γ  being 
closed boundary of open domain xΩ . 

2.2. Residual Functional 

The functional I can be the residual functional constructed using (1). If nφ  is 
an approximation of φ  over xΩ , then  

n xE A f xφ= − ∀ ∈Ω                        (2) 

is the residual function and the residual functional I is constructed using E fol-
lowed by δI and 2Iδ .  

( ),
x

I E E
Ω

= ; existence of I (by construction)              (3) 
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( )2 , 0
x

I E Eδ δ
Ω

= = ; necessary condition for an extremum of I      (4) 

( )2 2 , 0
x

I E Eδ δ δ
Ω

= > ; when A is linear, unique extremum principle   (5) 

Thus, the integral form (4) is variationally consistent (VC) i.e., uncondition-
ally stable. This process can used to obtain solutions of BVP (1). This of course 
requires that we know the mathematical model (1). It is obvious that in this case 
the Euler’s equation obtained δI = 0 (4) is indeed the BVP (1). A solution ob-
tained from δI = 0 also satisfies Euler’s equation, hence is the solution of the 
BVP. One could show that this method based on residual functional can also be 
used for nonlinear differential operators [42] with unique extremum principle. 
Thus, this method based on residual functional for obtaining solutions of BVP is 
always unconditionally stable (variationally consistent, VC) regardless of the 
type of differential operator. This method requires that we know the mathemat-
ical model of the BVP, thus can always be used for isotropic, homogeneous mat-
ter for which the mathematical model can be derived using CCM or NCCM. In 
case of non-homogeneous and non-isotropic matter, we first need to derive the 
mathematical model before we can proceed with this residual functional ap-
proach described here. It is important to note that the residual functional is not 
energy functional. This approach of obtaining solutions of BVPs may not allow 
us to study specific physics of interest that may require concepts of stiffness, 
mass, damping, etc. 

2.3. Energy Functional 

The functional I can also be used to represent the energy functional consist-
ing of strain energy and potential energy of loads. We consider self-adjoint, 
non-self-adjoint and non-linear operators A in (1). First let us consider the case 
when the differential operator A is known i.e. the mathematical model is known. 
Then, we can construct the integral form of (1) over xΩ  using fundamental 
lemma of the calculus of variations.  

( ), 0
xnA f vφ

Ω
− =                          (6) 

This integral form represents necessary condition from which the solution 

nφ  is determined. v in (6) is the test function. Thus, at this stage (6) represents 
first variation of some functional I set to zero i.e. we assume that, there exists a 
functional I such that  

( ), 0
xnI A f vδ φ

Ω
= − =                       (7) 

nφ  and v  belong to appropriate scalar product space ( ),k p
xV H⊂ Ω . The test 

function 0v =  on boundary *Γ  if 0nφ φ=  (given or known) on *Γ . We have 
assumed existence of functional I and have constructed δI or integral form using 
fundamental lemma, but extremum principle still needs to be established. It is 
well known [42] that using (7), various methods of approximation can be con-
sidered. 
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1) Galerkin method (GM):  
In this method we choose nv δφ=  in (7), thus 

( ), 0;
xn nI A f v vδ φ δφ

Ω
= − = =                     (8) 

or  

( ) ( ), ,
xxnA v f vφ

ΩΩ
=                          (9) 

or  

( ) ( ),nB v l vφ =                           (10) 

and  

( ) ( )( ) ( )
( )

2 , ,

, 0, 0, 0 .
nI B v l v B v v

Av v v V

δ δ φ= − =

= > = < ∀ ∈ is not ensured
           (11) 

Hence, the integral form (11) in GM is variationally inconsistent (VIC) [42]. 
For this case we cannot construct functional I using functionals ( ),B ⋅ ⋅ , and 
( )l ⋅  in (14) or in any other way.  
2) Petrov Galerkin Method (PGM) or weighted residual method (WRM): 
In this method we also consider the integral form (10) but nv δφ≠ ; however 

we still choose v such that 0v =  on *Γ  if 0φ φ=  on *Γ . Thus, in this meth-
od nv ψ δφ= ≠ , 0ψ =  on *Γ  if 0φ φ=  on *Γ  and (10) becomes 

( ) ( ),nB lφ ψ ψ=                         (12) 

and 

( ) ( )( ) ( )
( )

2 , ,

, 0, 0, 0 .
nI B l B v

Av V

δ δ φ ψ ψ ψ

ψ ψ

= − =

= > = < ∀ ∈ is not ensured
          (13) 

Thus, the integral form (13) is VIC. In this case we cannot construct function-
al I using ( ),B ⋅ ⋅ , and ( )l ⋅  in (11) or any other way.  

3) Galerkin method with weak form (GM/WF)  
In 1) and 2) we have assumed the operator A to be linear. In this section we 

further assume that adjoint *A  of A is the same as A. The assumption of the 
operator A being linear and that *A A=  defines differential operators appear-
ing in small deformation, small strain physics in structural mechanics in which 
the mechanical deformation is reversible. Such operators contain even order de-
rivatives of the dependent variable with respect to spatial coordinates. We con-
sider the following based on fundamental lemma. 

( ), 0
xn nA f v vφ δφ

Ω
− = =; in which                 (14) 

or 

( ) ( ), ,
xxnA v f vφ

ΩΩ
=                       (15) 

We transfer half of the differentiation from nφ  to v using integration by parts. 

( ) ( ), , ,
xn nB v A v f vφ φ

Ω
+ =                    (16) 

in (16), ( ),nB vφ  contains all terms that have both nφ  and v and ,nA vφ  is 
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concomitant [42]. We can write (16) as 

( ) ( ),nB v l vφ =                           (17) 

( ) ( ), ,
x nl v f v A vφ

Ω
= −                      (18) 

In Equation (17) ( ),nB vφ  is bilinear and symmetric i.e. ( ) ( ), ,n nB v B vφ φ=  
and ( )l v  is linear. For this case the functional I can be constructed. 

1) ( ) ( ) ( )1 ,
2n n nI B l vφ φ φ= −   

2) ( ) 0nIδ φ =  gives ( ) ( ),nB v l vφ =  
3) ( ) ( )( ) ( )2 ,n nI I B v vδ φ δ φ= =   
Since ( ),nB vφ  is symmetric ( ), 0B v v v V> ∀ ∈ , hence, we have a unique 

extremum principle and the integral form (17) is variationally consistent (VC). 
( ), 0B v v >  implies that ( )nI φ  is minimized by a nφ  obtained from the weak 

form (17).  
Remarks  
1) If the BVP (1) describes a structural mechanics problem with small defor-

mation, small strain and reversible mechanical work, then ( )1 ,
2 n nB φ φ  in  

( )nI φ  represents strain energy and ( )nl φ  represents potential energy of loads.  
2) For such problems, ( )nI φ  can be called as energy functional. This in fact 

forms the basis for energy methods. One constructs ( )nI φ  directly using strain 
energy and potential energy of loads (without the knowledge of mathematical 
model). Then, ( ) 0nIδ φ =  will yield (17), the weak form and the Euler’s equa-
tion(s) extracted from ( ) 0nIδ φ =  will be the corresponding mathematical 
model (1).  

3) We need to ensure that construction of energy functional ( )nI φ  using 
strain energy and potential energy of loads and the extraction of Euler’s equation 
(the mathematical model) holds for isotropic, homogeneous matter as well as for 
non-homogeneous and non-isotropic matter (such as composites).  

4) We have shown that the energy methods employing energy functional can 
only be used for linear reversible mechanical deformation in which the mathe-
matical models contain self-adjoint differential operators. This implies small de-
formation, small strain and reversible mechanical work deformation physics only. 
Thus, the usefulness of energy methods for designing computational processes 
(such as finite element method) or for establishing the mathematical model us-
ing the energy functional is limited to self-adjoint operators. We present illustra-
tive examples in a subsequent section.  

5) Based on (4), it is clear that the energy methods cannot be used to derive 
mathematical models for finite deformation and finite strain physics even for 
homogeneous isotropic matter as in this case, the differential operators are 
non-linear, hence the existence of energy functional cannot be proven or its 
construction is not possible using calculus of variations.  

6) Use of energy functional approach for non-homogeneous and non-isotropic 
matter in deriving differential mathematical models needs to be investigated.  
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2.4. Calculus of Variation, Residual and Energy Functionals: IVPs 

IVPs contain mathematical descriptions in which the dependent variables exhib-
it simultaneous dependence on space and time and the domain of definition of 
IVP is naturally a space-time domain. The space-time differential operator can 
be mathematically classified as: non-self-adjoint (linear but *A A≠ ) and 
non-linear. When applying calculus of variation to obtain approximate solutions 
of IVP we naturally construct space-time functionals ( )( ) ( ), ,n nI x t I tφ φ=  and 
follow the same steps as in case of BVPs.  

1) Existence of ( ),nI tφ ; by construction.  
2) If ( ),nI tφ  is differentiable in its arguments, then ( ),nI tδ φ  is unique and 
( ), 0nI tφ =  is a necessary condition for an extremum of ( ),nI tφ .  
3) ( )( )2 , 0, 0, 0nI tδ φ > = <  must yield a unique extremum principle or suffi-

cient condition. This ensures that a nφ  obtained from ( ), 0nI tδ φ =  yields a 
unique extremum of ( ),nI tφ .  

A nφ  obtained from ( ), 0nI tδ φ =  also satisfies Euler’s equation extracted 
from ( ), 0nI tδ φ =  using fundamental lemma or fourth lemma of the calculus 
of variations. 

2.5. Residual Functional 

The functional ( ),nI tφ  can represent the residual functional constructed using 
IVP. 

( ) ( ), , 0 , xt x tA x t f x t x tφ − = ∀ ∈Ω = Ω ×Ω             (19) 

with some boundary conditions and initial conditions. We consider the 
space-time differential operator to be linear (hence it is non-self-adjoint). If nφ  
is an approximation of φ  over xt xtΩ =Ω Γ , Γ  being closed boundary of 
open domain xtΩ , then 

,n xtE A f x tφ= − ∀ ∈Ω                     (20) 

( ),
xt

I E E
Ω

= ; existence of I (by construction)           (21) 

( )2 , 0
xt

I E Eδ δ
Ω

= = ; necessary condition for an extremum of I    (22) 

( )2 2 , 0
xt

I E Eδ δ δ
Ω

= > ; unique extremum principle         (23) 

Thus, the space-time integral form (22) is space-time variationally consistent 
(STVF) [43]. This process can be used to obtain solutions of IVP (19). However, 
this requires that we know the mathematical model (19). It is straight forward to 
see that in this case the Euler’s equation obtained from δI = 0 (23) is indeed the 
IVP (19). STVC space-time integral form (23) ensures unconditionally stable 
computational process due to unique extremum principle (23). This method re-
quires that we know the mathematical model (19) of the IVP, thus, can be used 
for isotropic, homogeneous matter for which the mathematical model (19) can 
be obtained from CCM or NCCM. In case of non-homogeneous, non-isotropic 
matter we first need to derive mathematical model before we can proceed with 
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the residual functional approach presented here. 

2.6. Energy Functional 

The functional ( ),nI tφ  can also represent energy functional consisting of ki-
netic energy, strain energy and the potential energy of loads. This of course can 
be constructed directly over space time domain xtΩ  without the knowledge of 
the mathematical model. 

We recall that the space-time differential operators are either non-self-adjoint 
or non-linear. Thus, methods of approximation such as, space-time Galerkin 
method (STGM), STPGM, STGM/WF will yield space-time integral forms that 
are space-time variationally inconsistent i.e. if we consider (based on funda-
mental lemma) 

( ) ( ) ( )( ), , , , 0 ,n xtA x t f x t v x t x tφ − = ∀ ∈Ω               (24) 

and if ( ) ( ),nB v l vφ =  in this final integral from any of the methods of approx-
imation, then ( ),nB vφ  is bilinear but not symmetric. Hence, in this case the 
functional ( ),nI tφ  constructed using 

( ) ( ) ( )1 ,
2n n n nI B lφ φ φ φ= −                     (25) 

is not valid because 
( ) ( ) ( ),n nI B v l vδ φ φ≠ −                      (26) 

Thus, for the space-time differential operators, if the mathematical model (19) is 
known, the energy functional ( ),nI tφ  cannot be constructed due to the fact 
that the space-time operator is either non-self-adjoint or non-linear. This raises 
an extremely important question and a serious concern whether the mathemati-
cal models derived using energy functional consisting of kinetic energy, strain 
energy and the potential energy of loads are even valid for isotropic, homogene-
ous matter. The validity of the energy functional itself and the resulting mathe-
matical model for non-isotropic and non-homogeneous matter also need to be 
investigated. 

3. CCM and NCCM: Mathematical Models for Homogeneous 
Isotropic and Non-Homogeneous, Non-Isotropic Continua 
(Composites) 

The conservation and balance laws of classical continuum mechanics (CCM) in 
Lagrangian description: Conservation of mass (CM), balance of linear momenta 
(BLM) balance of angular momenta (BAM), first law of thermodynamics (FLT), 
second law of thermodynamics (SLT) provide valid and thermodynamically 
consistent mathematical models for deforming solid continua. The derivation of 
the conservation and balance laws in differential form assumes that the contin-
uous matter is homogeneous and isotropic, hence each material point in a vol-
ume of matter is identical. This assumption implies that the volume of matter 
considered in the derivation of the conservation and balance laws is of no con-
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sequence. How many material points are present in the volume under consider-
ation in the derivation of a balance law is of no consequence as each material 
point is identical, thus we may as well consider only one material point. This al-
lows us to set the integrand to zero (at a material point). Thus, all balance laws 
in the differential form are the rate laws that are valid for a single material point 
due to the assumptions that the solid continua are homogeneous and isotropic. 
NCCM permits inclusion of additional physics in the derivation of the conserva-
tion and balance laws, but the assumption that the matter is homogeneous and 
isotropic must hold in order to be able to obtain the balance laws in the differen-
tial forms. Derivation of constitutive theory follows from entropy inequality, still 
based on the assumptions that the matter is isotropic and homogeneous.  

Remarks  
1) If we examine the conservation and balance laws in the absence of constitu-

tive theory, we can conclude these are independent of the constitutive theories. 
The stress tensor σ  and heat vector q  are assumed to be present in the de-
forming continua as a consequence of kinematics of deformation and thermal 
disturbances applied to the volume of matter. This in fact is true.  

2) As explained immediately preceding the remarks, that the assumption of 
homogeneity and isotropy are intrinsic requirements in deriving the differential 
form of the conservation and balance laws.  

3) These assumptions in 2) must hold regardless of the constitutive theories.  
4) Based on 1)-3), we have additional restrictions on constitutive relations. 

Regardless of whether we are to substitute the constitutive equations in balance 
laws or if we are to consider them as additional equations augmenting the con-
servation and balance laws, the constitutive theories must be for the isotropic 
and homogeneous matter as the conservation and balance laws only hold for 
isotropic and homogeneous continua. In other words, anisotropic or orthotropic 
constitutive relations can neither be included as additional equations in the con-
servation and balance laws of CCM or NCCM nor can these be substituted in 
them.  

In view of the remarks, the phenomenological orthotropic constitutive theo-
ries such as in Section 3.1, though possibly verifiable experimentally, but cannot 
be used in the conservation and balance laws of CCM or NCCM. More specifi-
cally, in the stress strain relationship used for non-isotropic matter such as 
composites, the stresses as a function of strain cannot be substituted in the BLM 
and FLT (or considered as additional equations) as these balance laws are only 
valid for isotropic, homogeneous matter. 

Thus, it is straightforward to conclude that the conservation and balance laws 
of CCM (or NCCM) cannot be used as a possible mathematical model for 
non-isotropic and non-homogeneous matter in conjunction with phenomeno-
logical constitutive theory. 

At this stage, it is worth mentioning that in many works the differential form 
of BLM (valid for isotropic and homogeneous matter) is used in the process of 
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determining solutions of model problems in composite mechanics using ortho-
tropic constitutive theories. Based on the details presented here, this is not valid 
and the resulting solutions are not correct solutions of the actual model prob-
lems. 

3.1. Material Properties: Non-Homogeneous, Non-Isotropic,  
Orthotropic (Laminated Composites) 

The process of constructing laminas with preferred orientation of the fibers at 
the centerline of each lamina and the stacking of lamina in a desired sequence of 
material direction orientations by gluing them with epoxy (same resin as the 
matrix of the laminas) and the curing to construct a laminate is a well-known 
procedure. In this type of construction, each lamina contains fibers assumed to 
be at the center of the lamina with different material properties in two perpen-
dicular directions in the plane of the lamina. Matrix (i.e. resin) is assumed to be 
isotropic and homogeneous with mechanical properties significantly different 
from the fibers. However, at the common boundary and in its vicinity between 
the glued laminas, the material is essentially resin (or matrix) which is assumed 
to be isotropic and homogeneous. Thus, our view is that the material properties 
make a transition from the center of the lamina (properties close to fiber) to the 
transverse boundaries of the lamina (properties close to resin or matrix). 

In the published works based on rules of mixtures and volume fractions and 
other homogenization considerations, the mechanical properties of the fibers 
and the matrix are used to obtain equivalent homogenized mechanical proper-
ties that are called orthotropic in the two orthogonal directions in the plane of 
the lamina and the third one orthogonal to the lamina plane. These mechanical 
properties are assumed to hold throughout the lamina. When laminas with these 
homogenized properties are used to construct a laminate, naturally some dis-
continuity of stress is realized at the lamina interfaces if a single common dis-
placement approximation is used for the entire laminate as the case is in classical 
plate theory (CPT), first-order shear deformation theory (FSDT), higher-order 
shear deformation theory (HSDT) etc. The homogenization process is somewhat 
empirical and phenomenological and the assumption of the same homogenized 
properties to be valid throughout the lamina thickness seems not in accord-
ance with what the construction of the laminate suggests. From the point of 
view of the work presented here, it is sufficient for us to note that from the ac-
tual non-homogeneous, non-isotropic matter we obtain homogenized material 
properties that still remain non-isotropic. 

3.2. Constitutive Equations for Orthotropic Materials (Laminated 
Composites) 

CCM and NCCM only provide a thermodynamically consistent framework for 
deriving constitutive theories for homogeneous and isotropic continua, solid or 
fluent. For small deformation, small strain, isotropic and homogeneous solid 
continua with reversible mechanical deformation one could show [44] that the 

https://doi.org/10.4236/am.2020.117039


K. S. Surana, E. N. Alverio 
 

 

DOI: 10.4236/am.2020.117039 559 Applied Mathematics 
 

constitutive theory for Cauchy stress tensor σ  can be derived using 

( )
0kl

kl

σ ρ
ε

∂Φ
=

∂
ε

                          (27) 

or  

( )
0kl

kl

π
σ ρ

ε
∂

=
∂

ε
                          (28) 

in which ( )Φ ε  is Helmholtz free energy density and ( )π ε  is strain energy 
density. The frame invariance requirement of the material coefficients in the 
constitutive theory necessitates that instead of ( )Φ = Φ ε  and ( )π π= ε  we 
must consider Φ  and π  functions of the invariants of ε , either principal 
invariants , ,I II IIIε ε ε  or , ,i ii iiiε ε ε  [44]. Since the two sets of invariants are 
related, we can choose either. Thus, we consider 

( )
0

, ,
kl

kl

I II IIIε ε εσ ρ
ε

∂Φ
=

∂
                     (29) 

( )
0

, ,
kl

kl

I II IIIε ε επ
σ ρ

ε
∂

=
∂

                     (30) 

Details of the derivation can be found in reference [44]. A linear constitutive 
theory resulting from (29) or (30) will contain only two material coefficients: 
Lame’s constants µ  and λ  or modulus of elasticity E and Poisson’s ratio ν . 
A constitutive theory with more than two material coefficients will be non-linear 
constitutive theory in ε  and its invariants. 

Currently used constitutive theories for anisotropic and orthotropic materials 
are derived by considering Taylor series expansion of ( )Φ ε  or ( )π ε  in ε  
about a known configuration and then substituting it in (27) or (28). A linear 
constitutive theory resulting from this approach for Cauchy stress tensor σ  
can be written as. 

ij ijkl klcσ ε=                            (31) 

In (31) σ  and ε , symmetric tensors of rank two are related through ijklc , a 
tensor of rank four containing 81 material coefficients for an anisotropic materi-
al. Symmetry of σ , ε  and symmetry of ijklc  helps us in reducing the 81 ma-
terial coefficients to 18. Further consideration of a monoclinic material with 
three orthogonal planes of symmetry reduces theses 18 coefficients to nine engi-
neering coefficients: Young’s moduli 1E , 2E , 3E ; Poisson’s ratios 21ν , 31ν , 

23ν  and shear moduli: 23G , 31G , 12G . In Poisson’s ratios, the first subscript 
refers to directions of stress and the second subscript is the direction of strain. 
Using Voigts notation we can write this constitutive theory as  

{ } [ ]{ }Dσ ε=                           (32) 

or  

{ } [ ]{ } [ ] [ ] 1;C D Cε σ −= =                      (33) 

in which  
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{ } [ ]T
11 22 33 23 31 12, , , , ,σ σ σ σ σ σ σ=                   (34) 

{ } [ ]T
11 22 33 23 31 12, , , , ,ε ε ε ε γ γ γ=                    (35) 

and  

[ ]

[ ]
1 21 2 31 3

2 32 3

3

23

31

12

1
1 0

1
1 0 0

Symm. 1 0
1

E E E
E E

E
C

G
G

G

ν ν
ν

− − 
 − 
 

=  
 
 
 
  

         (36) 

in which 32 322γ ε= , 31 312γ ε= , and 12 122γ ε= . Generally, directions 1, 2, 3, 
refer to the lamina coordinate system. [ ]C  is transformed from the lamina co-
ordinate system to the global x-frame [44]. 

Remarks  
1) The constitutive theory (32) is purely phenomenological. It is calibrated by 

conducting experiments to determine nine material coefficients.  
2) A serious drawback of assuming ( )Φ = Φ ε  and ( )π π= ε  is that mate-

rial coefficients are now functions of ε  in a known configuration, hence are 
not frame invariant, a strict requirement for the material coefficients. However, 
if the material coefficients are not dependent on deformation (i.e. are constant), 
then this is not a handicap, but certainly limits them to be constant throughout 
the evolution.  

3) When the arguments of Φ  and π  are invariant of ε , the resulting lin-
ear constitutive theory for homogeneous, isotropic solid continua requires only 
two material coefficients. Clearly the derivation based on Taylor series expan-
sion of ( )Φ ε  and ( )π ε  in ε  about a known configuration is not supported 
by continuum mechanics (CCM or NCCM). Thus, this constitutive theory for 
orthotropic matter is purely phenomenological or empirical.  

4) We also remark that the orthotropic (or anisotropic in general) constitutive 
relations can neither be substituted in the balance laws nor the balance laws can 
be augmented using these constitutive relations as additional equations due to 
the fact that differential form of the balance laws only holds for homogeneous 
and isotropic matter.  

4. Mathematical Models for BVPs Using Energy Functional 

We consider methods of deriving mathematical models based on calculus of 
variations, more specifically energy method for BVPs for homogeneous, iso-
tropic matter as well as for non-homogeneous, non-isotropic matter (such as 
composites). We recall that the orthotropic constitutive relations used for com-
posites (in particular laminated composites) are also frequently used in other 
applications as well. As shown earlier, these constitutive relations are neither 
supported by CCM nor NCCM as these only consider isotropic homogeneous 
matter. 
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In this approach of deriving mathematical models for BVPs considered in this 
section, one constructs an energy functional I consisting of strain energy and 
potential energy of loads over the spatial domain xΩ  of the deforming volume 
of matter. We consider small deformation and small strain and furthermore we 
consider the matter to be isotropic. For this case, we can define the energy func-
tional I given in the following.  

[ ][ ]( ) { } { }( )T

0tr d
x

bI F uσ ε ρ
Ω

= − + Ω∫                (37) 

in which [ ]σ  is the Cauchy stress tensor and [ ]ε  is the linearized Green’s 
strain tensor. { }bF  are body forces per unit mass and { }u  is a vector of dis-
placements. In (37), [ ]σ  and [ ]ε  are work conjugate pairs, their origin is 
from the first law of thermodynamics for isotropic, homogeneous matter. In 
CCM the second law of thermodynamics, entropy inequality can be written as 
(in Lagrangian description).  

[ ][ ]( )0 tr 0i iq gD D
Dt Dt

θρ η σ ε
θ

Φ + − + ≤ 
 

               (38) 

in which Φ  is the Helmholtz free energy density, η  is the entropy density, θ  
is temperature, [ ]ε  is strain rate, { }q  is the heat flux and { }g  is a vector of 
temperature gradients. The entropy inequality (38) only holds for homogeneous, 
isotropic matter in which [ ]σ  and [ ]ε  are rate of work conjugate pair. If the 
matter is non-isotropic and when the constitutive theory for σ  in terms of ε  
is like (32)-(36), then in the energy functional I (37) there is no basis for [ ]σ  
and [ ]ε  to be rate of work conjugate pair. Thus, use of (37) as energy function-
al for non-isotropic matter such as composites is not valid either. Hence, we can 
only proceed further with (37) if we assume homogeneous and isotropic matter. 
We do so in the following. We rewrite (37) using Einstein notation ( [ ]σ  and 
the [ ]ε  are symmetric tensors of rank two). 

( )0 d
x

b
ij ji i iI F uσ ε ρ

Ω

= − − Ω∫                     (39) 

in which  

1
2

j i
ji

i j

u u
x x

ε
 ∂ ∂

= +  ∂ ∂ 
                       (40) 

Thus  

1 1
2 2

1
2

j ji i
ij ji ij ij ij

i j i j

ji i
ji ji ji

j i j

u uu u
x x x x

uu u
x x x

σ ε σ σ σ

σ σ σ

   ∂ ∂∂ ∂
= + = +      ∂ ∂ ∂ ∂   

 ∂∂ ∂
= + =  ∂ ∂ ∂ 

           (41) 

using (41) in (39) 

0 d
x

bi
ji i i

j

u
I F u

x
σ ρ

Ω

 ∂
= − + Ω  ∂ 
∫                    (42) 
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We transfer one order of differentiation from iu  to jiσ  in the first term of 
the integrand in (42). 

0 d d
x

ji b
i i i ji j i

j

I u F u n u
x
σ

ρ σ
Ω Γ

 ∂
= + Ω− Γ  ∂ 
∫ ∫               (43) 

If I is differentiable in its arguments, then Iδ  is unique and 0Iδ =  is nec-
essary condition for an extremum of I. 

0 d d 0
x

ji b
i i i ji j i

j

I u F u n u
x
σ

δ δ ρ δ σ δ
Ω Γ

 ∂
= + Ω− Γ =  ∂ 
∫ ∫          (44) 

For simplicity we assume that 0iu =  on Γ  (BC) then 0iuδ =  on Γ  and 
(44) reduces to 

0 d 0
x

ji b
i i

j

I F u
x
σ

δ ρ δ
Ω

 ∂
= + Ω =  ∂ 
∫                  (45) 

using fundamental lemma, we obtain the following Euler’s equation from (45) 

0 0ji b
i

j

F
x
σ

ρ
∂

+ =
∂

                        (46) 

We remark that since the volume xΩ  contains homogeneous and isotropic 
matter, each material particle in xΩ  is identical. Thus, size of the volume xΩ  
is irrelevant, hence permitting us to extract (46) from (45) at a material point. 
When the matter is non-isotropic and non-homogeneous, the first problem is 
with the strain energy term in (39) which is only valid for isotropic and homo-
geneous matter. Even if we could find a more justifiable expression for strain 
energy for non-isotropic matter, Euler’s equation similar to (46) cannot be ex-
tracted from δI = 0 due to the fact that volume Ω  contains non-isotropic mat-
ter, hence each material point could potentially be different in volume xΩ . This 
forces us to maintain the volume integral form (45) instead of differential form 
(46) so that we know the specific material point in it. We note that (46) is bal-
ance of linear momenta for homogeneous, isotropic matter (for BVPs). Thus, 
when the deforming matter is isotropic and the mechanical deformation is re-
versible, the energy functional for BVPs only contains strain energy and poten-
tial energy of load in which case the Euler’s equations derived from the energy 
functional are indeed balance of linear momenta as expected. In this case, the 
differential operator (in displacements) is linear and its adjoint is the same as the 
operator itself. An integral from constructed using (46) based on fundamental 
lemma and GM/WF will yield a weak form 

( ) ( ) ( ), , 0Au f v B u v l v− = − =                    (47) 

in which ( ),B ⋅ ⋅  is bilinear and symmetric and ( )l ⋅  is linear and the energy 
functional I (Equation (39)) can be constructed using 

( ) ( )1 ,
2

I B u u l u= −                         (48) 

Thus, in this case we see that the calculus of variations, energy methods and 
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CCM yield the same mathematical model. This is only possible for a linear sys-
tem in which the mechanical deformation is reversible. Strains and deformation 
are small and the matter is isotropic and homogeneous. 

5. Mathematical Models for IVPs Using Energy Functional 

The space-time differential operators appearing in IVPs are either non-self-adjoint 
or non-linear [43]. We can use STGM, STPGM, STWRM and STGM/WF for 
constructing space-time integral forms based on the fundamental lemma of the 
calculus of variations for space-time functionals (Surana et al. [43]). The integral 
form resulting from any of the methods for both types of operators are 
space-time variationally inconsistent. That is, corresponding to these integral 
forms, representing first variation (δI) of some functional I, a unique extremum 
principle (a sufficient condition) does not exist. In this case, the resulting com-
putations based on the integral form (δI = 0 for some functional I) are not en-
sured to be unconditionally stable. The bilinear functional (for linear space-time 
differential operators) in the space-time integral form is not symmetric. Hence, 
based on the calculus of variations [42] [43], it is not possible to construct a 
space-time functional using the functionals appearing in the space-time integral 
form. That is, corresponding to a valid IVP, a valid energy functional cannot be 
constructed. Conversely, there does not exist a valid energy functional such that 
the Euler’s equation extracted from its first variation set to zero represents a val-
id IVP. In the present work we show that if we construct an energy functional 
consisting of kinetic energy, strain energy and potential energy of loads, then the 
Euler’s equations extracted from its first variation of this functional set to zero 
cannot yield a valid mathematical model. This is obviously due to the fact that 
for a valid mathematical model for an IVP, it is not possible to construct a cor-
responding valid space-time functional due to the fact that for space-time linear 
differential operators *A A≠ . Thus, even if we know the PDEs describing IVP, 
then the functional I corresponding to these cannot be constructed. On the other 
hand, if we construct energy functional I directly without using space-time dif-
ferential operator, the Euler’s equations resulting from the first variation of this 
functional cannot be the valid mathematical model (PDEs). First, we consider a 
simple IVP to illustrate the main source of problem in extracting mathematical 
models from energy functional for IVPs.  

5.1. Model Problem 

Consider the following IVP representing 1D balance of linear momenta in which 
all coefficients in the dimensionless form are unity. We have considered small 
deformation, small strain reversible mechanical deformation physics with linear 
constitutive theory for the Cauchy stress tensor and the matter is isotropic and 
homogeneous. 

( ) ( )
2 2

12 2
1

0 , 0, 0,b
xt x t

u u F x t L
t x

τ∂ ∂
− − = ∀ ∈Ω = Ω ×Ω = ×

∂ ∂
         (49) 
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( )
( ) ( ){0BCs : 0,

0,
, L

u t u
t

u L t u
τ

=
∀ ∈

=
                   (50) 

( )

( )
( ){

ICs : ,0 0
0,

,0 0

u x
x Lu x

t

=
∀ ∈∂

=
∂

                   (51) 

Figure 1 shows the space time domain xt xtΩ = Ω Γ , 
4

1
i

i=
Γ = Γ


 in which Γ  

is the closed boundary of xtΩ . 

Let xn  and tn  be unit exterior normals to each iΓ . Their values on iΓ ; 
1,2, , 4i =   are shown in Figure 1. We can write (49) as 

( ) ( ), , , xtAu x t f x t x t= ∀ ∈Ω                    (52) 

in which the space-time differential operator A is given by 

( )
2 2

12 2
1

and , bA f x t F
t x
∂ ∂

= − =
∂ ∂

                  (53) 

Let ( ),k p
xtV H⊂ Ω  be the scalar product space of functions admissible in 

(49).  
Linearity of A:  
Clearly operator A is linear as ( )1 2 2A u u Au Auα β α β+ = +  holds for 

1 2,u u V∀ ∈  and , Rα β∀ ∈ .  
Adjoint *A  of A:  
Consider scalar product of Au  with v over xtΩ  in which v uδ= . 

( )
2 2 2 2

2 2 2 2
1 1

, , d d
xt

xtxt

u u u uAu v v v v x t
t x t xΩ

ΩΩ

   ∂ ∂ ∂ ∂
= − = −   

∂ ∂ ∂ ∂   
∫         (54) 

 

 
Figure 1. Space-time domain xtΩ , boundaries iΓ , BCs, ICs, and unit exterior normals 

to iΓ . 
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we transfer all differentiation from u to v in both terms in the integral using in-
tegration by parts 

( )

1 1

2 2

2 2

1 1

, d d d

d d

xt
xt

t t
i

x x

u u u vAu v v v vn un
t tt x

u vvn un
x x

Ω
Ω Γ Γ

Γ Γ

 ∂ ∂ ∂ ∂
= − Ω+ Γ − Γ 

∂ ∂∂ ∂ 
∂ ∂

− Γ + Γ
∂ ∂

∫ ∫ ∫

∫ ∫

 

 

      (55) 

We use BCs (50) and ICs (51) and the following 

( ) ( ) [ ]
( ) ( ) [ ]
0, 0, , 0 0,

,0 0, ,0 0,

v t v L t t

v x v x x L

τ= = ∀ ∈

= ∀ ∈
                 (56) 

to simplify the integrals over closed boundary Γ  in (55) and obtain the fol-
lowing. 

( ) [ ]
4

1 4d , d ; 1; d d : : 0,t t t
u uvn v n n n x L
t t τ

τ
Γ Γ

∂ ∂
Γ = Γ = Γ = Γ

∂ ∂∫ ∫

       (57) 

( ) [ ]
4

1 4d , d ; 1; d d : : 0,t t t
v vun u n n n x L
t t τ

τ
Γ Γ

∂ ∂
Γ = Γ = Γ = Γ

∂ ∂∫ ∫

       (58) 

( )( ) ( )( )

1

1
1 31 1

1

1 1 10

d 0

d 0, 1 d , 1 d

x

x
x x L

u vn
x

v v vun u t u L t
x x x

Γ

Γ Γ Γ= =

∂
Γ =

∂

∂ ∂ ∂
Γ = − Γ + Γ

∂ ∂ ∂

∫

∫ ∫ ∫





    (59) 

[ ] [ ]1 3d d ; : 0, ; : 0,t τ τΓ = Γ Γ                    (60) 

We substitute (57)-(60) in (55) and rearrange terms 

( ) ( )

( )

4

4

2 2

2 2
1

, d , d

, d ,

xt
xt

v v uAu v u u v x
tt x

v v x Au v
t

τ

τ

τ

τ

Ω
Ω Γ

Γ

 ∂ ∂ ∂
= − Ω+ Γ  ∂∂ ∂ 

∂
+ Γ +

∂

∫ ∫

∫
          (61) 

in which the concomitant is given by ,Au v  is given by [43] 

( )( ) ( )( )
1 31 11 10

, 0, 1 d , 1 d
x x L

v vAu v u t u L t
x xΓ Γ= =

∂ ∂
= − Γ + Γ

∂ ∂∫ ∫         (62) 

In (62) ,Au v  is the concomitant. We can write (61) as 

( ) ( )

( )

4

4

2 2

2 2
1

, , , ,

, , ,

xt
xt

v v uAu v u v x
tt x

v u x Au v
t

τ

τ

τ

τ

Ω
ΓΩ

Γ

   ∂ ∂ ∂
= − +   ∂∂ ∂   

 ∂
+ + ∂ 

            (63) 

Clearly the differential operator *A  (adjoint of A) from the right hand side of 
(63) is not the same as the differential operator A.  

Remarks  
1) Thus, in the IVP (for isotropic matter) the space-time differential operator 

is linear but its adjoint *A  is not the same as the operator A itself. This is pri-
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marily due to the additional terms appearing as a consequence of open boundary 

4Γ  when performing integration by parts in time. On the open boundary  

neither u nor 
u
t

∂
∂

 are known, hence the terms resulting from integration by 

parts (in time) on 4Γ  must be considered in defining adjoint *.A   

2) Since in this case A is linear but *A A≠ , the space-time integral form 
based on fundamental lemma using STGM/WF yields a bilinear functional 
(containing both u and the test function v) that is not symmetric. The conse-
quence of this is that functional ( ),B ⋅ ⋅  and ( )l ⋅  in the integral cannot be used  

to construct a functional ( ) ( ) ( )1 ,
2

I u B u u l u= −  such that ( ) 0I uδ =  gives 

the integral from ( ) ( ),B u v l v= .  

3) Due to non-symmetry of functional ( ),B ⋅ ⋅  in the integral form, an 
extremum principle ( 2 Iδ  i.e. first variation of the integral form, 0, 0, 0> = < ) 
is not possible either.  

4) We illustrate 1)-3) in the following.  

5.2. Integral Form for Model Problem Using Fundamental Lemma 
and STGM/WF 

Let v uδ= , be the test function, then based on fundamental lemma we can 
write the following using (49) over the space-time domain xtΩ  

( )1 , 0
xt

bAu F v
Ω

+ =                         (64) 

or 
2 2

12 2
1

d 0
xt

bu uv v F v
t xΩ

 ∂ ∂
− + Ω = 

∂ ∂ 
∫                    (65) 

We transfer one order of differentiation from u to v for each term in the inte-
grand of (65) 

( )

1

1

1
1 1 1

,

d d d d

0

xt

xt xt

b

b
x

Au F v

v u v u u uv v n F v
t t x x t x

Ω

Ω Γ Ω

+

 ∂ ∂ ∂ ∂ ∂ ∂
= − + Ω+ Γ − Γ + Γ ∂ ∂ ∂ ∂ ∂ ∂ 
=

∫ ∫ ∫ ∫ 

     (66) 

Simplification of the boundary integrals (see Equation (57) and (59)) using 
BCs, ICs and their variations gives 

( )

( ) [ ]

4

4

4

d , d

, , ; 1, d d ; : 0,

t t

t

u uvn v n n
t t

uv x n x L
t

τ

τ

τ

τ

Γ Γ

Γ

∂ ∂
Γ = Γ

∂ ∂

 ∂
= = Γ = Γ ∂ 

∫ ∫

        (67) 

and 

1
1

d 0x
u vn
xΓ

∂
Γ =

∂∫                        (68) 
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using (67) and (68) in (66) 

( )

( )
4

1

1
1 1

,

, , d

0

xt

xt xt

b

b

Au F v

v u v u uv x F v
t t x x t τ

τ

Ω

Ω ΩΓ

+

   ∂ ∂ ∂ ∂ ∂
= − + + + Γ   ∂ ∂ ∂ ∂ ∂  

=

∫ ∫         (69) 

( ) ( ) ( )1 , , 0
xt

bAu F v B u v l v
Ω

+ = − =                 (70) 

in which 

( ) ( )
41 1

, d , ,
xt

v u v u uB u v v x
t t x x t τ

τ
Ω Γ

   ∂ ∂ ∂ ∂ ∂
= − + Ω+   ∂ ∂ ∂ ∂ ∂  
∫         (71) 

( ) 1 dbl v F v= − Ω∫                         (72) 

Remarks  
1) ( ),B u v  is bilinear  
2) ( ) ( ), ,B u v B v u≠  i.e. ( ),B ⋅ ⋅  is not symmetric  
3) In this case if we construct a functional 

( ) ( )1 ,
2

I B u u l u= −                        (73) 

( ) ( )
4

2 2

1
1 1d , , ,
2 2 xt

xt

bu u uu x F u
t t t τ

τ
Ω

Ω Γ

   ∂ ∂ ∂   = − + Ω+ +       ∂ ∂ ∂      
∫       (74) 

Then 

( )

( ) ( )
4

4

1 1

1

1d , ,
2

1 , , ,
2

xt

xt

b

v u v u uI v x
t t x x t

vu x F v
t

τ

τ

δ τ

τ

Ω Γ

Ω
Γ

   ∂ ∂ ∂ ∂ ∂
= − + Ω+   ∂ ∂ ∂ ∂ ∂  

 ∂
+ + ∂ 

∫
         (75) 

which is not the same as (69) or (70)-(72). 
4) Thus, in this case a functional I cannot be constructed using ( ),B ⋅ ⋅  and 
( )l ⋅  from the integral form (weak form). 

5.3. Derivation of Mathematical Model for IVP from the Energy 
Functional 

In this section, we construct an energy functional I consisting of kinetic energy, 
strain energy and potential energy of loads that is believed to correspond to the 
initial value problem (49). We consider isotropic and homogeneous matter. 
Since (49) is in dimensionless form, we can construct an energy functional as 
follows 

2

11 11 1
1 d
2

xt

buI F u
t

σ ε
Ω

 ∂ = − + Ω   ∂  
∫                  (76) 

11
1

u
x

ε ∂
=
∂

                           (77) 
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substituting for (77) in (76) 
2

11 1
1

1 d
2

xt

bu uI F u
t x

σ
Ω

 ∂ ∂ = − + Ω   ∂ ∂  
∫                 (78) 

We take first variation of I and set it to zero, necessary condition for an 
extremum of I. 

11 1
1

d 0
xt

bu u uI F u
t t x

δ δδ σ δ
Ω

 ∂ ∂ ∂
= − − + Ω = ∂ ∂ ∂ 
∫             (79) 

We transfer differentiation from uδ  to 
u
t

∂
∂

 and 11σ  using integration by 

parts 

2
11

1 112
1

d d d 0
xt

b
t x

u uI u u F u un n u
x tt
σ

δ δ δ δ δ σ δ
Ω Γ

 ∂∂ ∂
= − + + Ω+ Γ − Γ = ∂ ∂∂ 
∫ ∫ ∫ 

 (80) 

or 
2

11
1 112

1

d d 0
xt

b
t x

u uI F u un n u
x tt
σ

δ δ δ σ δ
Ω Γ Γ

 ∂∂ ∂
= − + + + Γ − Γ = ∂ ∂∂ 
∫ ∫ ∫ 

      (81) 

it has been shown 

1

4

11d , d 0t x
u uun u n u
t tτ

τ

δ δ σ δ
Γ ΓΓ

 ∂ ∂
Γ = Γ = ∂ ∂ 

∫ ∫ 

and             (82) 

using (82) in (81) 

4

2
11

12
1

, 0
xt

bu uI F u u
x tt τ

τ

σ
δ δ δ

Ω Γ

   ∂∂ ∂
= − + + + =   ∂ ∂∂   
∫            (83) 

In the absence of the scalar product term over 4Γ , the Euler’s equation would 
have been (when the matter is homogeneous and isotropic) 

2
11

12
1

0bu F
xt
σ∂∂

− − =
∂∂

                       (84) 

or 
2 2

12 2
1

0bu u F
t x

∂ ∂
− − =

∂ ∂
                       (85) 

which is the same as the IVP. However, because of the open boundary 4Γ  the 
term ( )

4
,
Γ

 in (76) is not zero, hence (84) or (85) is not the Euler’s equation 

(mathematical model) corresponding to (83).  
Remarks  
1) We clearly see that there is no correspondence between the energy func-

tional I (used in structural mechanics) and the initial value problem (85) even 
for isotropic and homogeneous matter. More specifically the mathematical 
models used currently that are believed to be based on energy methods for iso-
tropic and homogeneous matter obviously cannot be derived using the energy 
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functional consisting of kinetic energy, strain energy and the potential energy of 
load without neglecting the influence of the open boundary.  

2) When deforming solid continua is non-isotropic and non-homogeneous, 
then  

a) Strain energy terms have no basis (in 3 ) in the energy functional I. 
b) Derivation of Euler’s equation is not possible due to the fact that xtΩ  does 

not contain identical material particles, hence the volume integral must be 
maintained (83).  

c) Even for isotropic, homogeneous matter, in the derivation of mathematical 
model (85) from (83) we must neglect the boundary integral over open bounda-
ry 4 .Γ   

5.4. Energy Functional in 3  and the Mathematical Model for 
IVP 

The energy functional I consisting of kinetic energy, strain energy and potential 
energy of loads in 3R  can be written as (not nondimensionalized) follows for 
homogeneous, isotropic matter. 

22 2 22 2
31 2

0 02 2 2

1 d
2

xt

b
ji ij i i

uu uI F u
t t t

ρ σ ε ρ
Ω

       ∂∂ ∂  = + + − + Ω      ∂ ∂ ∂       
∫      (86) 

we note that (84) is only valid for the isotropic case, as for non-isotropic case 

ji ijσ ε  as strain energy has no theoretical basis. Following Section 4, we can 
write (86) as 

22 2 22 2
31 2

0 02 2 2

1 d
2

xt

bi
ji i i

i

u uu uI F u
xt t t

ρ σ ρ
Ω

       ∂ ∂∂ ∂  = + + − + Ω      ∂∂ ∂ ∂       
∫      (87) 

Assuming that I is differentiable in its arguments, hence δI is unique, then 
0Iδ =  is a necessary condition for an extremum of I. 

3 31 1 2 2
0 0 d

0
xt

bi
ji i i

j

u u uu u u uI F u
t t t t t t x

δ δδ δδ ρ σ ρ δ
Ω

 ∂ ∂ ∂∂ ∂ ∂ ∂ = − + − + Ω   ∂ ∂ ∂ ∂ ∂ ∂ ∂  
=

∫   (88) 

we transfer differentiation from 1 2 3, ,u u uδ δ δ  and iuδ  to their coefficients. 

22 2
31 2

0 1 2 3 02 2 2

1 2
0 1 0 2

3
0 3

d

d d

d d

xt

j

ji b
i i i

j

t t

t ji x i

uu uI u u u u F u
xt t t

u un u n u
t t
u

n u n u
t

σ
δ ρ δ δ δ δ ρ δ

ρ δ ρ δ

ρ δ σ δ

Ω

Γ Γ

Γ Γ

 ∂ ∂∂ ∂
= − − − + + Ω   ∂∂ ∂ ∂  

∂ ∂
+ Γ + Γ

∂ ∂
∂

+ Γ − Γ
∂

∫

∫ ∫

∫ ∫

 

 

  (89) 

in (89) even if the last boundary integral is zero (we assume so in the following), 
the other three boundary terms would yield integrals on open boundary at 
t τ=  (say 4Γ ). Thus, we can write (89) as 
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4 4 4

22 2
31 2

0 1 2 3 02 2 2

31 2
1 2 3

d

, , ,

0

xt

t t t

ji b
i i i

j

n n n

uu uI u u u u F u
xt t t

uu uu u u
t t tτ τ τ

σ
δ ρ δ δ δ δ ρ δ

δ δ δ

Ω

Γ Γ Γ

  ∂ ∂∂ ∂
 = − − − + + Ω     ∂∂ ∂ ∂    

     ∂∂ ∂
+ + +          ∂ ∂ ∂     

=

∫

 (90) 

The integrals over 4Γ  are not zero as they are on the open boundary 4Γ  (at 

t τ= ) on which iu  or iu
t

∂
∂

 are not known. In the absense of integrals over 

4Γ , the Euler’s equation resulting for 0Iδ =  in (90) are 

0 0 0ji bi
i

j

u
F

t x
σ

ρ ρ
∂∂

− − =
∂ ∂

                   (91) 

which is balance of linear momenta. 
However, since the integrals over 4Γ  are not zero, Euler’s equations (91) 

cannot be derived from (90). 
Remarks  
1) In structural mechanics for homogeneous, isotropic matter as well as 

non-homogeneous, non-isotropic matter such as composites, the mathematical 
model (91) is used and is derived using the energy functional (86). The deriva-
tion presented here clearly shows this involves approximation of neglecting the 
boundary integrals over 4Γ  (open boundary at t τ= ) in (90).  

2) Another important point to note is that, in the derivation of the Euler’s 
equations that they are valid at a material point and for every material point in 
the volume, there is the inherent assumption that the continua are homogeneous 
and isotropic. Only then the choice of volume is arbitrary as every material point 
in the volume is identically the same, hence we can set the integrand to zero 
which gives us the differential model at a material point.  

3) We finally conclude that the derivation presented is only possible for iso-
tropic matter and that (91) cannot be derived from the functional I in (86) as 
used commonly in the published works for both isotropic and non-isotropic 
solid continua.  

6. Principle of Virtual Work 

Principle of virtual work has been used in CCM as well as NCCM. The basic 
concepts remain the same in both cases. Thus, it suffices to consider CCM only 
in the following (in Langrangian description). 

Definition: When a deformed body (volume of matter) is in stable equilibri-
um due to actions and reactions, then the work done by all forces due to virtual 
displacements is zero. 

The virtual displacements at the material points are hypothetical or imaginary 
displacements such that due to the application of these, the boundary conditions 
and the loads as well as their points of application remain unaltered, hence en-
suring that the equilibrium of the deformed body is not affected due to virtual 
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displacements. 
We consider a solid continuum with deformed volume V  bounded by V∂ . 

We consider small deformation, small strain, hence the undefined and defined 
coordinates as approximately same ( x x≈ ), thus no change in volume, implying 
that (V V≈ ) and ( V V∂ ≈ ∂ ). Let the volume V be subjected to body forces,  

inertial forces and tractions P on V∂ . Then, 
2

0 02 , bi
i

u
F

t
ρ ρ

∂
∂

 and ; 1, 2,3ji

j

i
x
σ∂

=
∂

  

are the inertial forces, body forces and the forces due to traction P on V∂  (after 
using divergence theorem and Cauchy principle) per unit volume at a material 
point x or x . Let ; 1, 2,3iu iδ =  be virtual displacements at the material point x 
or x  then the total virtual work for the volume V is (no sum over i, but sum 
over j) is given by the following and is zero. 

2

0 02 d 0; 1,2,3
xt

jibi
i i i i

j

u
u F u u i

xt
σ

ρ δ ρ δ δ
Ω

 ∂∂
− − Ω = =  ∂∂ 

∫          (92) 

where [ ]0,xt x t x τΩ = Ω ×Ω = Ω × ; xΩ  ( xt xtΩ = Ω Γ , Γ  being the closed 
boundary of xtΩ ) being volume V and τ  being final value of time. 
or 

2

0 02 d 0
xt

jibi
i i

j

u
F u

xt
σ

ρ ρ δ
Ω

 ∂∂
− − Ω =  ∂∂ 

∫                 (93) 

Let ; 1, 2,3i iv u iδ= =                       (94) 

where iv  are test functions, then we can write (93) as 
2

0 02 d 0
xt

jibi
i i

j

u
F v

xt
σ

ρ ρ
Ω

 ∂∂
− − Ω =  ∂∂ 

∫                 (95) 

we note that 0i iv uδ= =  on *Γ  if 0
i iu u=  (specified) on *Γ . We can also 

write (95) as 
2

0 02 , 0
xt

jibi
i i

j

u
F v

xt
σ

ρ ρ
Ω

 ∂∂
− − =  ∂∂ 

                 (96) 

Let 

( )
2

0 02
ji bi

i i i
j

uA f F
xt
σ

ρ ρ
∂∂

= − =
∂∂

u and                (97) 

Then, (96) can be written as 

( )( ), 0
xt

i i iA f v
Ω

− =u                       (98) 

using fundamental lemma of the calculus of variations we conclude from (98) 
that the Euler’s equations are 

( ) 0 , ; 1, 2,3i i xtA f x t i− = ∀ ∈Ω =u                 (99) 

which in fact are the balance of linear momenta.  
Remarks  
1) We see that starting with the statement of virtual work (92), we are able to 
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obtain the corresponding differential form of the mathematical model using the 
fundamental lemma of the calculus of variations.  

2) It is obvious that choice of the work terms in (92) is crucial. In this example 
we considered time dependent deformation of a simple solid for which the iner-
tial forces, body forces and those due to tractions P on V∂  are well understood 
and known. This may not be the case in more complex deformation physics.  

3) Equivalence of the virtual work statement (92) and the integral form (98) 
resulting from it using the fundamental lemma is important to note. This con-
firms that (92) is in fact the integral statement based on fundamental lemma i.e. 
the integral form based on principle of virtual work is the same as the integral 
form resulting from the fundamental lemma when we know the mathematical 
model. It is necessary to know the mathematical model because it is only in this 
case that the statement of virtual work like (92) will contain all of the terms that 
are present in the mathematical model.  

4) The conservation and balance laws of CCM and NCCM and the consistent 
constitutive theories are well recognized and accepted as valid mathematical de-
scriptions of solid and fluent continua. In view of this and remark (3), the use-
fulness of principle of virtual work in deriving mathematical models is very 
minimal to none.  

5) Once we have the mathematical model from CCM or NCCM, calculus of 
variations provides means for obtaining their solution (approximate), thus there 
is no need to resort to principle of virtual work as used currently in mechanics.  

6) Principle of virtual work is the same as the integral statement resulting 
from fundamental lemma. Thus, the principle of virtual work is obviously not 
limited to solid mechanics. Any valid mathematical model based on CCM or 
NCCM regardless of the field of application or level of complexity can be used in 
conjunction with the fundamental lemma to construct integral form(s), that are 
indeed statements of virtual work (or energy). The converse is difficult to 
achieve. That is, a correct statement of virtual work without the knowledge of a 
mathematical model is quite difficult and in some cases, may not be possible due 
to lack of knowledge of precise nature of work or energy conjugate pairs.  

7) From the published works, we note that principle of virtual work is primar-
ily used for solid mechanics due to the fact that virtual work implies forces and 
virtual displacements. We have shown that principle of virtual work is not lim-
ited to solid mechanics. Once we know the mathematical model, fundamental 
lemma is all that is needed to construct integral form that is precisely that the 
corresponding statement of virtual work.  

8) In view of the remarks (1)-(7), it is straight forward to conclude that the 
concept of principle of virtual work used presently is a more restricted view of 
the calculus of variations.  

9) Mathematical classification of differential operators for BVPs and IVPs and 
the integral forms based on fundamental lemma for different choices of test 
function is a much more comprehensive and rigorous approach [42] [43] [45] as 
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opposed to energy methods or principle of virtual work.  
10) We only have transparent correspondence between energy methods, prin-

ciple of virtual work and calculus of variations for self-adjoint differential oper-
ators in BVPs for which all three approaches yield the same energy functional, 
integral statement and mathematical model.  

7. Summary and Conclusion 

In the following we summarize the work presented in this paper and draw some 
conclusions. 

1) The objective of this work is to investigate the consistency and legitimacy of 
the mathematical models for BVPs and IVPs for homogeneous and isotropic 
matter as well as for non-homogeneous and non-isotropic matter that are de-
rived using energy functional approach. For BVPs, the energy functional consists 
of strain energy and the potential energy of loads. For IVPs, the energy func-
tional consists of kinetic energy, strain energy and the potential energy of loads.  

2) We consider BVPs in the following: 
a) For linear, reversible mechanical deformation with small strain and small 

deformation, calculus of variations, energy methods and CCM, all yield the same 
mathematical model for isotropic, homogeneous matter. This of course is due to 
the fact that the differential operators in this case are linear and their adjoint is 
the same as the operator itself. 

b) For non-homogeneous and non-isotropic matter with orthotropic or ani-
sotropic constitutive relations, there is no basis for using ji ijσ ε  as strain energy. 
We note that work conjugate pair ji ijσ ε  is due to entropy inequality containing 

ji ijσ ε  as rate of work conjugate pair. When the matter is not isotropic, there is 
no basis to assume ji ijσ ε  as work conjugate pair. Even if we assume this to be 
true, the volume xΩ  in this case contains non-isotropic matter, hence the dif-
ferential model (Euler’s equation) cannot be derived as we must maintain the 
volume integral containing the different material points of non-isotropic matter. 
Thus, for non-isotropic matter regardless of whether the problem is linear or 
non-linear (but reversible mechanical deformation), a valid energy functional 
needs to be established using valid strain energy expression. Even if this is possi-
ble to accomplish, the derivation of the differential form of the mathematical 
model is not possible due to lack of isotropy.  

3) In case of IVPs:  
a) The space time operators resulting from CCM (BLM) are either 

non-self-adjoint or non-linear. For linear operators (as in structural mechanics) 
adjoint *A  of the space-time operator is not the same as the operator A. Thus, 
for IVPs use of the fundamental lemma and STGM/WF yields functionals 
( ),B ⋅ ⋅  and ( )l ⋅  in which ( ),B ⋅ ⋅  is bilinear but not symmetric and ( )l ⋅  is 

linear. These functionals cannot be used to construct a energy functional  

( ) ( ) ( )1 ,
2

I u B u u l v= −  such that ( ) ( ) ( ), 0I u B u v l vδ = − =  holds.  
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b) We have shown that using the energy functional (for isotropic matter) I 
consisting of kinetic energy, strain energy and potential energy of loads, it is not 
possible to derive a mathematical model (the space-time Euler’s equation) that 
represents BLM (in CCM). This is primarily due to the open boundary (at t τ= ) 
on which the boundary integral does not vanish. On the open boundary at t τ=  
the dependent variable and its time derivation are not known. Thus, even for 
isotropic, homogeneous reversible deformation physics, the differential form of 
the mathematical model cannot be derived from the energy functional consisting 
of kinetic energy, strain energy and the potential energy of loads.  

c) When the deforming matter is non-isotropic, the first issue is the validity of 

ji ijσ ε  as strain energy. The second issue is the same as in the case of isotropic 
matter i.e. presence of boundary integrals corresponding to the open boundary 
and third issue is that, in this case we cannot set the integrand to zero in the 

0Iδ =  due to the fact that the volume xΩ  now contains different material 
points due to lack of isotropy.  

d) Thus for IVPs, derivation of a valid differential form of mathematical mod-
el from the energy functional consisting of kinetic energy, strain energy and po-
tential energy of loads is not possible for isotropic as well as non-isotropic con-
tinua (including composites). This is primarily due to the fact that the space-time 
differential operators are not self-adjoint (may be linear but *A A≠ ).  

4) Based on work presented in this paper, we can conclude that derivation of 
mathematical models from the energy methods only remains valid for isotropic, 
homogeneous matter and that a valid mathematical model using energy meth-
ods can only be derived for BVPs with linear, isotropic reversible mechanical 
work with small strain, small deformation physics.  

5) We also remark that use of the energy functionals directly in processes such 
as finite element method employing integral forms over element domain e

xΩ  
also requires caution: 

a) In using ji ijσ ε  as strain energy when the matter is non-isotropic as there is 
no basis for it based on entropy inequality for isotropic matter.  

b) In not discarding the terms on the open boundary, if integration by parts is 
employed in time. 

c) To our knowledge, all currently used finite element processes are in viola-
tion of one or both of these aspects. When the matter is isotropic and homoge-
neous, violation of b) occurs and for non-homogeneous and non-isotropic mat-
ter, both a) and b) are violated.  

6) It is shown that the integral form resulting from the principle of virtual 
work is exactly the same as the integral form from the fundamental lemma when 
the mathematical model is known. If the Euler’s equation(s) resulting from the 
principle of virtual work are not the same as the mathematical models based on 
CCM or NCCM, then the integral form in the principle of virtual work is flawed. 
Thus, in view of the thermodynamically consistent mathematical models based 
on CCM or NCCM and calculus of variations, there is virtually no benefit to 
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pursue principle of virtual work anymore.  
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