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Abstract 
In this study, we explore the interesting phenomenon of firing spikes and 
complex dynamics of Morris-Lecar model. We consider a set of parameters 
such that the model exhibits a wide range of phenomenons. We investigate 
the influences of injected current and temperature on the spiking dynamics of 
Morris-Lecar model. Moreover, we study bifurcations, and computational 
properties of this neuron model. Also, we define a bound (Max and Min vol-
tage) for membrane potential and a certain voltage value or threshold for fir-
ing the spikes. Studying the two co-dimension bifurcations demonstrates 
much more complicated behaviors for this single neuron model. We also de-
scribe the phenomenon of neural bursting, and investigate the dynamics of 
Morris-Lecar model as a square-wave burster, elliptic burster and parabolic 
burster. 
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1. Introduction 

During recent decades, understanding the brain function and exploring its mo-
lecular and cellular mechanisms were one of the greatest challenges in different 
fields of science. Historically, most of the researches in neuroscience focused on 
only neuronal circuits and synaptic organizations. Indeed, the neurons without 
considering their electrophysiological properties were divided into excitatory 
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and inhibitory neurons, and sometimes they had been counted to be identical to 
those in Hodgkin-Huxley’s squid axon [1] [2] [3] [4]. In 1948 Hodgkin injected 
a dc-current of varying amplitude, and discovered that some preparations could 
show repetitive spiking activities with arbitrarily low frequencies, while the oth-
ers discharged in a narrow frequency band [1] [5] [6] [7]. However, this finding 
was widely ignored by the scientists until 1989 when Rinzel and Ermentrout 
published a seminal paper and showed that the difference in behavior is because 
of different bifurcation mechanisms of excitability [1] [8] [9].  

Non-linear dynamical system theory has a very important role in the compu-
tational neuroscience research [1] [2] [3] [4] [5] [10]. Izhikevich in [1] explains 
that how the transition in behavior of a neuron corresponds to a bifurcation 
from equilibrium to a limit cycle attractor. If we consider the injected current as 
a bifurcation parameter, when it is small, the cell remains quiescent. However, 
when the injected current increases, the cell switches to fire repetitive spikes [1] 
[2] [3] [4] [5] [10] [11]. In dynamical system theory, the qualitative change in 
the behavior of a system is called bifurcation. Indeed, when we change the am-
plitude of the bifurcation parameter (which in this case is the injected current), 
the cell undergoes a transition from quiescence to repetitive spiking. According 
to the type of bifurcation which happens for a neuron model, we can divide the 
neurons into different classes such as the class of excitability, and or we can dis-
cuss about the existence of threshold, all-or-none spikes, post-inhibitory re-
bound spikes, subthreshold oscillations, bistability of rest and spiking states [1]. 
For example, the neurons with supercritical and subcritical hopf bifurcations are 
called resonator and the neurons with saddle-node bifurcation or SNLC bifurca-
tions are integrator [1]. 

In this paper, we study the interesting dynamics and fluctuations of spiking 
patterns of Morris-Lecar model which is a reduced version of Hodgkin-Huxley 
neuron model. For a certain range of parameters value, Morris-Lecar model ex-
hibits different types of local bifurcations such as hopf bifurcation, saddle node 
on invariant limit cycles and homoclinic bifurcation. Moreover, we demonstrate 
a temperature bound and injected current range for spiking activity of the neu-
ron. Also, we study co-dimension two bifurcations such as Bautin or generalized 
hopf and Bogdanov-Takens bifurcations and we present the normal form of 
these bifurcations as well. At the end, we look at the complicated dynamics of 
Morris-Lecar model as a burster.  

2. Description of Model Equations 

In 1981, Kathleen Morris and Harold Lecar introduced a simple model to gener-
ate the action potentials [12]. The Morris-Lecar model describes the electrical 
activities of neurons with a system of two non linear ordinary differential equa-
tions and includes different channels. This model is a reduction version of the 
four dimensional Hodgkin-Huxley model keeping the main properties of spike 
generations with much simpler mathematical and computational analysis [12] 
[13]. The Morris-Lecar model consists of three channels a potassium channel, a 
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leak and a calcium channel and has the following form  

( ) ( ) ( )( )

( )

( )( ) ( )

d
d
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d ,
d

M app L L K K Ca Ca

app ion

n
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∞
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 = − − − − − −
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  (1) 

where  

 ( ) ( )( )1 2
1 1 tanh ,
2

m V V V V∞  = + −                  (2) 

 ( ) ( ) ( )( )3 41 cosh 2 ,n V V V Vτ = −                   (3) 

 ( ) ( )( )3 4
1 1 tanh .
2

n V V V V∞  = + −                  (4) 

and  
( ) ( ) ( ) ( )( ),ion L L K K Ca CaI V n g V E g n V E g m V V E∞= − + − + −      (5) 

where V demonstrates membrane potential, and n the activation variable of the 
persistent K +  current, so it is a two-dimensional vector ( ),V n . KE , CaE , 
and LE  denote the Nernst equilibrium potentials. appI  demonstrates the in-
jected current and ionI  the ionic current. Parameter φ  is a temperature factor. 

Lg  is leak membrane conductance, Kg  is potassium membrane conductance 
and Cag  is calcium membrane conductance. Moreover, MC  is the total 
membrane capacitance. Also, the voltage-sensitive steady-state activation func-
tion ( )m V∞  and ( )n V∞ , and the time constant ( )n Vτ  can be measured ex-
perimentally. A useful way to demonstrate the electrical properties of a neuron is 
using an equivalent circuit as we can see in Figure 1 [1]. In this case, the total 
current has the form  

Ca KI CV I I= + +  Kirchhoff’s Law 

where, ( )k k KI g V E= − , ( )Ca Ca CaI g V E= −  are the major ionic currents. 
Therefore  

Ca KCV I I I= − −  

Also, K CaE V E< <  where CaI  (inward current) is negative and also KI  is 
positive. Basically, the inward currents depolarize the neuron and outward cur-
rents hyperpolarize it.  

This simple model shows different types of dynamics such as hopf bifurcation, 
saddle node on invariant limit cycles and homoclinic bifurcation. In Table 1, we 
can see a list of parameters that cause three types of dynamics in Morris-Lecar 
model [10]. As we see, in Table 1, appI  has not been included since we consider 
it as a bifurcation parameter for bifurcation diagrams.   

3. The Hopf Case 

For the case of hopf parameters, the model (1) has one equilibrium point which 
is intersection point of V nullcline and n nullcline. Indeed, it is not possible to 
find the explicit solution for any of the cases in Table 1. In Figure 2, we have  
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Figure 1. Equivalent Circuit for model (1). KE , CaE , and LE  the Nernst equilibrium 

potentials. appI  the injected current, Lg  leak membrane conductance, Kg  potassium 

membrane conductance, Cag  calcium membrane conductance, MC  the total mem-
brane capacitance. 
 

 

Figure 2. Nullclines of model (1) with 0,25,50,100appI = . 

 
demonstrated the nullclines of system (1) for 0,25,50,100appI =  and it shows 
that there is only one solution for the hopf case.  

In Figure 3, we can see different behaviors of the neuron from resting to  
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Figure 3. Time series of model (1) with 20appI =  left, and 40appI =  right. 

 
Table 1. Morris-lecar parameters [10]. 

Parameter Hopf SNLC Homoclinic 

∅  0.04 0.067 0.23 

gCa 4.4 4 4 

V3 2 12 12 

V4 30 17.4 17.4 

ECa 120 120 120 

EK −84 −84 −84 

EL −60 −60 −60 

gK 8 8 8 

gL 2 2 2 

V1 −1.2 −1.2 −1.2 

V2 18 18 18 

CM 20 20 20 

 
spiking (the stable constant solutions are corresponding to the resting state and 
spiking state shows the existence of periodic solutions).  

Figure 4 displays the occurence of limit cycle corresponding to hopf bifurca-
tion with increasing appI .  

As it has been exhibited in Figure 5, some trajectories come back to the stable 
fixed point or resting state after a big counter clockwise excursion but there are 
some other trajectories that return to the resting state without firing a spike. In 
neuroscience point of view, this kind of behavior is called threshold for firing 
spike. As a result, model (1) has an evident threshold for firing spikes and it has 
been obtained numerically equals to 20 mvV = − . Also, depends on the initial 
values of membrane potential, the size of the excursion is different. 

Using continuation software Matcont and choosing appI  as a bifurcation para-
meter, we could detect numerically hopf bifurcation points. For 93.857569appI =   
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Figure 4. Trajectories of model (1) with 87appI =  (up, left), 88.25appI =  (up, right), 88.3appI =  (down, left), 90appI =  

(down, right). 
 

 
Figure 5. Threshold for firing a spike in model (1). 
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and ( ) ( ), 25.270122,0.139673V n = −  we have the first hopf point with the first 
Lyapunov coefficient 5.220161, and for 212.018818appI =  and  
( ) ( ), 7.800664,0.595491V n =  we can see the second hopf point with the first 
Lyapunov coefficient 5.451163. Here, the first Lyapunov coefficients for two 
hopf points are positive. Thus, there should exist an unstable limit cycle, bifur-
cating from the equilibrium and it indicates the appearance of subcritical hopf 
bifurcation. When the value for injected current appI  is small we have a stable 
equilibrium point. When, we increase the value of injected current, the behavior 
of system changes and for 90appI = , we can see a limit cycle appears. This qua-
litative changing that causes producing a limit cycle attractor from a stable equi-
librium point is called hopf bifurcation [14] [15]. In model (1) the equilibrium 
point is a stable focus that has a pair of complex conjugate eigenvalues with neg-
ative real part. With increasing the injected current, the real part of the eigenva-
lues changes from negative to zero and with further increasing, to positive. It 
means that the stable focus loses its stability and a limit cycle appears. With fur-
ther increasing of the injected current, the amplitude of the limit cycle also in-
creases. 

For ( ) ( ), 7.800664,0.595491V n =  the eigenvalues are  
( )1,2 4.65764 0.148602iλ = ± . Because the real part of eigenvalues are positive, it 

implies that equilibrium point is unstable and with further steps we obtain the 
second hopf point ( ) ( ), 25.270122,0.139673V n = −  with eigenvalues  

( )1,2 8.58989 0.0797799iλ = − ± . Since, the real part is negative, it means that the 
equilibrium point is stable.  

The topological normal form for hopf bifurcation has the form:  

 3r r arα= +                             (6) 

 2
0 rθ ω β= +                             (7) 

Here, β  does not have any dynamical effect. The normal form for first hopf 
point ( ) ( ), 7.800664,0.595491V n =  has the form below:  

 34.65764 5.451163r r r= +                      (8) 

 0.148602θ =                            (9) 

and also  

 34.65764 5.451163r r r= +                     (10) 

 0.148602θ = −                         (11) 

In normal form (8), 0θ > . θ  is the angle of oscillations which is positive and 
increasing because the frequency of damped or sustained oscillations around this 
point 0ω , is positive. But for normal form (10), 0θ <  which means that the 
frequency of damped or sustained oscillations around this point 0ω , is negative. 

To analysis the normal form (8), we have  

( )24.65764 5.451163 0r r+ =  

Therefore,  
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 20, 4.65764 5.451163 0r r= + =                 (12) 

Here, 0r =  is an equilibrium and because for 0r = ,  
3d 4.65764 5.451163 4.65764 0

d
r r

r
 + = >  , as a result, this equilibrium is unstable. 

The equation 24.65764 5.451163 0r+ =  does not give us any periodic solutions 
or oscillatory behaviors. 

For other hopf point ( ) ( ), 25.270122,0.139673V n = − , the normal form can 
be written as  

 38.58989 5.220161r r r= − +                    (13) 

 0.0797799θ =                         (14) 

Here, 0θ >  means that the frequency of damped or sustained oscillations 
around this point, 0ω , is positive and increasing. But for the othe normal form:  

 38.58989 5.220161r r r= − +                    15) 

 0.0797799θ =                         (16) 

0θ <  which implies that the frequency of damped or sustained oscillations 
around this point 0ω , is negative and decreasing. 

To analysis the normal form (13):  

( )28.58989 5.220161 0r r− + =  

Therefore  

 20, 8.58989 5.220161 0r r= − + =               (17) 

Here, 0r =  is an equilibrium and because for 0r =   

3d 8.58989 5.220161 8.58989 0
d

r r
r
 − + = − <   

As a result, this equilibrium is stable. The equation 28.58989 5.220161 0r− + =  
gives us the unstable periodic solution with amplitude:  

 8.58989
5.220161

r =                        (18) 

4. The SNLC Case 

Fold bifurcation of limit cycle or SNLC happens when with increasing the in-
jected current two limit cycles, one stable that is associated to the stable node 
and another one unstable limit cycle that is associated to a saddle point close to 
each other, collide and at the bifurcation moment, we only have one limit cycle. 
With further increasing the injected current, this limit cycle also disappears. 
Figure 6 exhibits the nullclines of system (1) using SNLC parameters value in 
Table 1. As we see, with increasing the injected current, the numbers of equili-
brium point change from 3 to only one fixed point. 

Figure 7 demonstrates the trajectories of system (1) with the SNLC parame-
ters in Table 1, and for different values for injected current appI .  
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Figure 6. The Nullclines of model (1) in the case of SNLC bifurcation. 

 

 

Figure 7. Trajectories of model (1) in the case of SNLC bifurcation for (up, left) 5appI = , (up.right) 30appI = , (down, left) 

42appI = , (down, right) 100appI = . 
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When we do the continuation of equilibrium point of SNLC case, we detect 
the first hopf point for 97.646159appI =  and ( ) ( ), 8.334122,0.396190V n =  
and first Lyapunov coefficient 5.317042 and two complex conjugate eigenvalues 

( ) ( )1,2 6.13675 0.252728iλ = ± . Here, similar to the hopf case, hopf bifurcation 
is subcritical since the first Lyapunov coefficient is positive and its normal form 
has the following form  

 36.13675 5.317042r r r= +                    (19) 

 0.252748θ = −                         (20) 

Since, 0θ < , the frequency of damped or sustained oscillations around this 
point 0ω , is negative and decreasing. 

However, the analysis of normal form is just limited to the first equation of 
normal form (19):  

( )26.13675 5.317042 0r r+ =  

Therefore,  

 20, 6.13675 5.317042 0r r= + =               (21) 
Here, 0r =  is an equilibrium and because for 0r = ,  

3d 6.13675 5.317042 6.13675 0
d

r r
r
 + = >  , this equilibrium point is unstable. 

The equation 26.13675 5.317042 0r+ =  does not give us any periodic solutions 
or oscillatory behaviors. 

Also, the continuation of equilibrium point gives a limit point bifurcation for 
9.949039appI = −  and at the point ( ) ( ), 4.048524,0.136501V n = −  with the 

normal form coefficient 4.772860a =  and the eigenvalues  
( ) ( )1 2, 5.61265,0.359026λ λ = − . The normal form for this bifurcation can be 
written as:  

 2V a V= ±                           (22) 

and for this case, we can write the following normal form:  

 24.772860V V= −                       (23) 

Thus, 4.772860V = ± . Here, we find an equilibrium manifold which is the 
parabola 24.772860 V=  and gives the appearance of two equilibria. The same 
analysis can be done for other normal form and it gives the parabola 

24.772860 V− =  but in this case, we have a singularity of the fold type. 
The third point which has been detected by continuation is a Neutral saddle 

corresponding to 1 2 0λ λ+ =  for 36.639168appI =  at  
( ) ( ), 23.5341020.016555V n = −  with eigenvalues  
( ) ( )1 2, 0.0792728,0.0792728λ λ = − . Further continuation gives us another limit 
point bifurcation for 39.963153appI =  and at the point  
( ) ( ), 29.389788,0.008514V n = −  for which a stable and an unstable limit cycle 
collide and create a non hyperbolic cycle. The real eigenvalues are  
( ) ( )1 2, 0.0990488, 1.10511λ λ = − − . For this fold bifurcation, the normal form 
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would be  

 25.212474V V= − +                     (24) 

Thus, 5.212474V = ± . Here, we have an equilibrium manifold which is the 
parabola 25.212474 V=  and it implies to the appearance of two equilibria. The 
same analysis can be done for the second normal form and we get the parabola 

25.212474 V− =  which gives a singularity of the fold type.  

5. The Homoclinic Case 

Saddle-Homoclinic bifurcation happens when a saddle point and a limit cycle 
collide as we are increasing the control parameter. At the moment of bifurcation, 
we have a periodic orbit such that its period goes to infinity and finally, this pe-
riodic orbit disappears. The trajectories of system (1) for homoclinic case have 
been demonstrated in Figure 8.  

Also, as we can see in Figure 9 the numbers of fixed points of model (1) with  
 

 

Figure 8. Trajectories of model (1) in the case of Saddle-Homoclinic bifurcation for (up, left) 0appI = , (up.right) 40appI = , 

(down, left) 50appI = , (down, right) 70appI = . 
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Figure 9. Nullclines of model (1) with 0,25,50,100appI = . 

 
increasing 0appI =  to 100appI = , reduce from 3 equilibrium point to one 
equilibrium point. Indeed, changing the numbers of fixed point means that a 
qualitative changes or bifurcation happens in the system. 

When we do continuation of equilibrium points, we detect a hopf point for 
36.316266appI =  and ( ) ( ), 4.410760,0.294770V n =  with the first Lyapunov 

coefficient 3.765575. For this hopf point the eigenvalues are complex conjugate: 
( )1 1.3955 0.378861iλ = − ± . Therefore, this is a subcritical hopf bifurcation. The 

normal form of this bifurcation would be  

 31.3955 3.765575r r r= − +                    (25) 

 0.378861θ = −                         (26) 

Since, 0θ < , the frequency of damped or sustained oscillations around this 
point 0ω , is negative and decreasing. 

Analysis of normal form gives us  

( )21.3955 3.765575 0r r− + =  

Therefore  

 20, 1.3955 3.765575 0r r= − + =                 (27) 

Here, 0r =  is an equilibrium and because for 0r = ,  
3d 1.3955 3.765575 1.3955 0

d
r r

r
 − + = − <  , this equilibrium point is stable. The 

equation 21.3955 3.765575 0r− + =  gives us periodic solution or oscillatory 
behaviors with amplitude:  
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 1.3955
3.765575

r =                        (28) 

when we continue along the curve of equilibrium points, we detect a limit point 
bifurcation for 9.949039appI = −  and at the point  
( ) ( ), 4.048518,0.136501V n = − , with the normal form coefficient 3.297636a = . 
In this case, the eigenvalues are ( ) ( )1 2, 1.3742,0.178384λ λ = − . The normal 
form for this limit point bifurcation has the following form  

 23.297636V V= −                     (29) 

Consequently, 3.297636V = ± . The equilibrium manifold would be the para-
bola 23.297636 V= . The same analysis can be done for other normal form and 
it gives us the parabola 23.297636 V− = , but in this case, we have a singularity 
of the fold type.  

We can define the type of the saddle homoclinic bifurcation by looking at the 
sign of the sum of the eigenvalues which is called saddle quantity. If 1 2 0λ λ+ < , 
then the saddle homoclinic bifurcation is called supercritical which is corres-
ponding to the appearance or disappearance of a stable limit cycle, and if 

1 2 0λ λ+ > , we have the subcritical saddle homoclinic orbit bifurcation and it is 
corresponding to the appearance or disappearance of a unstable limit cycle. As a 
result, since here 1 2 0λ λ+ < , we have a supercritical saddle homoclinic bifurca-
tion. 

By further continuation the equilibrium curve, we obtain a limit point bifur-
cation for 39.963153appI =  and at the point ( ) ( ), 29.389788,0.008514V n = − , 
with normal form coefficient 4.526064a = − . The eigenvalues are  
( ) ( )1 2, 0.391585,1.96656λ λ = − . Also, the normal form would be  

 24.526064V V= − +                        (30) 

and we have 4.526064V = ± . Therefore, we have an equilibrium manifold 
which is the parabola 24.526064 V=  and two equilibria appear. The same 
analysis gives the parabola 24.526064 V− =  but in this case, we have a singular-
ity of the fold type. 

Because here 1 2 0λ λ+ > , we have the subcritical saddle homoclinic orbit bi-
furcation. In neuroscience point of view, the saddle homoclinic bifurcation im-
plies to the appearance or disappearance of spiking behavior.  

6. Co-Dimension Two Bifurcations 

In this section, we focus on co-dimension two bifurcations with appI  and φ  as 
bifurcation parameters. The purpose is exploring the influences of temperature 
and injected current simultaneously on neuron model (1). At first, we discover 
Bautin or generalized hopf (GH) points for which the first Lyapunov coefficient 
vanishes. Then, we study another type of co-dimension two bifurcation which is 
called Bogdanov-Takens (BT) for which the system has an equilibrium with a 
double zero eigenvalue [14]. 

We start with the continuation of hopf curve that bifurcates from the BT point 
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and continues to reach a Bautin point named GH. With further continuation, 
we can see another BT point after the second GH. Here, two GH points are 
non degenerate because the second Lyapunov coefficients 2l  are non zero, 

2 1.556360l = − . 
Here, for ( ) ( ), 11.785736,0.285152V n = − , and parameters value  

( ) ( ), 0.306345,124.470639appIφ = , we have the first Bautin point. In generalized 
hopf (Bautin) bifurcation, the equilibrium has a pair of complex conjugate ei-
genvalues and also at generalized hopf point the first Lyapunov coefficient for 
the hopf bifurcation becomes zero. The bifurcation point separates branches of 
subcritical and supercritical hopf bifurcations. For the parameter values near bi-
furcation, the system demonstrates two limit cycles that collide and disappear 
via a saddle-node bifurcation. Basically, in Bautin bifurcation we have changing 
the type of bifurcation from subcritical to super critical hopf bifurcation. It 
means that the sign of the first coefficient Lyapunove changes from positive to 
negative. When the first Lyapunov coefficient becomes zero, the bifurcation be-
comes degenerate and the dynamics of system satisfies the following topological 
normal form [14]:  

( ) 2 4
1 2z i z l z z l z zλ ω= + + +  

Here, z∈  is a complex number, 1l  called the first Lyapunov coefficient 
and 2l  called the second Lyapunove coefficient, and λ  is the real part of ei-
genvalues and ω  demonstrates the imaginary part of eigenvalues. At the mo-
ment of Bautin bifurcation 1 0lλ = =  and 2 0l ≠ . Likewise, when 2 0l > , we 
have subcritical Bautin bifurcation and when 2 0l < , we have supercritical Bau-
tin bifurcation. To begin bifurcation analysis, at first when 0λ = , we have a 
hopf bifurcation and depending on the sign of 1l  we have supercritical or sub-
critical hopf bifurcation. Also, when the first and the second Lyapunov coeffi-
cients have different sign, the solutions branch collide and disappear at the half 
parabola 2

1 24 0l lλ− =  and they undergo the fold limit cycle. 
Here, for ( ) ( ), 11.785736,0.285152V n = −  and parameters value  

( ) ( ), 0.306345,124.470639appIφ = , we have a Bautin point with eigenvalues 
( )1,2 5.0307 0.156687iλ = − +  and the system satisfies the following normal  

form:  

 ( )( ) ( ) 45.0307 0.156687 1.556360V i V V V= − + + −          (31) 

Because, 2 0l < , we have supercritical Bautin bifurcation. The other Bautin 
point happens for ( ) ( ), 2.472096,0.507868V n = , and  

( ) ( ), 0.253856,165.685695appIφ =  with eigenvalues  
( )1,2 2.67147 0.28612iλ = − ±  and the system satisfies the following normal form  

 ( )( ) ( ) 42.67147 0.28612 3.920527V i V V V= − + + −        (32) 

Because, 2 0l < , we have supercritical Bautin bifurcation. 
Generalized hopf (Bautin) bifurcation in polar coordinates has the following 

normal form [14]:  
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( )2 4
1 2 ,r r l l r r= + −  

1φ =  

In our simulation, the curve LPC corresponds to the saddle-node bifurcation 
of periodic orbits. As we can see in Figure 10, for 0.30634507φ = , we have 
Limit point cycle with Normal form coefficient = 1.604795. 

Moreover, from Figure 11, it can be easily observed that, Bogdanov-Takens 
bifurcation can be located along a hopf bifurcation curves, and as we approach 
to Bogdanov-Takens point, 2 purely imaginary eigenvalues collide and we have a 
double zero eigenvalue [14] [15].  

Bogdanov-Takens bifurcation occurs when an equilibrium undergoes hopf 
bifurcation and saddle-node bifurcation simultaneously and also it occurs when 
we have at least a two-dimensional system. In this case, the Jacobian matrix of an 
equilibrium has these properties: ( )det 0J =  corresponding to saddle-node bi-
furcation, and ( )tr 0J =  corresponding to hopf bifurcation and it has the form:  

( ),0

0 1
0 0kJ  

=  
 

 

Because of these two conditions, Bogdanov-Takens is a codimension two bi-
furcation that has the following normal form  

 

 
Figure 10. Continuation of equilibrium point in generalized hopf bifurcation with 

0.30634507φ = . 
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Figure 11. Continuation of equilibrium point in generalized hopf bifurcation with 0.30634507φ = . 
 

u v=  
2v a bu u uvσ= + + +  

where, ,a b  are the normal form coefficients, and the parameter σ  takes the 
values 1 and −1, negative shows that it is supercritical and positive, when it is 
sub critical Bogdanov-Takens bifurcation. Two Bogdanov-Takens points in Fig-
ure 11 are: ( ) ( ), 28.744348,0.114090V n = − , ( ) ( ), 0.000000,83.645532appIφ =  
with ( ) ( ), 5.341083, 1.363867a b = − −  and the second Bogdanov-Takens bifur-
cation happens at ( ) ( ), 8.717678,0.610127V n = , with the parameter values 

( ) ( ), 0.000000,222.452534appIφ = −  with ( ) ( ), 1.185987,3.751062a b = − . Fi-
nally, we compared the effect of injected current and temperature in Figure 12 
and Figure 13. In Figure 12, we can easily find a lower bound and upper bound 
for injected current and a maximum and minimum voltage bound correspond-
ing to spiking activity of this single neuron. Also, Figure 13 gives us a range for 
temperature and a maximum and minimum voltage bound corresponding to 
firing spike for Morris-Lecar model.  

7. Bursting Behaviors of the Morris-Lecar Model 

For some neurons that have spiking behavior, by applying some changes, they 
may also exhibit bursting behavior. For a neuron with ability to fire the spike, by 
adding a slow resonant current or gating variable we can change the neuron 
state to be a burster. The reason for this type of behavior is modulating the spik-
ing and slow activity by the help of a slow negative feedback. Using the slow pa-
rameters, a burster can control the fast subsystem that has spiking state. Classi-
fication of bursters depends on the type of bifurcation of equilibrium points and 
limit cycles [10].  
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Figure 12. Continuation of Limit point cycles. Influence of injected current on neuron activities, maximum and mini-
mum voltage bound. 

 

 
Figure 13. Continuation of Limit point cycles. Influence of temperature on neuron activities, maximum and minimum 
voltage bound. 

7.1. Morris-Lecar Model as a Square-Wave Burster 

The first type of bursting is square wave bursting which has two important 
properties [10]: 

1) The repetitive spikes at membrane potential is more depolarized than the 
silent state. 

2) The frequency of spiking decreases during the spiking state. 
Bursting occurs for systems with at least three dimension. For Morris-Lecar 

model, we consider appI  decreases during the repetitive firing state process and 
increases during the silent state. Then, this burster demonstrates slow negative 
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feedback together with hysteresis in the fast dynamics which specifically happens 
for square-wave bursting. For this case, we add a calcium dependent potassium 
current and the system obtains the form [10]:  

 

( ) ( ) ( )( )

( )( ) ( )

[ ] [ ]( )

d ,
d

d ,
d
d

.
d

M app L L K K Ca Ca KCa

n

Ca Ca

VC I g V E g n V E g m V V E I
t

n n V n V
t
Ca

I K Ca
t

φ τ

ε µ

∞

∞

 = − − − − − − −

 = −



= − −

 (33) 

where  

( ) ( )( )1 2
1 1 tanh ,
2

m V V V V∞  = + −   

( ) ( ) ( )( )3 41 cosh 2 ,n V V V Vτ = −  

( ) ( )( )3 4
1 1 tanh .
2

n V V V V∞  = + −   

where, KCaI  demonstrates the calcium dependent potassium current and equals 

( )KCa KCa KI g z V E= − . Here, KCag  is the maximal conductance for KCaI  and z 
is a gating variable with a Hill-like dependence on the near membrane calcium 

concentration, [ ]Ca , and [ ]
[ ] 1

p

p

Ca
z

Ca
=

+
. Without loss of generality, we assume 

1p = . The last equation of system (33) is a balance equation for [ ]Ca . The pa-
rameter µ  has been used to convert current into a concentration flux and in-
cludes the ratio of the cell’s surface area to the calcium compartment’s volume. 
The parameter CaK  implies to the calcium removal rate and ε  represents the 
ratio of free to total calcium in the cell. Because calcium is highly buffered, ε  is 
small and the calcium dynamics is slow. The two first equations in of system (33) 
are called the fast subsystem and the third equation is called the slow equation [10]. 

Here, KCaI  called outward current. If conductance KCag z  is large, the cell 
has hyper-polarization state which is corresponding to resting behavior. Con-
versely, if KCag z  is small, the cell fires spikes. We have demonstrated the model 
(33) as a circuit in Figure 14. Also, we have the required bursting parameters for 
different types of bursters in Table 2 [10]. Moreover, we have demonstrated the 
dynamics of this burster for different appI  in Figure 15. 

7.2. Morris-Lecar Model as an Elliptic burster  

For Morris-Lecar model as an elliptic burster, we used the model (33) with pa-
rameters for Elliptic bursting as we have in Table 2. Also, we have demonstrated 
the dynamics of Morris-Lecar model as an elliptic burster for different appI  in 
Figure 16.  

7.3. Morris-Lecar Model as a Parabolic Burster  

Unlike two previous bursters which we need only one slow variable for bursting  
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Figure 14. Equivalent Circuit for model (33). KE , CaE , and LE  the Nernst equili-

brium potentials. appI  the injected current, Lg  leak membrane conductance, Kg  po-

tassium membrane conductance, Cag  calcium membrane conductance, MC  the total 
membrane capacitance. 
 

 

Figure 15. Continuation of equilibrium points for 0,50,100,150,200appI =  and occur-

rence of cusp bifurcation with considering 2 free parameters, the horizontal curve cor-
responding to co-dimension two bifurcation and the vertical curves are corresponding to 
co-dimension one bifurcation with increasing appI  from left to right. Morris-Lecar 

model as a Square-Wave burster. 
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Figure 16. Continuation of equilibrium points for 50,0,45,100,150,200,250,300appI = − , 

the horizontal curve corresponding to co-dimension two bifurcation and the vertical 
curves are corresponding to co-dimension one bifurcation with increasing appI  from 

left to right. Morris-Lecar model as an Elliptic burster. 
 
Table 2. Bursting parameters [10]. 

Parameter Square wave Elliptic Parabolic 

∅  0.04 0.067 0.23 

gCa 4 4.4 4 

gKCa 0.75 1 1 

V3 12 2 12 

V4 17.4 30 17.4 

ECa 120 120 120 

EK −84 −84 −84 

EL −60 −60 −60 

gK 8 8 8 

gL 2 2 2 

V1 −1.2 −1.2 −1.2 

V2 18 18 18 

CM 1 1 1 

Iappi 45 120 65 

KCa 1 1 1 

ε 0.1 0.04 0.01 

μ 0.02 0.01667 0.025 

τ, gCaS   0.05, 1 

 
behavior and the occurrence of the bistability in time series for fast subsystem, in 
parabolic burster, we need at least two slow variables and the bursting is not be-
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cause of the bistability and hysteresis loop. In parabolic burster, the model has 
the form:  

 

( ) ( ) ( )( )

( )( ) ( )

[ ] [ ]( )

( )( )

d
d

d
d
d

d
d
d

M app L L K K Ca Ca KCa

n

Ca Ca

s

VC I g V E g n V E g m V V E I
t

n n V n V
t
Ca

I K Ca
t

s s V s
t

φ τ

ε µ

ε τ

∞

∞

∞

 = − − − − − − −

 = −

 = − −


 = −


 (34) 

where  

( ) ( )( )1 2
1 1 tanh
2

m V V V V∞  = + −   

( ) ( ) ( )( )3 41 cosh 2n V V V Vτ = −  

( ) ( )( )3 4
1 1 tanh
2

n V V V V∞  = + −   

( ) ( )( )0.5 1 tanh 12 24s V V∞ = + −  

and calcium dependent potassium current KCaI  is ( )KCa KCa KI g z V E= −  and 
also a new calcium current ( )Cas CaI s V E−  that is depending on the gating va-
riable s, and considering the parameters in Table 2 for parabolic bursting. Here, 

,V n  are two fast variables and [ ],Ca s  are two slow variables. The circuit cor-
responding to this neuron is presented in Figure 17. Finally, we have demon-
strated the dynamics of this burster for different appI  in Figure 18. 
 

 
Figure 17. Equivalent Circuit for model (34), Morris-Lecar model as a Parabolic burster. KE , 

CaE , and LE  the Nernst equilibrium potentials. appI  the injected current, Lg  leak mem-

brane conductance, Kg  potassium membrane conductance, Cag  calcium membrane con-
ductance, MC  the total membrane capacitance.  
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Figure 18. Continuation of equilibrium points for 0,50,100,150,200appI =  and occur-

rence of the zero-hopf and Bogdanov-Takense and cusp bifurcation with considering 2 
free parameters for model (34), the horizontal curve corresponding to co-dimension two 
bifurcation and the vertical curves are corresponding to co-dimension one bifurcation 
with increasing appI  from left to right. Morris-Lecar model as a Parabolic burster. 

8. Conclusion 

Understanding of the structure of brain and its dynamics has been facilitated 
using computer simulations. During the recent decades, our understanding 
about brain dynamics and the mechanisms of different neuron cells has been 
greatly improved. Indeed, the field of computational neuroscience has been 
started with the work of Hodgkin and Huxley in 1952 using nonlinear partial 
differential equations. The Hodgkin-Huxley model and its reduction related 
models developed and improved many different areas in mathematics. Recently, 
dynamical systems theory and computational methods have been used frequent-
ly to study neuron activities in a many of neuronal models. The collaboration 
between experimentalists and theoreticians in analysis of neuronal models pro-
vides many progresses in the area of neuroscience [16] [17] [18]. In this paper 
we studied spiking dynamics of a single neuron model which is a reduction of 
well-known Hodgkin-Huxley model and consists of a system of ordinary diffe-
rential equations. Depending on the different parameters value, the model re-
produces quiescent, spiking and bursting activities. We numerically discovered 
the hopf bifurcation, SNLC bifurcation and homocinic bifurcation and we pre-
sented their normal form for each case separately. Through bifurcation analysis 
and continuation of equilibrium point, we explored the complicated dynamics 
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which happened by changing the injected current or changing the temperature 
in this neuron model. We could find a range for spiking activities of the neuron 
for injected current appI  and temperature φ . We also discovered co-dimension 
two bifurcations such as Bautin or generalized hopf, Bogdanov-Takens and limit 
point cycles and we demonstrated their normal forms. We also described the 
phenomenon of neural bursting, and we used the continuation method to dis-
cover different bifurcations for three types of bursting behaviors. We found two 
new co-dimension bifurcations compared to two-dimensional Morris-Lecar 
model, cusp bifurcation and zero-hopf bifurcation. We presented the Mor-
ris-Lecar bursting model for square-wave, elliptic and parabolic burster and we 
displayed the circuit model corresponding to each type of burster. Finding other 
types of bursting for Morris-Lecar model can be a new research project which 
needs to further study about the phenomenon of neuronal bursting. 
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