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Abstract 
Pharmacokinetic models are mathematical models which provide insights 
into the interaction of chemicals with biological processes. During recent 
decades, these models have become central of attention in industry that 
caused to do a lot of efforts to make them more accurate. Current work stu-
dies the process of drug and nanoparticle (NPs) distribution throughout the 
body which consists of a system of ordinary differential equations. We use a 
tri-compartmental model to study the perfusion of NPs in tissues and a 
six-compartmental model to study drug distribution in different body organs. 
We have performed global sensitivity analysis by LHS Monte Carlo method 
using PRCC. We identify the key parameters that contribute most signifi-
cantly to the absorption and distribution of drugs and NPs in different organs 
in body. 
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1. Introduction 

Nanotechnology is the study of materials, devices, and systems at the nanometer 
scale. Nanotechnology and nanoscience have been used widely in many areas of 
research and applications [1] [2] [3] [4] [5]. One of the most important advan-
tages of nanotechnology is that the drug can be targeted to a precise location 
which would make the drug much more effective and it also reduces the possible 
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side effects. The application of nanotechnology in the field of nanomedicine and 
health care has grown a huge attention in recent times. Nanomedicine is a 
branch of nanotechnology. Basically, we can define nanomedicine as the medical 
application of nanotechnology [1] [2] [6]. Nanomedicine has many advantages 
over conventional drug delivery approaches and has been used frequently in an-
ticancer research. There are some techniques which help in the detection of tu-
mors in the body and nanoparticles are one of them [6]. Nanoparticles (NPs) 
help us to see cells and molecules that cannot be otherwise detected through 
conventional imaging. The abilities to understand what happens inside the cell 
and to observe therapeutic intervention and or to see when a cancer cell is le-
thally injured or is stimulated are important to the effective diagnosis and then 
better treatment of the disease [6] [7]. Nanoparticles (NPs) have unique physi-
cochemical properties, such as small size, large surface area to mass ratio, and 
high reactivity, which are different from bulk materials of the same composition 
[1]. Indeed, because of these unique properties, NPs have very important role in 
anticancer therapy [2]. 

Mathematical and statistical modeling helps us to understand the interaction 
between the components of systems biology and prediction of the future of dif-
ferent biological models [8] [9] [10] [11] [12]. Basically, building a mathematical 
and computational model needs to perform different experiments and obtain 
different data which depicts the evolution of system [3] [4]. To understand the 
process of drug distribution through different body organs, we need to develop a 
comprehensive model which covers completely the experimental data [13] [14] 
[15]. These models transform all the information into a system of ordinary dif-
ferential equations to do more analysis based on some mathematical useful tools 
and are flexible to analysis, updates and modifications of pharmacology and 
physiology of agents and drugs. A mathematical model for drug or NP distribu-
tions is a structural model, consisting of compartments such as adipose, tissues, 
brain, gut, heart, kidney, liver, lung, muscle, spleen, skin, and bone and ga-
strointestinal tract including mouth, esophagus, and abdomen which are con-
nected by the cardiovascular system. In mathematical perspective, they describe 
biological systems by converting into mathematical and theoretical equations 
and parameters and then using computer code to solve the model system com-
putationally.  

To check the accuracy of any mathematical model, we need to use different 
methods and because of existence of uncertainty in experimental data, it can be 
often complicated. Uncertainty and sensitivity analysis are useful techniques 
which help us to identify these uncertainties in data and then control them [9] 
[10] [16] [17]. Sensitivity analysis allows us to identify the parameter or set of 
parameters that have the greatest impact on the model output. It then provides 
useful information about which parameter or input makes the most variability in 
the model output. Generally, local sensitivity analysis allows us to clarify the 
impact of each parameter on model outputs individually. However, global sensi-
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tivity analysis overcomes the limitations which the local sensitivity analysis 
creates by examining the sensitivity of model output over the entire range of pa-
rameters at the same time. 

Current work studies the process of drug distribution throughout the body 
which consists of a system of ordinary differential equations. There are several 
biological parameters related to distribution of drug through different body or-
gans. We start with a simple three compartmental model to demonstrate NP 
distribution from capillary to tissue. Globally sensitivity analysis LHS Monte Carlo 
method using Partial Rank Correlation Coefficient (PRCC) has been performed to 
investigate the key parameters in model equations. Also, we study a six compart-
mental system for which we assume the specific drug has been distributed 
through different rout of drug administrations, such as intravenous injection, 
intramuscular injection, water and or feed. We have used the same global sensi-
tivity analysis PRCC method to compare different physiological parameters. We 
have used the parameters variations based on different studies [4] [18] [19] [20]. 

2. A Simple Three Compartmental Model Example for NP  
Distribution 

There are some efforts to develop physiologically based pharmacokinetic models 
for nanoparticles distribution through the body, which will be useful tools for 
predicting nanoparticle distribution in different organs to assist with extrapola-
tion of responses from in vitro and in vivo [21]. However, since the blood-flow 
limited model which has been used for chemicals [22] cannot be used for nano-
particles, we need to explain the distribution of the nanoparticles in the tissues to 
develop a model [21] [23] [24]. There are many studies about the effects of Na-
nomaterials on biological procedures like isolated in vitro cell system and or in 
vivo effects. But, there are only a few studies about vascular effects of Nanomate-
rials of different compositions [4] [25] [26] [27]. In some studies, researchers 
have considered Endothelial cells (EC) as in vitro model system for different 
physiological processes [28] [29] [30] [31]. According to these works, primary 
EC have a limited life span and demonstrate distinct characteristics that are dif-
ferent from each other. All vessels in body are covered with a line of Endothelial 
cells and these cells have different rolls based on their size and location in blood 
vessels. Some of their important tasks in our body are transporting small mole-
cules and hormones like insulin, and degrading lipoprotein particles. Moreover, 
they affect blood pressure regulation and transport inflammatory cells into tar-
get tissue. Also, they have key role in blood coagulation and fibrinolysis. Endo-
thelial cells are like barriers between blood cells and tissue cells [27]. They may 
help to some disorders like bleeding disorders, autoimmune disorders, or in pa-
thological processes. 

As we can see in Figure 1, EC or endothelial cells have covered blood vessels 
and they transport NPs from capillary to target tissue. We have used a tri com-
partmental model for NPs infusion to tissue. 
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Figure 1. Endothelial cells as barriers between blood vessels and target tissue. 

 
For NPs that move from blood vessels into different tissues this tricompart-

mental model is needed to characterize NPs infusion in the body. For simplicity, 
we have supposed that there is no interaction between Endothelial cells and their 
surrounding cells.  

As we can see in Figure 2, NPs enter from artery to the second compartment 
by a constant rate 12k , we call this rate as absorption rate constant to capillary 
bed. After this step, NPs distribute to the third compartment by a constant rate 

23k . Then, we have distribution of NPs into fixed or deep tissue compartment by 
the constant rate 34k . So far, we have finished two phases, absorption and dis-
tribution, and the last phase would be NPs leakage or NPs elimination.  

If we apply the mass balance laws to this tri-compartmental model, we have:  

 

12 23 25 32

23 34 32

34

d
d

d
d

d
d

Cap
Art Cap Cap EC

EC
Cap EC EC

DT
EC

A
k A k A k A k A

t
A k A k A k A

t
A k A

t


= − − +


 = − −

 =


            (2.1) 

We have two possible routes for NPs in compartment two. First possibility, 
they can distribute to compartment 3 and or they leave compartment two via 
venous efflux. Here, also we have assumed that the uptake depends on NP con-
centration in compartment two and it does not depend on perforate blood flow 
[4] [32]. For the first compartment, we can easily obtain the following equality:  

 25 12 23 32Cap ECJ J k A k A= − +                     (2.2) 

where 25 25 CapJ k A=  and 12 12J QC=  ( 25k  is a variable rate function).  
Physiologically speaking, we have considered that at starting time 0t =  NPs 

enter from artery to compartment 2 and then they leave capillary bed to shallow 
tissue. Before the time for the venous effluent, venous efflux of NPs is zero, and 
at this moment, t τ= , and then after that the sum of NPs fluxes to shallow tis-
sue compartment and venous effluent should be equal to arterial flux or 12J . By 
this assumption that τ  is small at steady state, we can compute the initial mass 

2M  for capillary bed compartment that would be 2 12 2M C V= . Here, 12C  is  
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Figure 2. Structure of the tri-compartment pharmacokinetic model for nanoparticle 
disposition with considering NPs infusion, where 23k , 32k  and 34k  are transfer rate 
constants, 25k  describes the rate of mass transfer from vascular (2) compartment to the 
venous effluent, 12J  is the infusion drug flux, which is the product of flow (Q) and 
concentration ( 12C ). 

 
the concentration of infused NPs, and 2V  is the vascular volume. Also, we can 
calculate the capillary transit time by the following equality 2V Qτ = , where, Q 
is perfusate flow through skin flap and we consider it as a constant approx-
imately equal 1 mL/min. The value of 25k  as a variable rate function after the 
time that flux 32 ECk A  reaches to compartment two increased and we will prove 
it by some computations later [4]. After solving model (2.1) for CapA  and ECA  
we have,  

 2CapA M=                            (2.3) 

 ( )( ) ( ) ( )( )32 34 32 342 23

32 34

1 e 0 ek k t k k t
EC EC

M kA A
k k

− + − + −Γ= − +
+

         (2.4) 

 
( ) ( ) ( ) ( ) ( )

32 34
32 34342 23 34

32 34 32 34 32 34

01 e 1 e 0
k k t

k k t tEC
DT DT

k AM k kA t A
k k k k k k

− +
− + −Γ −  = − + − +    + + + 

(2.5) 

where we consider Γ  as the beginning time of washout phase that is zero dur-
ing dosing phase [32]. Also, ( )0ECA  is the initial mass of compartment three 
and ( )0DTA  is the initial mass of compartment four. During dosing phase, 

( )0 0ECA =  and ( )0 0DTA = . During washout phase, the initial mass of NPs in 
all compartments and Γ  is non-zero. In decay or washout phase, we can cal-
culate 25k  at 0t =  by the following equation [32]:  

 
( )

( )
12 320

25 23
0

0
EC

Cap

J k A
k k

A
+

= −                    (2.6) 

Because at 0t = , ( )0 0ECA =  and ( ) 20CapA M= , so we have:  

 0 12
25 23

2

Jk k
M

= −                         (2.7) 

Therefore, 25k  at steady-state has the following value:  

 
( )

( )
12 32

25 23
ECss

Cap

J k A ss
k k

A ss
+

= −                   (2.8) 
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such that 2
ss
CapA M=  and  

 ( ) 23 2

32 34

limss
EC ECt

k MA A t
k k→∞

= =
+

                  (2.9) 

If we substitute the value of ss
CapA  and ss

ECA  into 25
ssk , then we have:  

 
( )

( )
32 34 12 32 23 2

25 23
32 34 2

ss k k J k k M
k k

k k M
+ +

= −
+

             (2.10) 

and because we have, 112

2

J
M

τ −= , so;  

 1 32 23
25 23

32 34

ss k kk k
k k

τ −= + −
+

                 (2.11) 

and when 34 0k = , we have 1
25
ssk τ −= . Moreover, we can write 0 1

25 23k kτ −= − . 
When we compare 0

25k  and 25
ssk , we see that 0

25k  is less than 25
ssk  by the fol-

lowing result:  

 0 32 23
25 25

32 34

ss k kk k
k k

= +
+

                   (2.12) 

During dosing phase 0CapA = . At t = Γ , CapA  changes from 2M  to 0, and 
also ( )0ECA  from 0 to ( )ECA Γ . During decay phase 12J  is non-zero. Figure 
3 displays the evolution of the solutions of (2.1) in time and also with respect to 
other solutions in separate plots.  
 

 
Figure 3. CapA , ECA  and DTA  in model (2.1). 
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3. A Six Compartmental Model Example for Drug  
Distribution through Body Organs 

Physiological and pharmacokinetic models are useful to determine drug distri-
bution into different target tissues, which helps for the evaluation of drug effica-
cy and drug safety. We study a six-compartmental pharmacokinetic model with 
application in food safety and we use the physiological parameters variations 
based on different studies [18] [19]. 

Cardiac output and blood flows to tissues (L/h):  

 

, Cardiacoutput
, Liver
, Kidney

, Lung
, Fat
, Muscle

, Restofbody

QC QCC BW
QL QLC QC
QK QKC QC
QLu QLuC QC
QF QFC QC
QM QMC QC
QR QRC QC

= ×
 = ×
 = ×
 = ×
 = ×

= ×
 = ×

               (3.1) 

where, 4.944QCC =  is cardiac output (L/h/kg), 0.2725QLC =  is fraction of 
blood flow to the liver (unitless), 0.12QKC =  is fraction of blood flow to the 
kidneys (unitless), 0.1275QFC =  fraction of blood flow to the fat (unitless), 

0.251QMC =  is fraction of blood flow to the muscle (unitless), 1QLuC =  is frac-
tion of blood flow to the Lung (unitless), 1QRC QLC QKC QFC QMC= − − − − ; 

QLuC−  is fraction of blood flow to the rest of body and BW is body weight 
[18]. 

Tissue volumes (L):  

 

,
,

, Liver
, Kidney

, Lung
, Fat
, Muscle
, Restofbody

Vven VvenC BW
Vart VartC BW
VL VLC BW
VK VKC BW
VLu VLuC BW
VF VFC BW
VM VMC BW
VRB VRC BW

= ×
 = ×
 = ×
 = ×
 = ×
 = ×


= ×
 = ×

               (3.2) 

where, 0.0245VLC =  Fractional liver tissue (unitless), 0.004VKC =  fractional 
kidney tissue, 0.32VFC =  fractional fat tissue (unitless), 0.4VMC =  fraction-
al muscle tissue (unitless), 0.010VLuC =  fractional Lung tissue (unitless), 

0.044VvenC =  venous blood volume, fraction of blood volume (unitless), 
0.016VartC =  Arterial blood volume, fraction of blood volume (unitless) and 

1VRC VLC VKC VFC VMC VLuC VvenC VartC= − − − − − − −  fractional rest of 
body tissue (unitless). 

Permeability surface area coefficients:  

 
,

,
PAF PAFC VF
PAM PAMC VM

= ×
 = ×

                   (3.3) 
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where, permeability constants (L/h/kg tissue) (Permeation area cross products) 
are: 0.012PAFC =  fat tissue permeability constant, 0.225PAMC =  muscle 
tissue permeability constant [18]. 

Volume of tissue as blood:  

 
, Fat compartment blood volume

, Fat compartment tissue volume
VFb FVBF VF
VFt VF VFb

= ×
 = −

        (3.4) 

where, 0.02FVBF =  blood volume fraction of fat [20]. 
Muscle:  

 
, Muscle compartment blood volume

, Muscle compartment tissue volume
VMb FVBM VM
VMt VM VMb

= ×
 = −

     (3.5) 

where, 0.01FVBM =  blood volume fraction of muscle [20]. 
Dosing:  

 

( )
( )
( )

( )
( )

, mg Oral dose
, mg IV dose

, mg IM dose
, mg Oral through water dose

, mg Oral through feed dose

DOSEoral PDOSEoral BW
DOSEiv PDOSEiv BW
DOSEim PDOSEim BW
DOSEoralw PDOSEoralw BW
DOSEoralf PDOSEoralf BW

= ×
 = × = ×
 = ×

= ×

(3.6) 

where, PDOSEoral , PDOSEiv , PDOSEim , PDOSEoralw  and 
PDOSEoralf  are parameters for exposure scenario. 

Intramuscular (IM) injection equations:  

 

( )

( )

( )

Amtsite
d Absorb
d
Rsite Doseimremain
d Amtsite Rsite
d
Rdoseimremain Doseimremain
d Doseimremain Rdoseimremain
d

Rim Kim

Rim
t

Rim Kdiss

t
Kdiss

t

= ×

 =

 = − + ×



=


= − ×

 =


           (3.7) 

where, 0.15Kim =  or 0.3Kim =  IM  IM absorption rate constant (/h), 
0.02Kdiss =  IM absorption rate constant [18]. 

Intravascular (IV) injection to the venous equations:  

 ( )( )

( )

1

d
d

IVR DOSEiv Timeiv
Riv IVR heaviside T Timeiv

Aiv Riv
t

=
 = × − −

 =

            (3.8) 

where, Timeiv  is IV injection/infusion time (h). 
Urinary elimination rate constant:  

 Kurine KurineC BW= ×                      (3.9) 

Liver compartment:  
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( )

( )

( )

( )

,
d ,
d

,
,

d ,
d

RL QL CA CVL RAO

AL RL
t

CL AL VL
CVL AL VL PL

AUCCL CL
t

= × − +

 =



=
 = ×


=

                  (3.10) 

Blood compartment:  

 

( )
( ) ( )

( ) ( )

, mg RV the changing rate in the venous blood mg h
d , AV the amount of the drug in the venous blood mg
d

, CV drug concentration in the venous 

RV QL CVL QK CVK QF CVF QM CVM QR CVRB Riv Rim
QC CV

AV RV
t

CV AV Vven

= × + × + × + × + × + +
− ×

=

= ( )
( ) ( )

( ) ( )

( )

blood mg L
, RA the changing rate in th earterial blood mg h

d , AV the amount of the drug in the venous blood mg
d

d , AUCCVAUCofdrug
d

RA QC CVLu CA

AA RA
t

CA AA Vart

AUCCV CV
t

ABlood AA AV








 = × −

 =
 =


=


= +

(3.11) 

Kidney compartment:  

 

( )

( )

( )

( )

( )

,
d ,
d

,
,

d ,
d

,
d ,
d

RK QK CA CVK Rurine

AK RK
t

CK AK VK
CVK AK VK PK

AUCCK CK
t

Rurine Kurine CVK

Aurine Rurine
t

= × − −

 =

 =

 = ×

 =
 = ×


=


                (3.12) 

Muscle compartment:  

 

( )

( )

( )

( )

,
d ,
d

/ ,
,

d ,
d

,
,

,
d ,
d

RMB QM CA CVM PAM CVM PAM CMt PM

AMB RMB
t

CVM AMB VMB
RMt PAM CVM PAM CMt PM

AMt RMt
t

CMt AMt VMt
AMtotal AMt AMB
CM AMtotal VM

AUCCM CM
t

= × − − × + ×

 =

 =


= × − ×


=

 =
 = +
 =

 =

  (3.13) 
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Lung compartment:  

 

( )

( )

( )

( )

,
d ,
d

,
,

d ,
d

RLu QLu CV CVLu

ALu RLu
t

CLu ALu VLu
CVLu ALu VLu PLu

AUCCLU CLu
t

= × −

 =



=
 = ×


=

                 (3.14) 

Fat compartment:  

 

( )

( )

( )

,
d ,
d

,
,

d ,
d

,
,

,

RFB QF CA CVF PAF CVF PAF CFt PF

AFB RFB
t

CVF AFB VFB
RFt PAF CVF PAF CFt PF

AFt RFt
t

CFt AFt VFt
Aftotal AFt AFB
CF Aftotal VF

= × − − × + ×

 =

 =


= × − ×

 =

 =
 = +
 =

    (3.15) 

Rest of body:  

 

( )

( )

( )

( )

,
d ,
d

,
,

d ,
d

RRB QR CA CVRB

AR RRB
t

CR AR VRB
CVRB AR VRB PR

AUCCR CR
t

= × −

 =



=
 = ×


=

                (3.16) 

Mass balance equation:  

 
,

,
, Permeability-limited model mass balance

Qbal QC QL QK QM QF QR
Tmass Ablood AL AK AMtotal AFtotal AR Aurine ALu
Bal AAO Aiv Absorb Tmass

= − − − − −
 = + + + + + + +
 = + + −

(3.17) 

4. Global Sensitivity Analysis 

Global sensitivity analysis allows us to change all parameters simultaneously 
over the entire parameter interval. This is a way to evaluate the relative effects of 
each input parameter and also to identify the interactions between parameters to 
the model output. In global sensitivity analysis we determine that with variation 
of input parameters in a certain range, which parameters and interactions have 
the most influential impact on the overall behavior of our model [8] [9] [10] [11] 
[16] [17]. 

There are several types of global sensitivity analyses, such as weighted average 
of local sensitivity analysis, partial rank correlation coefficient, multi parametric 
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sensitivity analysis, Fourier amplitude sensitivity analysis (FAST) and Sobol’s 
method, which can be used for systems pharmacology models [8]. The Latin 
hypercube sampling (LHS) method has been used frequently for global sensitiv-
ity analysis. There are also some other methods for calculating main effect and 
total effect sensitivity indices and one of the most important one is the method 
of Sobol [16]. 

LHS method is a sampling method and requires fewer samples compare to 
simple random sampling to achieve the same accuracy [8]. In LHS method, we 
divide the random parameter distributions into N equal probability intervals. 
Here, N is the sample size. The choice for N should be at least k + 1, where k is 
the number of parameters which are varied. For the case that the interval of var-
iation for some parameter is very large, the sampling can be done on a log form. 

In LHS method, sampling is independent for each parameter and can be done 
by randomly selecting values from each pdf. We may sample each interval once 
for each parameter without any replacement. The LHS matrix is consisting of N 
rows corresponding to the number of simulations or sample size and also it in-
cludes k columns corresponding to the number of varied parameters. Then, N 
model solutions may be simulated, using each combination of parameter values 
which they represent each row of the LHS matrix [8].  

4.1. Partial Rank Correlation Coefficient (PRCC) Results for  
Tri-Compartmental Model (2.1) 

Here, a parameter sensitivity analysis has being conducted to identify the phar-
macokinetic parameters that have the most significant effect on our model sys-
tem by the LHS Monte Carlo method using PRCC with uniform distributions 
for the 95 percent confidence intervals. The global sensitivity results with 
p-values corresponding to capillary compartment, endothelial cell compartment 
and deep tissue compartment have been demonstrated in Figures 4(1)-(3) re-
spectively.  
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Figure 4. (1) Global uncertainty and sensitivity analysis of calculated different parameters for capillary 
compartment of model (2.1); (2) Global uncertainty and sensitivity analysis of calculated different 
parameters for endothelial cell compartment of model (2.1); (3) Global uncertainty and sensitivity analysis of 
calculated different parameters for deep tissue compartment of model (2.1). 

4.2. Partial Rank Correlation Coefficient (PRCC) Results for  
Six-Compartmental Model (3.11)-(3.14) 

According to LHS, we simulated the responses of the model for each organ by 
randomly selecting values for the parameter set from the 95 percent confidence 
intervals. These analyses were done by developing a LHS/PRCC method with 
uniform distributions for the 95 percent confidence intervals. We found that 
some parameters illustrate significant performance in terms of sensitivity of the 
output to the variations of these parameters in some organs while they do not 
have this effect for other organs. These results have been depicted in Figure 
5(A) for kidney tissue, Figure 5(B) for liver tissue, Figure 5(C) for lung tissue, 
Figure 5(D) for fat tissue, Figure 5(E) for muscle tissue and Figure 5(F) for 
plasma, are statistically significant with p-values much smaller than 0.01. 
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5. Conclusions 

Nowadays, nanoparticles have a growing use in industry specially medicine. 
There are some studies about applications of NPs in therapeutic areas, however, 
the number of these studies is not a lot. Increasing the importance of studies 
about tumors and concentration of drugs and NPs in tumors or other tissues has 
enhanced the role of in vitro models to simulate absorption process of drugs and 
NPs. Pharmacokinetic and physiological models are useful means to demon-
strate the relationships between different drug administrations, and drug expo-
sure or concentration. 
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Figure 5. (A) Global uncertainty and sensitivity analysis of calculated different parameters for kidney. Analysis 
based on parameter effects for Ck (concentration of drug in kidney). The PRCCs are compiled within the 
pharmacokinetic parameters ranges obtained from [18] [19] [20]; (B) Global uncertainty and sensitivity analysis of 
calculated different parameters for kidney. Analysis based on parameter effects for CL (concentration of drug in 
liver). The PRCCs are compiled within the pharmacokinetic parameters ranges obtained from [18] [19] [20]. (C) 
Global uncertainty and sensitivity analysis of calculated different parameters for kidney. Analysis based on 
parameter effects for CLu (concentration of drug in lung). The PRCCs are compiled within the pharmacokinetic 
parameters ranges obtained from [18] [19] [20]; (D) Global uncertainty and sensitivity analysis of calculated 
different parameters for kidney. Analysis based on parameter effects for CF (concentration of drug in fat). The 
PRCCs are compiled within the pharmacokinetic parameters ranges obtained from [18] [19] [20]; (E) Global 
uncertainty and sensitivity analysis of calculated different parameters for kidney. Analysis based on parameter effects 
for CM (concentration of drug in muscle). The PRCCs are compiled within the pharmacokinetic parameters ranges 
obtained from [18] [19] [20]; (F) Global uncertainty and sensitivity analysis of calculated different parameters for 
kidney. Analysis based on parameter effects for CV (concentration of drug in plasma). The PRCCs are compiled 
within the pharmacokinetic parameters ranges obtained from [18] [19] [20]. 

 
An uncertainty analysis may be applied on the physiological and pharmaceu-

tics models to investigate the uncertainty in system output that is generated from 
uncertainty in parameter inputs. Sensitivity analysis assesses how variations in 
model outputs can be apportioned, qualitatively or quantitatively, to different 
inputs.  

In this research we reviewed two physiological systems which have been re-
ported by different authors and we have used the presented physiological para-
meters from different published works. In the first case, we presented a three 
compartmental model which can be used to exhibit the distribution of drug and 
or NPs from capillary compartment to endothelial cells compartment and then 
tissue compartment. The objective of this study was to determine the key para-
meters in NPs infusion from blood vessels to target tissue in the ex vivo tissue 
perfusion system using sampling-based method (Partial Rank Correlation Coef-
ficient-PRCC). As we have seen, some parameters have positively and some oth-
ers negatively affected NPs infusion process. 
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We have presented another physiological model with six compartments, such 
as kidney, liver, lung, fat, muscle and plasma compartment. We identified the 
key parameters that contribute most significantly to the absorption and distribu-
tion of drugs in different organs in body using PRCC. Our findings imply that 
this identification is clearly dependent upon the dose and target tissues but not 
on the exposure route. 
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