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Abstract 
In this paper, we mainly considered the dynamical behavior of a preda-
tor-prey system with Holling type II functional response and Allee-like effect 
on predator, including stability analysis of equilibria and Hopf bifurcation. 
Firstly, we gave some sufficient conditions to guarantee the existence, the lo-
cal and global stability of equilibria as well as non-existence of limit cycles. By 
using the cobweb model, some cases about the existence of interior equili-
brium are also illustrated with numerical outcomes. These existence and sta-
bility conclusions of interior equilibrium are also suitable in corresponding 
homogeneous reaction-diffusion system subject to the Neumann boundary 
conditions. Secondly, we theoretically deduced that our system has sad-
dle-node bifurcation, transcritical bifurcation and Hopf bifurcation under 
certain conditions. Finally, for the Hopf bifurcation, we choose d as the bi-
furcation parameter and presented some numerical simulations to verify fea-
sibility and effectiveness of the theoretical derivation corresponding to the 
existence of ky , respectively. The Hopf bifurcations are supercritical and 
limit cycles generated by the critical points are stable. 
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1. Introduction 

In this paper, we consider a predator-prey system with Holling type II functional 
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response and Allee effect on predator, which is described by the following non-
linear ordinary differential equations (ODEs) 

( )2
1 1

1

1 : , ,x qxyx r x m x dx f x y
K a x

 
= − − − − =  + 
             (1a) 

( )1
2 2

2

1 : ,
e qxyy yy r y m y g x y

K y e a x
 

= − + − =  + + 
             (1b) 

subject to initial conditions ( ) ( )0 , 0 0x y ≥ . Here, functions ( )x x t=  and 
( )y y t=  are the prey and predator densities at time t, respectively. All above 

positive constants have biological considerations. Parameters 1r  and 2r  de-
note the intrinsic growth rate of prey and predator, respectively; 1K  and 2K  
represent the carrying capacity of the environment for prey and predator, re-
spectively; a is the half-saturation constant; q is the search efficiency of predator 
for prey; 1m  and 2m  are the mortality rate of prey and predator species, re-
spectively; 1e  is the biomass conversion; d is the intra-specific competition 
coefficient; e is the Allee effect constant. For convenience, we denote 1e q  as c.  

The specific growth term 1
1

1 xr x
K

 
− 

 
 governs the increase of prey in the lack 

of predator, while the specific growth term 2
2

1 yr y
K

 
− 

 
 governs the increase  

of predator. The square term 2dx  denotes intrinsic decrease of prey. The  

coupled term xy
a x+

, named Holling type II functional response, describes how  

predators transform harvested prey into the growth of itself, and also refers to 
the change in the density of prey attached per unit time per predator as prey 
density changes. It was proposed by C.S. Holling in 1965 as well as other Holling 
type functional responses and extended the classical Lotka-Volterra preda-
tor-prey systems in biomathematics [1] [2] [3] [4]. 

The term y
y e+

 on predator is called the Allee effect. The Allee effect, named  

by Warder Clyde Alee, plays a significant role in determining dynamical beha-
vior of predator-prey systems, even ecological and social models [5] [6] [7]. 
These phenomena occur in small or sparse populations and are widely accepted 
to be common in nature. They are related to a positive correlation between pop-
ulation size and fitness at very low population size and another phenomenologi-
cal feature that may induce extinction of populations [8] [9] [10]. The Allee ef-
fects are called strong if they cause critical population sizes, while they are called 
weak if they do not result in critical sizes [7]. The strong Allee effect causes the 
so-called Allee threshold that populations need to surpass it in order to avoid ex-
tinction and survive permanently [9] [11]. On the contrary, a population with 
weak Allee effect does not have such above threshold [12]. Other names are pos-
itive density dependence (in contrast to classical negative density dependence) 
and depensatory dynamics (in contrast to classical compensatory dynamics) [7]. 
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Most references concentrate on the strong Allee effect. 
Like Holling type functional responses, predator-prey systems incorporating 

Allee effect have also received much attention from ecologists and mathemati-
cians [13]-[18]. For Allee effect incorporating into the prey population with 
multiply form, in reference [13], the authors extended a predator-prey system 
with strong Allee effect and a functional response of the ratio of prey to predator. 
By means of bifurcation analysis and advance numerical techniques for the cal-
culation of invariant manifolds of equilibria, they stated the consequences of the 
(dis)appearance of limit cycles, homoclinic orbits, and heterclinic connections in 
the global arrangement of phase plane near a Bogdanov-Takens bifurcation. The 
reference [14] examined global behavior of a Gause-type predator-prey system 
with Holling type III functional response and weak Allee effect on the prey 
growth. They also proved that the origin is a saddle point and obtained existence 
of two limit cycles surround a stable interior equilibria: just like that with strong 
Allee effect. In [15], Zu et al. studied a predator-prey system with Allee effect on 
prey and investigated local asymptotic stability of equilibria. Meanwhile, the au-
thors found that Allee effect of prey population can bring about unstable or sta-
ble periodic fluctuations. Based on above reference, Zu and Mimura [16] consi-
dered the Holling type II functional response and local asymptotic stability of 
equilibria. Compared with the model without Allee effect, they found that the 
effect on prey increases extinction risk of predator and prey. An explicit algo-
rithm was also obtained to determine the direction of Hopf bifurcation as well as 
the stability of periodic solutions. The phenomenon of periodicity in this refer-
ence is similar to that in [15]. 

While the reference [17] showed that, when the Leslie-Gower predator-prey 
model with additive Allee effect on prey has two positive equilibria, there exists a 
separatrix curve that separates the behavior of trajectories, i.e. the model is 
highly sensitive to initial conditions. In [18], the authors began with local popu-
lation dynamics and then constructed a model including both local population 
and metapopulation dynamics. Their results indicated that the Allee-like effect 
in a metapopulation may emerge from the imposed Allee effect at the local pop-
ulation level and severe demographic stochasticity may compound the metapo-
pulation extinction risk posed by the Allee effect. 

The Allee effect was also researched in predator-prey systems with delay, im-
pulse or diffusion. Xiao et al. [19] considered local asymptotic stability and Hopf 
bifurcation of a Holling type II predator-prey model incorporating time delay 
and Allee effect in prey. By using the delay as a bifurcation parameter, they 
showed that if the birth rate is small enough or the Allee effect is large enough, 
then both prey and predator extinct, i.e. the Allee effect can influence stability of 
the system. In [20], by using the Mawhins continuation theorem of coincidence 
degree and analysis techniques, the authors obtained some sufficient conditions 
of the existence of periodic solutions in a nonautonomous predator-prey system 
with Holling type II functional response, strong Allee effect and impulsive per-
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turbation. They proved that their system has at least one positive ω -periodic 
solution. While in reference [21], Cui et al. considered a diffusive predator-prey 
system with strong Allee effect and a protection zone for the prey. If the Allee 
effect threshold is low and the protection zone is large, they showed that the over 
exploitation phenomenon can be avoided. 

This paper mainly concentrate on the dynamical behavior analysis of a com-
plicated and realistic predator-prey system (1) with Allee-like effect [18] [22] on 
the specific growth term of predator with multiply form and an intrinsic de-
crease term on prey, which is different from above references involving ODEs 
systems with the additive Allee effect on prey or Allee-like effect on prey. The 
rest of this paper is organized as follows. Preliminaries, such as boundedness and 
permanence, are given in Section 2. In section 3, we give sufficient conditions for 
stability analysis of equilibria by using linearization technique and non-existence 
of limit cycles. In Section 4, bifurcation analysis and numerical simulations of 
Hopf bifurcation are presented. In Section 5, we present summary and some re-
marks. 

2. Preliminaries 

In this section, we devote to give priori foundations for our system. Firstly, we 
denote the first quadrant as 2R+ , and its closure is denoted as 2 2R R+

+ = . For 
biological consideration, the system (1) is defined on the domain 2R+  and all 
the solutions are nonnegative with initial conditions ( ) ( )0 0, 0x t y t ≥ , i.e. 2R+  
is an invariant set. Thus, any trajectory starting from 2R+  cannot cross the 
coordinate axes. Furthermore, all the solutions are bounded. Now we will prove 
following theorems. 

Theorem 1 (Uniform boundedness) All the solutions of system (1) are un-
iformly bounded in 2R+  with initial conditions ( ) ( )0 0, 0x t y t ≥ . 

Proof of theorem 1. Here we introduce an auxiliary function 1z e x y= +  and 
a constant { }1 2min ,m m m= , it is obvious to see that 

( ) ( )

( )

2
2

1 1 1 2 2
1 2

1 1 1 2 2

1

1 .
4

r yxz e r x m x K y m y
K K y e

e r K r K mz

    
≤ − − + − −     +       

≤ + −



 

By applying the theory of differential inequality [23], we obtain 

( )1 1 1 2 2
1limsup .

4t
z e r K r K

m→∞
≤ +                    (2) 

All the solutions of the system (1) are confined in the region 

( ) ( ) ( )1 1 1 2 2
1, | 0 , , for any 0 .

4
x y z x y e r K r K

m
 ≤ ≤ + + > 
 

   

Thus we complete the proof.                                       □ 
Theorem 2 (Permanence) If parameters satisfy ( )( )2 1 21c m m aλ ω− − >  and 
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2
1 1

1
1

1

0,

qMr m
a

r d
K

ω
− −

= >
+

                       (3) 

where ( )0,1λ ∈  and 2M  is a positive upper bound of y, then the system (1) is 
permanence in 2R+ . 

Proof of theorem 2. From the theorem 1, there exist a positive upper bound 

1ξ , such that 

{ } 1max limsup , limsup .
t t

x y ξ
→∞ →∞

≤                    (4) 

For the Equation (1a), we have 2 0M >  and sufficiently large 0T , such that 

2 1
1 1 0

1

, .
qM rx x r m d x t T

a K
   ≥ − − − + ∀ ≥   
    

  

Similarly, by using lemmas in [24], we have 1liminf
t

x ω
→∞

≥ . That is to say,  

there exist sufficiently large T, such that ( ) 11x λ ω≥ − , t T∀ ≥ . By substituting 
it into Equation (1b), we derive an inequality 

( ) ( )
( )

1 2 222

2 1

1
.

1
c m amry y y

K a
λ ω

λ ω
− − −

≥ − +
− +

  

By using above lemmas again, we complete the proof. 

3. Equilibria 

In this section we will discuss equilibria of system (1) with their existence condi-
tions and stability analysis. It is obvious that the system (1) has equilibria:  

( )0 : 0,0E = , ( )1 1: ,0E x= , ( ) ( )2 : 0,k
kE y= , 1,2k = , where 1 1

1
1

1

:
r mx
r d
K

−
=

+
 and 

( )22 2 2 2
1,2 2 2

2 2

2

4
: , .

2
r m m ery r m

r K
K

− ± ∆
= ∆ = − −                (5) 

The point 1E  enquiries 1 1r m> , while the points ( )
2

kE  all exist when 

2 2r m>  and 0∆ > . If 2 2r m>  and 0∆ = , then 1 2y y= , i.e. the two equili-
bria ( )1

2E  and ( )2
2E  collide with each other and the system (1) has an unique 

boundary equilibrium when 0y > . In this special case, we denote it as  
( )2 20,E y= . 

3.1. Existence of Interior Equilibria 

Here we firstly denote interior equilibrium as ( )* * *: ,E x y=  or ( )1 2,s s . The 
point *E  must satisfies following algebraic equations ( ) ( ), , 0f x y g x y= =  or 

1 1
1

1 0,x qyr m dx
K a x

 
− − − − =  + 

                     (6a) 
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2 2
2

1 0.y y cxr m
K y e a x

 
− + − =  + + 

                    (6b) 

The Equation (6a) implies that 1 1r m> , and we have: 
( )1 1r m a

y
q
−

→  as 

0x → ; 1x x→  as 0y → . For the Equation (6b), we have: ky y→  ( 1k =  or 

2) as 0x → ; 2

2

amx
c m

→
−

 or ∞  as 0y → . The derivative of implicit func-

tion ( )y y x=  from the Equation (6b) is 

( ) ( )
( ) ( )

2
2

2
2 2

,
2

K ac y e
y x

r y y e K e a x

+
′ =

+ − +  
                (7) 

thus we denote the positive root of the quadratic equation ( ) 22 0y y e K e+ − =  
as 

1

2
2sy e e K e= − + + . Based on above analysis, some cases will be given to il-

lustrate the existence of the interior equilibria *E  when the curve of left hand 
side function from the Equation (6b) falls in 2R+ . 

Case 1. If following conditions 

( )
1

1 1 2
1

2

0 ,0k s

r m a amy y x
q c m
−

< < < < <
−

              (8) 

hold, then an interior equilibrium exist. For instance, let 1 1r = , 2 1r = , 

1 20K = , 2 80K = , 0.3q = , 15c = , 1a = , 1 0.3m = , 2 0.5m = , 9e =  and 
6.497942687d = , then equilibrium ( )3 0.02257205799,1.882212454E ≈ . 

Case 2. If following condition 

( )
1

1 1
s k

r m a
y y

q
−

< <                       (9) 

holds, then an interior equilibrium exist. For instance, let 1 1r = , 2 1r = , 

1 20K = , 2 80K = , 0.01q = , 15c = , 1a = , 1 0.3m = , 2 0.5m = , 9e =  and 
6.5d = , then equilibrium ( )4 0.01846631478,58.97384772E ≈ . 

Case 3. If following conditions 

( )
1

1 1 2
1

2

0 ,k s

r m a amy y x
q c m
−

< < < <
−

               (10) 

hold, then an interior equilibrium exist. For instance, let 1 1r = , 2 6r = , 

1 20K = , 2 80K = , 1q = , 15c = , 10a = , 1 0.3m = , 2 0.5m = , 9e =  and 
6.5d = , then equilibrium ( )5 0.09827333849,0.5686300643E ≈ . 

Case 4. If following conditions 

( )
1

1 1 2
1

2

0 ,k s

r m a amy y x
q c m
−

< < < <
−

              (11) 

hold, then an interior equilibrium exist. For instance, let 1 1r = , 2 6r = , 

1 20K = , 2 80K = , 0.1q = , 15c = , 10a = , 1 0.3m = , 2 0.5m = , 9e =  and 
6.5d = , then equilibrium ( )6 0.1060408106,0.5490299197E ≈ . 

Case 5. If following conditions 
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( )
1

1 1
2 ,0 k s

r m a
c m y y

q
−

= < < <                   (12) 

hold, then an interior equilibrium exist. For instance, let 1 1r = , 2 0.8r = , 

1 20K = , 2 10K = , 0.3q = , 0.05c = , 1a = , 1 0.3m = , 2 0.05m = , 10e = , 
0.4d = , then equilibrium ( )7 1.484367905,0.2652844730E ≈ . 

Case 6. If ky  not exist and following condition 

2
1

2

0
am x

c m
< <

−
                         (13) 

holds, then an interior equilibrium exist. For instance, let 1 0.4r = , 2 0.2r = , 

1 2.5K = , 2 0.5K = , 0.3q = , 0.4c = , 0.22a = , 1 0.35m = , 2 0.15m = , 
0.1e =  and 0.1750056774d = , then equilibrium  
( )8 0.09221932871,0.01988420968E ≈ . 

Case 7. If 1 < 0y  and the condition (13) holds, then an interior equilibrium 
exist. For instance, letting 1 0.4r = , 2 0.2r = , 1 10K = , 2 20K = , 0.3q = , 

1c = , 0.4a = , 1 0.3m = , 2 0.5m = , 0.4e =  and 0.1220933748d = , then 
equilibrium ( )9 0.3360884070,0.1116947808E ≈ . 

From above cases, we will also give some cases to illustrate the phenomena 
that two interior equilibria exist at the same time. 

Case 8. If following conditions 

( )
1

1 1 2
2 1 1

2

0 ,s

r m a amy y y x
q c m
−

< < < < <
−

               (14) 

hold, then two interior equilibria coexist. For instance, let 1 1r = , 2 1r = , 

1 20K = , 2 80K = , 0.05q = , 1c = , 3a = , 1 0.3m = , 2 0.5m = , 4.24e =  
and 1d = , then equilibrium ( ) ( )1

10 0.08140728865,37.87187278E ≈  and  
( ) ( )2
10 0.6389354884,2.119151346E ≈ . Here ( )1

10 1y y>  and ( )2
10 2y y< . 

Case 9. If following conditions 

( )
1

1 1
2 1 20 ,s

r m a
y y y c m

q
−

< < < < =                 (15) 

hold, then two interior equilibria coexist. For instance, let 1 1r = , 2 1r = , 

1 20K = , 2 80K = , 0.05q = , 0.5c = , 3a = , 1 0.3m = , 2 0.5m = , 4.24e =  
and 1d = , then equilibrium ( ) ( )1

11 0.1008042045,36.84720274E ≈  and  
( ) ( )2
11 0.6244397702,3.214025704E ≈ . Here ( )1

11 1y y>  and ( )2
11 2y y< . 

3.2. Stability Analysis 

In this subsection, we use the Routh-Hurwitz criterion and the Perron’s theo-
rems to analyze local stability of above equilibria. Recall the system (1) again, its 
Jacobian matrix takes the following form ( )2 2ijJ J

×
= , where components are 

( ) ( )

( )
( )

1
11 1 1 12 212 2

1

22
22 2 2 22

2

2 , , ,

2 3 2 .

r qay qx cayJ r m x d J J
K a xa x a x

r y cxJ y e K y K e m
a xK y e

 
= − − + − = − =  ++ + 

−  = + − − + −  ++
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For the trivial equilibrium 0E  and its Jacobian matrix ( )0J E , we have: (a) 

0E  is an asymptotically stable node if 1 1r m< ; (b) 0E  is a saddle point if 

1 1r m> . 
Notice that Jacobian matrix at the axial equilibrium 1E  takes the form 

( )

1
1 1

1
1

1
2

1

.
0

qxm r
x a

J E
cx m

x a

− − + =
 

− + 

                    (16) 

Combining the existence condition of 1E , we have: (a) 1E  is a saddle point  

if 1
2

1

cx m
x a

>
+

; (b) 1E  is an asymptotically stable node if 1
2

1

cx m
x a

<
+

. 

In the case that two axial equilibrium ( ) ( )2 1, 2kE k =  all exist, the Jacobian 
matrices are 

( )( ) ( )
1 1

2
2 2 2

0
.2

k

k

kk

k

qy
r m

a
J E m r y m ecy

a y e

 − − 
 =

− + 
 + 

           (17) 

Since ( )( )1
22 2 0J E < , we have: (a) ( )1

2E  is a saddle point if 1
1 1

qyr m
a

− > ; (b) 

( )1
2E  is an asymptotically stable node if 1

1 1
qyr m
a

− < . For the equilibrium ( )2
2E ,  

it is obvious that ( )( )2
22 2 0J E > , we have: (a) ( )2

2E  is an unstable node if  
2

1 1
qyr m
a

− > ; (b) ( )2
2E  is a saddle point if 2

1 1
qyr m
a

− < ; (c) ( )2
2E  is an unsta-

ble higher order singular point if 2
1 1

qyr m
a

− = . In the special case that two axial  

equilibria ( ) ( )2 1, 2kE k =  collide with each other, the Jacobian matrix is 

( )
2

1 1

2
2

0
,

0

qyr m
aJ E

cy
a

 − − 
=  
 
  

                   (18) 

thus 2E  is a higher order singular point. If 2
1 1

qyr m
a

− > , it is unstable. 

For the interior equilibrium *E , its Jacobian matrix is 

( )
( )

( ) ( )
( )

1 * * * *
* 2

1 **
*

2* 2 *
* * 22 2

* 2 *

.
2

r x qx y qxdx
K a xa x

J E
cay r y y ey K e

a x K y e

− − − + ++ =  −
+ − 

+ +  

     (19) 

Denoting a new discriminant 2
* 1 24A A∆ = −  with ( )1 *:A tr J E=     and 

 
( )2 *: detA J E=    , we have: 

(a) If 1 0A <  and 
(a1) 2 0A > , then *E  is an asymptotically stable node; (a2) 2 0A < , then 
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*E  is a saddle point ; 
(b) If 1 0A =  and 
(b1) 2 0A > , then *E  is a center or a focus; (b2) 2 0A < , then *E  is a sad-

dle point; 
(c) If 1 0A > , then *E  is unstable and 
(c1) * 0∆ = , then *E  is a node; (c2) * 0∆ < , then *E  is a focus; (c3) 

* 0∆ >  and 2 0A > , then *E  is a node; (c4) * 0∆ >  and 2 0A < , then *E  is 
a saddle point. 

Due to the further consideration of stability at the point *E , we will give fol-
lowing theorem to explain its global stability. 

Theorem 3 (Global asymptotic stability) If the interior equilibrium *E  ex-
ist and parameters satisfy 

( )
* 1

* 2
* 1

, ,
qy r d y K

a a x K
< + >

+
                     (20) 

then *E  is globally asymptotically stable. 
Proof of theorem 3. Here we take an unbounded positive definite Lyapunov 

function 

* * * *
* *

ln lnx yV x x x A y y y
x y

 
= − − + − − 

 
              (21) 

with 
( )*q x a

A
ac
+

= . Introducing new variables *x̂ x x= − , *ŷ y y= −  and  

computing derivative along orbits of the system (1), we have time derivative 

( ) ( )( ) ( )( )
( )* *2 21 * 2

1 1 * * 2

d ˆ ˆ .
d

yy e y yr qy ArV d x e y
t K a x a x y e y e K

  + + 
= − + − + −   + + + +    

 

It is obvious that 
( )1

d
d
V
t

 is negative definite. Consequently, the Lyapunov  

function V satisfies the asymptotic stability theorem in [25]. Thus we complete 
the proof.                                                         □ 

Remark. If 
( )

* 1

* 1

qy r d
a a x K

≤ +
+

 and * 2y K≥ , then *E  is asymptotically  

stable since 1 0A <  and 2 0A > . 

3.3. Closed Orbits and Limit Cycles 

In this subsection, we consider non-existence of closed orbits and limit cycles of 
system (1). Firstly, taking a diffeomorphism : u xϕ = , v y= ,  

( )( )
dd t

a x y e
τ =

+ +
 which preserving the orientation of time, the system (1) is  

topologically equivalent to following system [14] [26] [27] 

( ) ( )( ) ( )2
1 1

1

, : 1 ,xx P x y r x m x dx a x y e qxy y e
K

  
= = − − − + + − +  

   
     (22a) 
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( ) ( ) ( ) ( )( )2
2 2

2

, : 1 .yy Q x y r y a x cxy y e m y a x y e
K

 
= = − + + + − + + 

 
     (22b) 

Notice that we still denote u, v and τ  as x, y and t. Above system is a C∞

-qualitatively equivalent polynomial extension of the system (1) to 2R+  and 
more convenient to study limit cycles throughout [13]. 

Theorem 4 (Non-existence of limit cycles) If ad c> , 1 1m r>  and 2 2m r> , 
then for system (22), there are no closed orbits and limit cycles in 2R+ . 

Proof of theorem 4. Here we take a Dulac function ( ) 1,B x y
xy

=  and calcu-

late following partial derivative: 

( ) ( )
1 31 2

1 ,i j
ij

i j

BP BQ
a x y

x y K K xy ≤ + ≤

∂ ∂
+ =

∂ ∂ ∑  

where coefficients 

( )
( )

( )

11 1 2 1 2 1 1 2

10 1 1 1 1 2

01 1 2 2 2

,

,

a ad c m m r r K ar K

a ad m r K ar eK

a K K a m r

= − − + + − − +  
= − + − +  
= − −

 

and other unlisted coefficients are all non-positive. One can also use the Bendixson  

criteria or Dulac function ( ) ( )( )
1,B x y

a x y e
=

+ +
 to complete the proof.   □ 

4. Bifurcations 

In this section, we will consider and give sufficient conditions to show the exis-
tence of saddle-node bifurcation, transcritical bifurcation and Hopf bifurcation 
of the system (1). Firstly, we denote the system (1) as the following form for 
simplicity and convenient: 

( ): , .
x f

F x y
y g

   
= =   

   





                      (23) 

4.1. Saddle-Node Bifurcation 

As we see, when 2 2r m>  and 1 2y y= , or 

[ ] 2 2
2 2 2

2

2
: 1 1 ,SN r e Km m r

K e
 

= = + − +  
 

               (24) 

the two equilibria ( ) ( )2 1, 2kE k =  collide with each other and the system (23) has 
an unique boundary equilibrium 2E  when 0y > . Hence there is a chance of 
bifurcation around this unique equilibrium. Here we choose 2m  as bifurcation  

parameter and eigenvector 
0
1

v  
=  
 

 corresponding to the zero eigenvalue for 

the matrix (18). The eigenvector corresponding to the zero eigenvalue for the 

transpose of matrix (18) is 
2

1
w

w
 

=  
 

, where 
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2
1 1

2
2

0.

qyr m
aw

cy
a

− −
= − ≠  

Suppose 2
1 1 0

qyr m
a

− − < , then the following transversality conditions are 

hold: 

[ ]( )
[ ]( )( )

2

T
2 2 2 2

T 2 2 2
2 2

2 2

, 0,

2
, , 1 0.

SN
m

SN

w F E m w y

w r ew D F E m v v
K K e

= − ≠

   − ≠    + 

        (25) 

Thus we have following theorem by using the Sotomayor’s theorem [28] [29]. 
Theorem 5 (Saddle-node bifurcation) Suppose the point 2E  exist, if  

2
1 1 0

qyr m
a

− − < , then the system (23) undergoes a saddle-node bifurcation  

around point 2E  with respect to the bifurcation parameter 2m . 

4.2. Transcritical Bifurcation 

Keeping in mind that there is an exchange of stability between the points ( )1
2E   

and ( )2
2E  when 1r  crosses the threshold [ ] 1

1 1:TC qyr m
a

= + . Suppose  

( )( )1
22 2 0J E < . Here we choose 1r  as bifurcation parameter and eigenvector 

2

1
v

v
 

=  
 

 corresponding to the zero eigenvalue for the Jacobian matrix ( )( )1
2J E  

when [ ]
1 1

TCr r= , where 
( )( )

1
2 1

22 2

0
cyv

aJ E
= − > . The eigenvector corresponding to 

the zero eigenvalue for the transpose of matrix (18) is 
1
0

w  
=  
 

, then the fol-

lowing transversality conditions are 

( ) [ ]( ) ( ) [ ]( )
( ) [ ]( )( )

[ ]

( )( )

1 1

1 1T T
2 1 2 1

1T 2 1 1 1
2 1 2 12

1 22 2

, 0, , 1,

2 2 2
, , 2 0.

TC TC
r r

TC
TC

w F E r w DF E r v

r qy qcyw D F E r v v d
K a a J E

= =

−
= − + + ≠

     (26) 

Thus we have following theorem by using the Sotomayor’s theorem [28] [29]. 
Theorem 6 (Transcritical bifurcation) Suppose the two axial equilibria 
( ) ( )2 1, 2kE k =  coexist and ( )( )1

22 2 0J E < , if 1a K≥  or ( )( )1
22 2J E c≥ − , then 

the system (23) undergoes a transcritical bifurcation around the point ( )1
2E  

with respect to the bifurcation parameter 1r . 

4.3. Hopf Bifurcation 

Here the point *E  exist and we choose d as bifurcation parameter. Suppose 
that ( ) ( ) ( )d d i dλ α ω= ±  are a pair of conjugate eigenvalues of matrix ( )*J E , 
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where ( ) ( )1 2d A dα = . The critical value [ ]Hd  satisfies 
[ ]( ) [ ]( ) [ ]( )1 20, 0, 0.H H HA d A d dα′= > ≠                (27) 

Then the system (23) undergoes a Hopf bifurcation around the point *E  
with respect to the bifurcation parameter d. 

We will calculate the first Lyapunov number σ  at the point *E , which is 
used to determine the stability of limit cycles. Therefore, translating the point 

*E  to the 0E  by a linear transformation in the proof of theorem 3, the system 
(23) in power series around the origin (drop the hats for the sake of convenience 
as usual) is 

( ) ( )1 2
1 3 1 3

, , , ,i j i j
ij ij

i j i j
x a x y F x y y b x y F x y

≤ + ≤ ≤ + ≤

= + = +∑ ∑          (28) 

where coefficients are 

( ) ( )

( ) ( ) ( )

( ) ( )
( )

( )
( )

1 1 1 2 1 1 2
10 1 01 202 3

1 1 11 1

2
02 11 30 03 21 122 4 3

1 1 1

22 2 2 2
10 01 2 2 2 202 2 3

1 2 2 1

2 2 3
2 2 2 2

02

, , ,

0, , , 0, , 0;

, 2 , ,

3 3

r s qs s qs r qs aa ds a a d
K a s Ka s a s

qs aqa qaa a a a a a
a s a s a s

cs a r s cs ab b s es K e b
a s K s e a s

K s e s e s
b

= − − + = − = − + −
++ +

= = − = − = = =
+ + +

= = − + − = −
+ + +

− − −
=

( ) ( )

( )
( )
( ) ( )

2
113 2

2 2 1

2
2 22

30 03 21 124 4 3
1 2 2 1

, ,

, , , 0,

r cab
K s e a s

r e K ecs a cab b b b
a s K s e a s

   =
+ +

+
= = − = − =

+ + +

 

and ( ) ( ) ( )4
1 2, , , ,F x y F x y O x y=  are smooth functions. From references [28] 

[30], the first Lyapunov number for a planar system is given by 

( ) ( ){
( ) ( ) ( )
( ) ( )( )

( ) ( )

2 2
10 10 11 11 02 02 11 10 01 11 20 11 11 023 2

01 2

2 2 2
10 11 02 02 02 10 10 02 20 02 10 01 20 20 02

2 2
01 20 20 11 20 01 10 10 11 02 11 20

2
10 01 10 10 03 01 30 10

3
2

2 2 2

2 2

3 2

a b a a b a b a a b a b a b
a A

b a a a b a b b a a a a a b b

a a b b b a b a b b a a

a a b b b a a a a

σ π = − + + + + +

+ + − − − −

− + + − − 

− + − + ( ) ( ) }21 12 10 12 01 21 .b b a a b + + − 

  (29) 

We have to give following numerical simulations by computing the first Lya-
punov number at the point *E , since above expression is much too compli-
cated. 

Theorem 7 (Hopf bifurcation) Assume that the equilibrium *E  exist and 
parameters satisfy conditions (27), then the system (23) undergoes a Hopf bi-
furcation around the equilibrium *E  as parameter d passes through the critical 
value [ ]Hd . The Hopf bifurcation is supercritical and limit cycles are stable if 

0σ < ; the Hopf bifurcation is subcritical and limit cycles are unstable if 0σ > . 
Example 4.1 Combining the theorem 4, we consider the case 1 in subsection 

3.1 again. To investigate how the control parameter d affects the dynamical be-
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havior of our system (1), Figure 1 and Figure 2 depict the time series diagrams 
and phase diagrams corresponding to values 6.539d =  and 6.48d = , respec-
tively. This implies that the Hopf bifurcation occurs in the system (1). The first 
Lyapunov number 0σ < , thus the Hopf bifurcation is supercritical and a limit 
cycle generated by the critical point is stable. 

Example 4.2 We consider the case 6 in subsection 3.1 again and notice the 
critical value [ ]Hd . Figure 3 and Figure 4 depict the time series diagrams and 
phase diagrams corresponding to values 0.1775d =  and 0.175d = , respec-
tively. The first Lyapunov number is also found to be negative. 

Example 4.3 We consider the case 7 in subsection 3.1 again and notice the 
critical value [ ]Hd . Figure 5 and Figure 6 depict the time series diagrams and 
phase diagrams corresponding to values 0.125d =  and 0.1215d = , respec-
tively. The first Lyapunov number is also negative. 

5. Summary and Remarks 

In summary, we consider a predator-prey system with Holling type II functional 
response and Allee effect on the specific growth term of predator with multiply 
form. In Subsection 3.1, some cases about the existence of interior equilibria *E  
are derived with the help of the cobweb model but we neglect the monotonicity 
 

 
(a)                                      (b) 

 
(c)                                         (d) 

Figure 1. Figures in the Example 4.1 with d = 6.539. (a) Time series diagram of popula-
tion x; (b) Time series diagram of population y; (c) Phase diagram of populations x and y; 
(d) Enlarged phase diagram of populations x and y. 
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(a)                                      (b) 

 
(c)                                         (d) 

Figure 2. Figures in the Example 4.1 with d = 6.48. (a) Time series diagram of population 
x; (b) Time series diagram of population y; (c) Phase diagram of populations x and y; (d) 
Enlarged phase diagram of populations x and y. 

 

 
(a)                                      (b) 

 
(c)                                         (d) 

Figure 3. Figures in the Example 4.2 with d = 0.1775. (a) Time series diagram of the prey 
x; (b) Time series diagram of the predator y; (c) Phase diagram of two populations x and 
y; (d) Enlarged phase diagram of two populations x and y. 
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(a)                                      (b) 

 
(c)                                         (d) 

Figure 4. Figures in the Example 4.2 with d = 0.175. (a) Time series diagram of the prey x; 
(b) Time series diagram of the predator y; (c) Phase diagram of two populations x and y; 
(d) Enlarged phase diagram of two populations x and y. 
 

 
(a)                                      (b) 

 
(c)                                         (d) 

Figure 5. Figures in the Example 4.3 with d = 0.125. (a) Time series for population x; (b) 
Time series for population y; (c) shows phase diagram of two populations x and y; (d) 
shows enlarged phase diagram of two populations x and y. 

https://doi.org/10.4236/am.2020.115029


S. T. Wang et al. 
 

 

DOI: 10.4236/am.2020.115029 422 Applied Mathematics 
 

 
(a)                                        (b) 

 
(c)                                       (d) 

Figure 6. Figures in the Example 4.3 with d = 0.1215. (a) Time series for population x; (b) 
Time series for population y; (c) shows phase diagram of two populations x and y; (d) 
shows enlarged phase diagram of two populations x and y. 
 
of functions sometimes, and we also extend the zero-point theorem to the plane 

2R+ ; for instance, when ky  do not exist, a point from the Equation (6a) should 
belongs to the domain Σ  which is surrounded by the isocline in the Equation 
(6b) and two axes, while another point from the Equation (6a) should belong to 

cΣ . It is our expectancy that this method can also be available in other compli-
cated predator-prey systems in the form of ordinary/partial differential equa-
tions. 

In Subsection 3.2, we give conclusions of stability when equilibria are hyper-
bolic, but omit critical cases of non-hyperbolic equilibria. These need to be re-
searched further by using qualitative analysis and topologically equivalent sys-
tems. The saddle-node, transcritical and Hopf bifurcations in Section 4 corres-
pond to the three critical cases: (a) 1 2y y=  or ( )2det 0J E =   ,  

( )2 0tr J E <   ; (b) 1 2y y≠ , ( )( )1
2det 0J E  =  , ( )( )1

2 0tr J E  <  ; (c)  
( )*det 0J E >   , ( )* 0tr J E =   , respectively. In Subsection 3.3, we obtained a 

theorem of non-existence conditions of limit cycles, while the existence, uni-
queness and number of limit cycles need to be considered further. This theorem 
is suitable in the consideration of existence of limit cycles and Hopf bifurcation 
which generates a stable (unstable) limit cycle (see Example 4.1). For the corres-
ponding homogeneous reaction-diffusion system subject to the Neumann boun-
dary conditions: 

2
1 1 1

1

1 , 0, ,t xx
u quvu D u r u m u du t x
K a u

 
= + − − − − > ∈Ω  + 

         (30a) 
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2 2 2
2

1 , 0, ,t xx
v v cuvv D v r v m v t x

K v e a u
 

= + − + − > ∈Ω  + + 
      (30b) 

( )0, 0, 0, ,u v t xν ν∂ = ∂ = ≤ ∈∂ Ω                  (30c) 

( ) ( ) ( ) ( )0 00, 0, 0, 0, .u x u x v x v x x= ≥ = ≥ ∈Ω            (30d) 

where ( )( )0, 0l lΩ = π >  is an one-dimensional domain; 1D  and 2D  are two 
positive diffusive constants; the interior equilibrium ( )* * *,E u v=  is asymptot-
ically stable and Turing instability will not occur under the conditions (or the 
remark) of the theorem 3; thus we may get potential Hopf bifurcation points and 
transversality condition ( ) 0H

n jD δ ≠  may holds as we choose *u δ=  as the 
Hopf bifurcation parameter [31] [32]. Moreover, for the corresponding homo-
geneous diffusion system (without terms tu  and tv  in above system) subject 
to the Neumann boundary conditions: 

2
1 1 1

1

1 , 0, ,xx
u quvD u r u m u du t x
K a u

 
− = − − − − > ∈Ω  + 

        (31a) 

2 2 2
2

1 , 0, ,xx
v v cuvD v r v m v t x

K v e a u
 

− = − + − > ∈Ω  + + 
        (31b) 

( )0, 0, 0, ,u v t xν ν∂ = ∂ = ≥ ∈∂ Ω                (31c) 

( ) ( ) ( ) ( )0 00, 0, 0, 0, .u x u x v x v x x= ≥ = ≥ ∈Ω           (31d) 

Subsection 3.2 about local stability conclusions is also useful for this diffusive 
system (31) in local stability, steady state bifurcation and Hopf bifurcation anal-
ysis [33]. Finally, in Subsection 4.3, the bifurcation parameter d reveals Hopf bi-
furcation phenomenon as it crosses [ ]Hd  by using numerical simulations cor-
responding to the existence of ky , respectively. The Hopf bifurcations are su-
percritical and limit cycles generated by the critical points are stable. 
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