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Abstract 
In this manuscript, a proof for the age-old Riemann hypothesis is delivered, 
interpreting the Riemann Zeta function as an analytical signal, and using a 
signal analyzing affine model used in radar technology to match the warped 
Riemann Zeta function on the time domain with its conjugate pair on the 
warped frequency domain (a Dirichlet series), through a scale invariant 
composite Mellin transform. As an application of above, since the Navier 
Stokes system solution’s Dirichlet transforms are also Dirichlet series, a mi-
nimal general solution of the 3d Navier Stokes differential equation for viscid 
incompressible flows is constructed through a fractional derivative Fourier 
transform of the found begin-solutions preserving the geometric properties of 
the 2d version assuming that the solution is an analytic solution that suffices the 
Laplace equation in cylindrical coordinates, which is the momentum equation 
for both the 2d and the 3d Navier Stokes systems of differential equations. 
 

Keywords 
Riemann Hypothesis, Applied Mathematics, 3d Navier Stokes, Mathematical 
Physics, Dirichlet Transform 

 

1. Introduction 
The age-old Riemann Hypothesis is a conjecture that the Riemann Zeta function 
has its zeros only at the negative even integers and complex numbers with real 

part 1
2

 and is firstly stated in the essay by Bernard Riemann [1]. 

The fact that the (warped) Riemann Zeta function 1
2

ivζ  + 
 

 under certain 

conditions will arise as the solution of a second order ordinary differential equa-
tion on the time domain while the Riemann Zeta function ( )1 vζ −  may arise 
as the same solution but on the warped frequency domain (domain of the Di-
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richlet transform (93) image functions defined originally on a time domain) gave 
rise to possible presumptions that the two mentioned functions may be a Di-
richlet Transform of each other. Since the extended form of the Riemann Zeta 
function is found to be an eigenfunction of the Fourier Transform operator, a 

composite Mellin Transform is found that projects 1 2
2

ivζ  + π 
 

 into ( )1 vζ −  

preserving scale properties and is de facto a line-invariant transform between 
1 2
2

ivζ  + π 
 

 and ( )vζ , since there exists a well-known functional relationship 

between ( )1 vζ −  and ( )vζ , the so-called functional equation of the extended 
Riemann Zeta function  

( ) ( ) ( )1  2 sin 1 1
2

s s ss s sς ς− π = π Γ − − 
 

               (1) 

A fact that confirms the age-old conjecture of Bernard Riemann. 
The C∞ -form of the eigenfunctions of the Fourier transform and the Dilation 

operator are thoroughly studied in [2]. The discrete and collapsed forms of these 
hyperbolic (eigen)functions are used as analytical input signals in [3] [4] [5] [6] 
[7] for an analytical signal analyzing affine model. 

In this manuscript, the discrete super-position of the mentioned (warped) ei-
genfunctions are used to find a new eigenfunction of the Fourier Transform and 
to build solutions of the known and studied second order Ordinary Differential 
Equations (ODEs) on both time and warped frequency domain. 

The solutions of the momentum equation of the Navier Stokes for both 2d 
and 3d versions are related to Dirichlet series (95), on the warped frequency 
domain. An appropriate inverse Dirichlet transform may be used to retrieve the 
solution on the time domain.  

A general solution of the Navier Stokes 3d equation for the viscid incompres-
sible flows is constructed from the begin conditions in the warped frequency 
domain, using geometric properties of the 2d version. This solution is called a 
minimal solution to the 3d Navier Stokes equation for the viscid incompressible 
flows. Those types of functions may contain domain singularities, which will 
cause the blow-up time when the numerical pivots strike a singularity. Please do 
see Appendix A for a study of the Navier Stokes d.e. 

2. The Euler Differential Equation and a Think Experiment 

Consider the solutions for the Euler differential equation  
2 0att y y by′ ′+ + =′                      (2) 

that may be deducted from the second order polynomial characteristic equation  

( )2 1 0r ra b−+ + =                     (3) 

[With substitution of d d
d d
y yt
t x
=  to eliminate the non-constant terms does 

2 0att y y by′ ′+ + =′  transpose to ( )1 0y ya b′′ ′− + =−  and followed by the subs-
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titution of ( ) erxy t =  delivers the found characteristic polynomial Equation 
(3).] 

The solutions of the Euler differential equation [8] is given by 

( )
( ) ( )

1 2
1 2

1 2

1 2

for 0

ln for 0

cos ln sin ln for 0

r rc t c t D

y c c t t D

c t c t t D

α

αβ β

 + >
= + =

 + < 

         (4) 

With  

( )1 1
2
1
2

a

D

α

β

 = −

 =


                         (5) 

and D the discriminant equivalent with  

( )21 4a b− −                          (6) 

If we think the variable t as restricted to the set of natural numbers � , and 

1c  and 2c  as constants and equal to one and take improper super-position of 
all identified solutions, then the Riemann Zeta Function will arise as the family 
bundle of solutions of (2) as follows: 

( ) ( )
( ) ( )

( )

1 2

1 2

for 0

for 0

for 0

c c D

y c c D

i D

ζ α β ζ α β

ζ α ζ β

ζ α β

− − + − + >


′= − − − =
 − + <

           (7) 

with the zeros of the characteristic polynomial (3) defined as 1,2r α β= ±  for  

0D ≥                            (8) 

and as 1,2r iα β= ±  when 

0D <                           (9) 

In our think experiment we have got both the Riemann Zeta function  
( )ζ α β− −  and the warped Riemann Zeta function ( )iζ α β− +  and the de-

rivative of the Riemann Zeta function ( )ζ β′ −  as solutions to the Equation (2). 
The Riemann Zeta function arises also as a special case of the super-position of 

the general solutions (see Table B1 for examples in Appendix B) of other second 
order ordinary differential equations like the confluent hyper geometric differential 
equation called hyper geometric function of the first and second kinds, generalized 
Laguerre d.e., the Bessel d.e. etc. and the incompressible Navier-stokes equation  

( )d
dt

ν+ ⋅∇ − ∆ = ∇ +
u u u u p g                  (10) 

[9], but in the warped frequency domain. We would have expected then that the 

Riemann Zeta functions 1
2

ivζ  + 
 

, ( )vζ ± would therefore reside on the  

warped frequency domain (as an image of the Dirichlet Transform operator). 
This is very fundamental in the sense that with proper assumptions and a proper 
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time-frequency transformation these types of functions can co-exist both on the 
time and warped frequency domain as we are going to see next. Therefore it was 
very important for us to analyze the behavior of such functions on the warped 
frequency domain. Appendix B consists of a study of the relationship between 
discrete solutions of selected 2nd order ODEs and the Riemann Zeta Function. 
Eigenfunctions of the Fourier Transform and the Dilation operators are tho-
roughly discussed in the thesis of Garas in [2] and the denomination “warped 
frequency domain” that is used in this manuscript is adapted from [2]. 

The Mellin transform operator [10] [11] does consist of the warping operator 

xU , [2] p. 122 and further, followed by a Fourier transform. Its image will 
therefore reside on the warped frequency domain, when the initial function does 
reside on the time domain.  

3. The Extended Riemann Zeta Function as an Eigenfunction  
of the Fourier Transform 

Consider the monomial represented by x α  and its defined unitary Fourier 

transform (with ordinary frequency) ( ) 12sin 1 2
2

αα α υ − −π − Γ + π 
 

. If we take 

the improper sum of both x α  and its Fourier Transform, a procedure also 
known as the Poisson Summation formula, then will the extended form of the 
Riemann Zeta function in the complex plane emerge as follows,  

( ) ( )1
1 1 2sin 1 2

2
x
x x α αυ

υ

α α υ ς α− −=∞ =∞

= =

π = − Γ + π = − 
 

∑ ∑      (11) 

using the functional equation for the extended Riemann Zeta function (1). In 
other words the extended Riemann Zeta function is invariant under the Fourier 
Transform. 

This is a very important find because we can now derive a general formula for 
the Mellin Transform with fractional derivatives of the Fourier Transform and 
use it to calculate the Mellin Transform of the Riemann Zeta function. 

Hence  

[ ]( ) ( ) ( )2 2 2 2
0

e d e di f i r i f i r
f f f f f f fξ ξ β ξ ββ

∞ ∞π π + π π +

−∞
= =∫ ∫         (12) 

[6] if all frequency components of ( )f  are positive (or if ( )f  is an 
analytical signal), can be seen as a Fourier Transform with transform variable 
ξ−  and with 

[ ]( ) ( ) ( )0
f f fξ β β= =                    (13) 

Then is  

[ ]( )
[ ]( )( ) 

2f

fi µµ
ξ

µ

ξ
β

ξ
− ∂

=
π ∂

 
             (14) 

with [ ]( )( ) ( ) 2  e di ff f fξξ
∞ − π

−∞
= ∫             (15) 

and using the formula for the Fourier Transform of the μ-th derivative of a 
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Fourier integrable function f,  

( )( ) [ ]( )( )  f t
t f t i

µ
µ µ

µ

ξ
ξ

ξ
∂

=
∂


                  (16) 

with i the imaginary unit and µ ∈�  extended from the set of natural numbers 
  to the set of complex numbers   and with  

2 i rµ β= π +                         (17) 

If we take the Riemann Zeta function as the analytical signal  

( ) 1
f
ff f α−=∞

=
= ∑                       (18) 

will above formula yield for  

[ ]( )

( )

( )

( )
( )

( )
( ) ( )

dilative effect

2 2
1

1

1

scaling effect

1

 e d

 
 

2

 

2

2

2

f i f i r
f f

f
f

f
f

f
f

f f f

fi

fi
f

i

i

αξ ξ β

αµµ

µ

αµµ

µ

µ µ α

µ

β

ξ

ξ

ξ

µ α
ξ

α

µ α
ς µ α

α

∞ −=∞− − π π +
=−∞

−=∞

=

−=∞

=

=∞ − − −
=

−

=

∂
=

π ∂

∂
=

π ∂

Γ +
= π

Γ

Γ +
= π +

Γ

∑∫
∑

∑

∑
���

�������

 







         (19) 

with 2 i rµ β= π +  using the fact that the fractional derivative of  
( )
( )

( )1x x
x

µ α
α µµ

µ

µ α
α

−
− +Γ +∂

= −
Γ∂

                 (20) 

for 0α ≥  and 0ξ ≥  [7]. The identified scaling and dilative effect (or Doppler 
effect) makes this transform ideal for analytical signal reconstruction and signal 
analysis purposes applied in radar technology. 

4. The Proof of the Age-Old Riemann Hypothesis 
For normalization purposes and to be coherent with the used Fourier transform 

we will use 1 2
2

ivζ  + π 
 

 instead of 1
2

ivζ  + 
 

. 

An affine or a line-preserving map between 1 2
2

ivζ  + π 
 

 and ( )1 sζ −  may 

be formed by the composite Mellin transform operator v n , with  

( )2e e
n

n
n nf U f f

−
= =                     (21) 

and nU  the warping operator on variable n and   the Fourier transform. 
( n , similarly with the discrete Mellin Transform used in [6], entails a mani-
pulation with the summation index variable to calculate the result). Using the 

found composite Mellin transform on 1 2
2

ivζ  + π 
 

 will yield  
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( )

( ) ( )

2 log e

2
1

2
1 1

1 2
2

1 e2 e
2 e
e 1

n

v n

ivn
n

v n v n n

n nivn
v vn n

iv

U iv

v n s

ζ

ζ

δ ζ

−− π
−=∞

= −

=∞ =∞π
= =

 + π 
 

 = + π = 
 

= − = −=

∑

∑ ∑



  

 

         (22) 

Q.e.d. The “quod erat demonstrandum” abbreviation refers to the confirma-
tion of the age-old Riemann Hypothesis, knowing that there exists a functional 
equation between ( )1 sζ −  and ( )sζ . 

The popularized expression for the Riemann Zeta function in the complex 

plane on the so-called critical line, 1
2

isζ  + 
 

, is also a solution of higher order  

ODEs when the pair of complex conjugate solutions of the corresponding cha-
racteristic polynomials are repeating as we have seen in our thought experiment. 
Its warped version (thus warping of a warped function with 2 ) can be 
represented as an even characteristic polynomial, since the Riemann Zeta func-
tion is an eigenfunction of the Fourier transform. Hence 

�
( ){ } ( )

( )( ) ( )

using (22)
1

1

21

2 2 2 2
2 2 2 2

1 2 1 2 cos 2
2

2 cos 2 lim c

1

os 1

v
n s v

v
v v vv

v v
v v

iv s v x

T x U

x x

x

xa a a

ζ ζ =∞−
=

=∞
→∞=

−
−

 + π = − = π 
 

= π = π −

= + + + −

∑

∑
� � ��

 

      (23) 

and with cos xx = π� , with 2va  defined as in the On-Line Encyclopedia of In-
teger Sequences as OAEIS A053117 [13], that is comparable with a characteristic 
polynomial of a higher order ODE for some v →∞ . Here are vT  and respec-
tively vU  the Chebyshev polynomials of resp. the first and second kinds [14]. 
Since the index v has to be taken even in the cumulative vU  polynomial gives 
the opportunity to form repeating pairs of conjugate complex roots as the re-
sulting characteristic polynomial may then be decomposed in product of lower 
order parabolic expressions which is a conditio sine qua non for the warped 
Riemann Zeta function to exist as a solution of the discussed ODE. 

The expression ( )12 cos 2v
v xv=∞

=
− π∑  is equivalent with the Fourier series of 

the zero-th Bernoulli polynomials,  

( ) { }

2

0 / 0

cos 2
! e 22 !

2 2

ivx

n n n nv v

nxv
nB x n

i v v

π

≠ ∈

π π − 
 = = −

π π∑ ∑        (24) 

The last definition can be found in the public accessible on-line Wikipedia. 
If we do interchange the variable x and n with each other, a logic way to cal-

culate the Dirichlet Transform of an Ordinary Generating Function resulting in 
a Dirichlet series, yields: 

( ) [ ]1
12 ! sin 1 4

2
vx x x

x vB n x k vn x=∞− − −
=

π = − π − + 
 

∑  for 

0 1x≤ ≤                            (25) 
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what equivalent is with ( )1 sζ− −  for 0n =  and is called the Hurwitz formula 
for the generalized extended zeta function ( ),x nζ  and with n∈  the well- 
known functional equation for the Riemann Zeta function will emerge. 

The extended generalized zeta function is invariant under the Dirichlet 
Transform (and so under the Mellin Transform), when transforming only the 
domain of its arguments will undergo a variable swap as we have seen. The 
Hurwitz Zeta function is therefore an eigenfunction under both the Dirichlet 
and the Mellin transforms. 

( )( ) ( )
2

20

21

  1?

1 2 2 cos 2 lim cos 1
2

x

v
vv

v
v v vv

a x

iv T y U yζ

>

=∞
→∞=

= −∑

 + π → π ≡ π − 
 

∑
�

������

���������������������������

�����



      (26) 

( )( ) ( ) ( )

basic Dirichlet series
with negative argument

21 2 cos 2 lim cos 1 1
y

v
v v vv T y U y sζ=∞

→∞=
π ≡ π − → −∑

��

����������������������

�

�

�

�

�

���


     (27) 

( ) ( ) ( )1
0 1

0 0

OGF Dirichlet series

1Dirichlet Transform e d (93) used in combinatorics theorys z
s

x

v s
v vv v

D f x z f x z
s

a x a v

∞ − −

=

−
> >

=
Γ ∫

→∑ ∑�����
�����������

�����
         (28) 

[15] p. 177. 

5. Conclusions and Future Work 
Using the fact that the extended Riemann Zeta function is an eigenfunction un-
der the Fourier Transform, it is proved that there exists a line-invariant compo-

site Mellin transform operator that projects 1 2
2

ixζ  + π 
 

 into ( )1 sζ −  namely  

( )1 2 1
2x n ix sζ ζ + π = − 

 
                  (29) 

what confirms the validation of the age-old Riemann Hypothesis, knowing that 
there exists a well-known functional equation between ( )1 sζ −  and ( )sζ . 

De facto they are conjugate pairs of each other using repetitively a fractional 
derivative Fourier Transform operator or the so-called Mellin Transform opera-
tor f

ξ  (12). The Mellin transform will expand the transform variable for 

n  from the set of natural numbers   to the set of real numbers �  and 

x  will expand the transform variable from the set of real numbers to the set 
of (negative) complex numbers  . 

Our future work will entail the study of the full spectrum of the eigenspaces 
belonging to the (fractional derivative) Fourier Transform operator and the be-
havior of the so-called conjugate pairs on their respectively domains with regard 
to known solution procedures for partial differential equations.  
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Appendix A 

Minimal solution for the 3d viscid incompressible Navier Stokes equation: an 
application to physics 

The solution of the Laplace equation in cylindrical coordinates is of para-
mount importance in many applications and this is not an exception for finding 
a minimal solution of the 3d Navier Stokes equations for the viscid incompressi-
ble media. The viscid flow arises when the viscous forces are prominent present 
in the equations. The solution is called minimal because a 2d geometric solution 
is extended to the 3d case, where domain singularities might be inherited. 

If we extend the solutions to the complex space and take the super-positioned 
result of all positive discretized solutions will yield a polynomial or hyperbolic 
progression, which is not surprising as we are going to see. 

Hence all second order ordinary differential equations that we have studied in 
this manuscript do have a polynomial progression as a solution as we are going 
the see in the next paragraphs. 

The solution of the Mellin Transformed Laplace equation in cylindrical coor-
dinates on the radius variable  

2

2

2 2

2

0

1 d 1 0
d

0

rr rr f rf rf

f fr
r r r r
F s F

θθ

θθ

θ

 + + =


∂ ∂   + =  ∂ ∂ 
 + =

                   (30) 

is ( ) ( ) ( ) ( )cos sinA s s B s sθ θ+                  (31) 

If we discretize nθ = ∈� , then take the superposition of all discrete solu-
tions, is still a general solution of above equation, namely  

( ) ( ) ( ) ( ) ( )1 21 1, cos sinF s n C s sn C s sn∞ ∞= +∑ ∑             (32) 

and using 2 sπ  instead of s and taking ( ) 1A s =  and ( )B s i= −  (to simplify 
the expression), then will the solution become  

{ }

121 2 2
/ 0 0

e
innins

ns n n
x

π −=∞− − π
=−∞∈ ≠

= ∑∑ �
                  (33) 

since { }
2

/ 0 e ins
n

− π
∈∑ �  is invariant under the Fourier Transform or  

12
2

 
in

x x π −∑                           (34) 

if we would have taken summation over the variable x. 
If we take now the Dirichlet Transform of the solution (33) for 0n > , will 

this result in ( )sϕ  with ( ) ( )4 1 2n s s
nns f s a n iϕ =∞ − −

=
= = π∑  if we would have 

used a general term na  [15]. Please note that  
( ) ( ) ( )4 1   2n s s

nns f s a n i sϕ =∞ − −
=

= = π Γ∑  for 1na = , yields  

( ) ( )
( )

( ) ( )
1 122 1 1 tan

2 2 2 cos
2

s

s

i s i si s s s s
s

ς
ς ς ς

−

−
− π π Γ = = − − −  π   

 
 
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( ) ( ) ( )11 tan 1
2 2 2

i ss is sς θ ς π  = − − ≅ − −  
  

 

with ( )sθ  the Heaviside step function [16]. 

Above, the so-called functional equation of the Riemann Zeta function (1) is 
used, and  

( ) ( ) ( )

( )

( )

  1
sin

1sin cos sin
2 2 2

1 for
1 1 1tanh for 0
2 2 2 2

0 for

s s
s

s ss

s
ss s

s

θ

πΓ Γ − = π
 π π   π =    
    


→ ∞
 π  ≅ + = =  

  
 → −∞

           (35) 

The Mellin Transform of (32), for ( ) ( )1C s f s=  and ( ) ( )2C s if s= , may be 
represented as  

( ) ( ) ( )1 1, en i n x
x xF x n fµ µ∞ ∞− −  = ∑ ∑              (36) 

( )( ) ( )1 1 0
e e di n x i n x

x f x f x x xµµ
∞∞ ∞− −=∑ ∑ ∫            (37) 

                                

( )�0
taylor series expansion:

1   d
2

U ix f x x xµζ
∞  = + 

 ∫  

( ) ( )0 0

1   0 d
2 !

k
k k
k

xU ix x f x
k

µζ
∞=∞

=

 = + 
 

∑ ∫  

( )
�

( ) ( )
0 0,

0 0
1 :

Unitary Fourier Transform
with ordinary frequency

0 1   d
! 2r

x n

k
k k
k

U k

f
U ix x x

k
µ

µ

ζ
∞=∞ +

=
  + − 

 = + 
 

∑ ∫
 

 

( ) ( ) 2
0 0

0 1e d
! 2

k
k in k
k

f
ix x x

k
µ µζ

∞=∞ − π +
=

 + 


=


∑ ∫  

( ) ( )
0

0 1
2 ! 2

kk k
k

kk

fi ix
k n

µ µ

µ ζ
+ +

=∞

+=

∂  = + π ∂  
∑                   (38) 

( ) ( )
0

0 1
2 ! 2

kk k
k

kk

fi ix
k n

µ µ

µ ζ
+ +

=∞

+=

∂  = + π ∂  
∑  

( ) ( )
( )

0

1
122 0

1 21
2

k kk
k

ix k
i f ix k

k ix

µ
µ

ζ µ=∞ − −
=

 Γ + + +    = π + + +    Γ + Γ + 
 

∑  

with 
( ) ( )

0

0
!

k
kf

x
k

∞∑                              (39) 

the series expansion of the begin condition f around the value 0. Equation (38) is 
de facto a solution on the warped frequency domain to the eigenvalue problem 
Equation (30) or the Helmholtz equation that typically arises in physical prob-
lems involving partial differential equations in both space and time (e.g. the vis-
cid Navier Stokes incompressible d.e.).  
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When the begin conditions differ per independent solution legs, the same 
method may be applied but now instead of using e i n x− , its real part (with re-
gard to the term with ( )1C s ) must be used and respectively its imaginary part 
(with regard to the term with ( )2C s ) must be used to calculate (38). 

The time domain equivalent of (38) may be calculated by the inverse Dirichlet 
transform and is defined by 

( ) ( ) ( )
( ) ( ) ( )

( )2
1 0

2
2 0

1
n k k n kk
n k

n k
i f x

k n n
µ=∞ =∞ − −− −

= =

Γ +
π

Γ + Γ Γ∑ ∑           (40) 

taking 1  
2

ixµ = +                          (41) 

The Dirichlet Transform of a function f is defined as  

( ) ( ) ( ) { } ( ) [ ]( )( )
21 e 1e

2

i x
x if f f

ξ µ µ

µµ µ ξ
µ µ µ ξ

− π ∂
= =

Γ Γ Γ π ∂
       (42) 

what is equivalent with  

( ) ( )( )1
x f xξ µ

µ
−

Γ
                      (43) 

The above solution (38) can also be used for the reconstruction of the general 
solution (for the velocity profile, and thus also for the pressure warped frequency 
distribution) of the incompressible 2d-Navier Stokes equation in cylinder coor-
dinates, taking  

nθ =                             (44) 

and r s=                            (45) 

since the Laplace equation in cylindrical coordinates is congruent with the 2d 
momentum equation for an incompressible flow. The solution for the (warped) 
velocity distribution function is therefore: 

( ) ( ) ( )
( )

0

1
122 0

1 21
2

k kk
k

ix k
u i f ix k

k ix

µ
µ

µ ζ µ=∞ − −
=

 Γ + + +    = π + + +    Γ + Γ + 
 

∑      (46) 

With the begin function f equivalent with 1 does Equation (46) yield the Di-

richlet series 
( )
( ) ( )
2

2 2i µ µ
ς µ

µ
− Γ

π
Γ

 taking 1
2

ixµ = + : 

( )
( ) ( ) ( )

( )
( ) ( ) ( )2

31
2 2

2
2

1 
2
2

2 2 warped frequency domain see Figure A1

2 22 , time domain see Figure A2
22

n n n
n

ix

i

n ii x x
n n

x ix
x

µ

µ

µ
ς µ

µ
−

=∞ − −
=

 = +


Γ π Γ

 Γ π

π = − >
Γ Γ π  π +  

  

∑
(47) 

Figure A1 confirms the volatile characteristics of the Dirichlet series. Figure 
A2 is the inverse Dirichlet transform of Figure A1, using [15].  

https://doi.org/10.4236/am.2019.1011068


R. Meulens 
 

 

DOI: 10.4236/am.2019.1011068 979 Applied Mathematics 
 

 
Figure A1. ( )u µ  warped frequency domain. 

 

 
Figure A2. ( )u x  time domain.  

 
The 3d Navier Stokes system of equations for the incompressible viscid flow 

[9] is reducible to an extent that its general and exact solutions are determined 
by the (general and exact) solutions of the 2d Laplace equation in cylindrical 
coordinates (as above) as follows. We will call this solution a minimal solution. 

Consider the NVS 3d systems of equations for the incompressible viscid flow: 

( ) 2

t
ρ ρ µ ρ∂

+ ⋅∇ − ∇ = −∇ +
∂
u u u u p g              (48) 

and 
viscid constant
medium density

µ
ρ
=
=





                   (49) 

Equation (48) per directional component in cylindrical coordinates: 
2

2 2

2 2 2 2 2

1 1 2

r r r r
r z

r r r r
r

u uu u u uu u
t r r r z

uu u u ug r
r r r r r r r z

θ θ

θ

ρ
θ

ρ µ
θθ

 ∂ ∂ ∂ ∂
+ + − + 

∂ ∂ ∂ ∂ 
 ∂∂ ∂ ∂∂ ∂  = − + + − + − +  ∂ ∂ ∂ ∂∂ ∂  

P
    (50) 

2 2

2 2 2 2 2

1 1 2

r
r z

r

u u u u u u u
u u

t r r r z

u u u uug r
r r r r r r z

θ θ θ θ θ θ

θ θ θ θ
θ

ρ
θ

ρ µ
θ θθ

∂ ∂ ∂ ∂ + + + + ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂∂∂ ∂  = − + + − + + +  ∂ ∂ ∂ ∂∂ ∂  

P
    (51) 

2 2

2 2 2

1 1

z z z z
r z

z z z
z

uu u u uu u
t r r z

u u ug r
z r r r r z

θρ
θ

ρ µ
θ

∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂∂ ∂  = − + + + +  ∂ ∂ ∂ ∂ ∂  

P
          (52) 
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To solve the above 3d NVS system of equation we will have to reduce the r.h.s. 
of each equation to the sum of the pressure term and the external force and 
equating the Laplace expression in cylindrical coordinates to zero (solve up the 
Laplacian to get the velocity distribution), and then expand this using time con-
volution to ( ),u tx  with the appropriate Gaussian diffusion Green’s function to 
solve the enclosed diffusion equation  

2

t
ρ µ∂

= ∇
∂
u u                         (53) 

and then use it to calculate the pressure distribution as follows  

( )ρ ρ∇ = − ⋅∇p g u u                     (54) 

To simplify this we will expand the super-position of discrete solutions Equa-
tion (32) over the whole set of integers  , then  

( ) ( ) ( ) ( ) ( ) ( )
( )

th

2

Green s function of diffusion eq.Taylor term of around
integrand of eq.(37) 1

2 4
00

e

convolution integral

1, 2 e d
! 4

i kyk
k

k f a

x yk k
k t
k

y a f a
u x t y t y

k t
µδ θ

µ
π=∞

=−∞

−
−∞ =∞

=

∑

−
= π

π∑∫

����������������
�����

�����
�������������� �

’

������������

  (55) 

( ) ( ) ( ) ( ) ( )
2 2

4 4
0

1 11 e e e
2 ! 2

x xkk
k a Df at t
k

a f a
t t

t k t
µ µρ θ θ

µ µ

− −=∞ −
=

−π π
= = =∑    (56) 

The last function is rescaled along both axes compared to its time-domain 
version, and is called a “compressed” eigenfunction of the Mellin Transform op-
erator, the corresponding transform pair on the time domain is equivalent with  

( ) ( )
21 e e

4
t x a Df a t

t
µ θ

µ
−π

π
                   (57) 

In two dimensions it will be congruent with  

( ) ( ) ( ) ( )
2 2

1 2 2e e e
4

t x y a Df a a Df a t
t

µ
θ

µ
+ − −π                 (58) 

The interested reader may try to derived it, the warped frequency 3d pressure 
distribution in Cartesian coordinates would be then, taking  

0g =                             (59) 

out of Equation (54) and disregarding the terms ( )e ja Df a−  for 1,2,3j =  and 
the Heaviside time restriction in the different directions,  

2 2 2 2

1 1 1 12 2 2 2
2 2 2 2

2 2

1 12 2
2 2

1 1Erf exp exp Erf exp exp (60)
2 4 2 2 2 24 4

1 Erf exp exp
2 4 24

x

y

z

y x y z z x y z
k j

t t t tt tt t
P

x y z x
P k

ttP t

µ µ µ µµ µµ µ

ρ
µµµ

          π π
       − − − − −                       

    π   = − − −            

2 2

1 12 2
2 2

2 2 2 2

1 1 1 12 2 2 2
2 2 2 2

1 Erf exp exp (61)
2 4 24

1 1Erf exp exp Erf exp exp
2 4 2 2 2 44 4

z y z x
i

t t ttt

x z x y y z x y
j i

t t t tt tt t

µ µ µµµ

µ µ µ µµ µµ µ

      π
     + − −             

          π π
      − − − − −                      

(62)

 
 
 
 
 
 
 
 
 
 
 

 
   
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using 

( )

( )

2 2

2 2

, , exp exp ,
4 4

, , exp exp etc
4 4

k

i

x yku x y t
t t t

y ziu y z t
t t t

µ µ µ

µ µ µ

   
   = − −
   
   
   
   = − −
   
   

             (63) 

based on an i, j, k indexed classical Hamilton’ian unit vectors with magnitude 
1−  where 2 2 2 1i j k ijk= = = = −  and 

ij k= , jk i= , ki j= , ij ji= − , jk kj= − , ki ik= −  and where Erf(x) the 
Error function is, defined as  

( ) 2

0

2Erf e d
z tz t−=

π ∫
                     (64) 

On the edge of the domain the following is true for the normal vectors 

( ) ( ) 0kuu u x k u x
n z

∂∂
= ≅ + − =

∂ ∂
 etc.         (65) 

Please do see Figure A3. Figure A3 does show the contour graph of the warped 
frequency distribution in 3 dimensions. 

The total energy of each wave system is equal on both the time and frequency 
domain [6] [7]. In symbols, 

( ) ( ) ( )2 2 2,P t f t f f f x t t
∞ ∞ ∞

−∞ −∞ −∞
∂ ∂ = ∂ = ∂ =∫∫ ∫ ∫           (66) 

with above the expression for the Wigner-Ville Distribution function ( a class of 
dual energy distributions), and below, the integrand [is equivalent to the Ambi-
guity Function] as defined in [3] [6] [7]  

( )
2 2 2 2

2 *e e, e d
2sinh 2sinh 2sinh

2 2 2

u u
r

iuft u fu fuP t f f u
u u u

−
+

− π

   
   

=    
      
   

∫
�

        (67) 

( )f  is the analytical signal on the frequency domain and its Fourier 

Transform inverse ( )x t  on the time domain and 2  the total (kinetic) ener-

gy of the system and r is a warp parameter that may be set 1
2

−  to yield a factor  

2e
e 1

u

u

u
−

                               (68) 

in the integrand and what may be calculated with the Residue theorem. Expres-

sion (65) will yield an unbounded wave energy-level of ( ) 22 u µ µ
∞

−∞
∂= ∫  for 

every component with ( )1ζ = ∞ .  

The Wigner-Ville time-frequency distribution function is a unitary affine 
function that suffices the following equation  

( ) ( )
22

0
d , dr

ft P t f t f f
f

ξβδ ξ β
∞ ∞

−∞

 
− − = 

 
∫ ∫             (69) 

with [ ]( ) ( ) 2 2
0

e di f i r
f f f fξ ξ ββ

∞ π π += ∫    (12).  
The total wave energy does inherit the known singularities within the Dirich-

let series from the components of the distribution function of ( )u x  what  
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Figure A3. Contour of 3d warped pressure distribution. 

 

makes it also unbounded. 
The last maximum value of the total energy is also supported by the fact that 

the Wigner-Ville Distribution function definition also does have a factor of the 
hyperbolic cosecant with half argument in its integrand (defined on  

{ }( )\ 2C∞ π� � , with poles at { }{ }2 ki k
∈

π
�

 what may lead to variants of the 
improper Riemann contour integral [1] 

( ) ( ) ( ) ( ) ( )1 1

2sin d d
e 1 e 1

s s

x x

x x
s s s i x i xς

− −
∞

∞

− −
π Γ = =

− −∫ ∫�            (70) 

Below schematically, the application of the presented formulas for solving up 
the Laplace equation in cylindrical coordinates in an analytic signal analyzing 
model used by [6]. The constructed transformation is scale invariance: 

An analytic signal analyzing model 
 

( ) :f  
12
2

1

12
2

x i

x
i x αζ α

=∞ π −

=

 − π + = 
 

∑  
�, :r

xU ξ

→  

( ) ( ) ( )2 1, 1e :i a fr r
fU f a afξξ − π −+=   

2

1
ex i x

x

α=∞ − π

=∑  

↓  
(warping operator, 1

2
r = − , 0ξ = , 

e xa −= ; 
10,
2

r

x xU U
ξ = =−

= ) 
↓  

( ) ( ), :r
f nf U fξ ξ=           

( )2

1 1
ex xi x

x x
xα δ α

=∞ =∞− π

= =
= −∑ ∑  

with   the Fourier Transform  
with ordinary unitary frequency 

�
x

→


 

( )

[ ]( )

( )
( )

,

122

10

1

10

e d

d

1

r
f x

x i xi
f x

x

x

U

a x x

x x x

ξ ξ

µββ ξ

µ

β

µ

δ β

ζ µ

∞ =∞ −− π− π

=

∞ =∞ −

=

  

= ⋅

= −

= −

∑∫
∑∫

 

 
 

The result is equivalent with 
( )
( ) ( )1 ,iµ µ µ α

ς µ α β
α

− Γ +
− +

Γ
 for 

0ξ ≠ ,  2 i rµ β= π + , e xa −=  and initial input ( )ς α . Hence the 

factor 2 ia β− π  may be moved to the integrand of the found Fourier 

Transform 

( )

( )
( )

( )
( ) ( ){ }

2

1

1

e d

2

2 ,

f i f

f
f f f

i

i

α ξ β µ

ξ µ αµ

ξ

µ αµ

µ α
ξ β

α

µ α
ς µ α β β

α

∞ =∞ − − π +

=−∞

=∞ − −−

=

− −−

Γ +
= π +

Γ

Γ +
= π + −

Γ

∑

∑∫

 (71),  

with ( ),sς λ  the Hurwitz Zeta function (100). 
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Out of the general solution is it clear that the distribution functions for ( )u x  

and ( )p x  on the warped frequency domain do inherit the known singularities 
of the Dirichlet series, naturally depending on the begin-conditions which may 
cause shifts in singularities at { }1 , removable singularities at  

( )log2
log log

a p
i

p p
π

− +
�                         (72) 

with p a prime number as a consequence of the Euler denomination of the Di-
richlet series ( ( ) 1a + =�  for the Riemann Zeta function) in the form of the 

product formula  

( )
( )1 prime

1
1

n s
sn pa n n

a p p
=∞ −

−=
=

−∑ ∏               (73) 

only for ( )a n  is totally multiplicative [17]. Solving up the zeros of the deno-
minator in the last expression  

( )2e 0i sa p pπ −− =�                       (74) 

does result in the mentioned complex removable singularities. So may be said 
that the distribution functions ( )u x  and ( )p x  are defined on { }( )\C∞ � �  
for each component. 

The begin-conditions may also dictate the periodicity of the general solution. 
There exists no general solution that is independent of the begin-solutions, since 
the solution is constructed out of the begin-conditions. The begin-conditions 
may cause singularities or may annihilate them, depending on the initial prob-
lem and its basic solution. The basic solution of the Laplace equation in cylindrical 
coordinates, which is the solution core for both the velocity and pressure frequen-
cy distributions (in the incompressible case) for the Navier Stokes equations in 2d 
and to certain extent also for the 3d version, does contain and consequently inhe-
rits the singularities observed in the cited improper Riemann contour integral in 
particular or from the Dirichlet series in general. The input signal  

( ) 1f f α∞= ∑                         (75) 

of the used model may manifest or cause singularities on both time and warped 
frequency domains with both the summation parameter indexed by f (hyperbo-
las) and by α  (polynomials). On the time domain the signal may experience 
singularities due to the vast powers that are used that may be unpractical for 
most commercial available micro-processors to compute [for example when f is 
chosen as the series of orthogonal polynomials like the Hermite polynomials or 
due to the known singularities of the Zeta function. On the warped frequency 
domain the singularities are due to the properties of the formed Dirichlet series 
output signals for both cases.  

Interesting to note is that the so-called blow-up time within the numeric 
schemes may manifest whenever the numerical pivoting method strikes a known 
singularity of the general solution.  

When the analytical signal condition is dropped or when negative discrete so-
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lutions of the Laplace equation (read the momentum equation) are allowed, the 
motion solution of the 3d Navier Stokes equations for the viscid incompressible 
flow will become a (multi-dimensional) Gaussian function with no singularities 
on neither the time domain nor the warped frequency domain. 

Appendix B 

The Riemann Zeta Function represented as a Dirichlet Transform of discrete 
super-position of second order ODEs solutions. 

The confluent hyper geometric functions are solutions to the Weber differen-
tial equations, obtained after separation of variables when decomposing the 
Laplacian in cylindrical coordinates; 

( )

( )

2
2 2

2

2
2 2

2

0

0

u c k x u
x
v c k x v
y

∂
− + =∂


∂ − − =

∂

                    (76) 

The substitution 
2

exp
4
xu w

 
= ⋅ − 

 
 converts the weber equation to  

2

2 0w wx w
xx

υ∂ ∂
− + =

∂∂
                     (77) 

with solution ( )
2

exp
4
xu H xυ

 
= ⋅ − 

 
, where ( )H xυ  is the Hermite polynomial. 

In general the solutions of the second order ordinary confluent hypergeome-
tric d.e.  

( )
2

2 0w wx c x aw
xx

∂ ∂
+ − − =

∂∂
                (78) 

are of the form  

( ) ( )1 211 ; ; , ,w b F a c x b U a c x= +                (79) 

and are called the confluent hypergeometric function of the first and second 
kind respectively. The first kind version is also denoted as ( ), ,M a c x  or  
( ); ;a c xΦ  with  

( ) ( )

( )
1 1 0; ;

!

n
nn

n
n

a z
F a c x

c n
=∞

=
= ∑                  (80) 

and ( )na  the Pochhammer symbol defined as  

( )
( )
( ) ( ) ( )1 1n

a n
a a a a n

a
Γ +

= = + + −
Γ

�             (81). 

An integral representation for ( ), ,U a b z  is 

( ) ( ) ( ) 11
0

1, , e 1 db az t aU a b z t t t
a

∞ − −− ⋅ −= +
Γ ∫             (82) 

[18] [19]. 
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The confluent hypergeometric function of the second kind, can be transposed 
to the improper contour integral  

( ) 1

d
e 1

s

x

x
i x

−−

−∫�  

by choosing 1b a= + , and a s= . Namely 

( ) ( )
1

0

1, 1, e dn t sU s s n t t
s

∞ − ⋅ −+ =
Γ ∫  

( ), 1, sU s s n n−+ =                       (83) 

Taking an infinitely summation at both sides of the latter expression and 

substituting for n n*n and for s 
2
s  will ( )sς  emerge as super-position of the 

solutions, namely 

( )2
1 , 1,

2 2
n
n

s sU n sς=∞

=

 + = 
 

∑                  (84) 

If we take 
2

2
n

 instead of 2n  both sides as argument then the following ex-

pression will arise  

( )
2

2
1 , 1, 2

2 2 2

s
n
n

s s nU sς=∞

=

 
+ = 

 
∑                (85) 

( )
2 2

2 1 12 exp , ,
4 2 2 2
z zD z U p

υ

υ υ
   

= − − +   
   

 is a solution to the Weber d.e. 

with p an integer and equal to null. ( )1D i zυ− − ⋅  is the other linear independent 
solution of Weber d.e. 

( )
2

2
2

1 1 0
2 4

y z y z
z

υ∂  + + − = ∂  
                (86) 

With substitution 
2

4e
x

y u
−

=  converts the Weber d.e. to 
2

2  0u ux u
xx

υ∂ ∂
+ − =

∂∂
 

with solution ( )
2

4e
x

y H zυ

−

= . 

( ) ( )
2 2

22 exp exp
4 42 n

n

n n e
z z zD z H H z

−     
= − = −    

    
 with  

( ) 212 , ,
2 2

n
n

nH z U p z− = + 
 

               (87) 

the Hermite polynomial and ( )
neH z  the modified Hermite polynomial. 

The modified Hermite polynomial is defined as 

( )
2

2 2 12 2 , ,
2 2 22n

n n

e n
z n zH z H U p

−  − 
= = +  

   
         (88) 

If we denote 1
2

p +  by – 1
2
n
+  and compare it to the found expression of 

( )sς  i.e. 
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( )
2

2
12 , 1,

2 2 2

s
n
n

s s ns Uς
+ =∞

=

 
= + 

 
∑                 (89) 

and substituting s by -s yields,  

( )

1

2
2

12 , 1,
2 2 2

sn
n n

s
n
n

s s ns Uς

=∞
=

− =∞

=

∑

 
− = − − + 

 
∑

�������������

              (90) 

( )
�

2
2

1
2

12 , ,
2 2 2n

n

n

e

n

z

n zH z U p

− +

 
 
− = + 

  
 

�

���������

                 (91) 

If we interchange the parameters z and n with each other for ( )
neH z� , and su-

perposition all the elements ( )
neH n�  with each other will the expression of ( )sς −  

emerge as above. The generalized Laguerre polynomials can be represented by  

( ) ( )
( ) ( )

1
  , 1,

!

n
a

nu L x U n a x
n

−

−

−
= = +

−
                (92) 

and are related to the Riemann Zeta function as described above. A known 
transform operator [12] that can transpose polynomial expressions into Dirich-
let series is the Dirichlet transform  

( ) ( ) ( )1
0

1 e ds z
sD f x z f x z

s
∞ − −=

Γ ∫                 (93) 

that transforms the ordinary generating functions  

( )1 1
n n

nnf x a x=∞

=
= ∑                       (94) 

(OGF) to ( )4 1
n x

nnf x a n=∞ −
=

= ∑                 (95) 

This transform is discussed in the chapter of combinatorics of [15] p. 177 and 
deals primarily with size conditions of x X n≅ = ∈�  of the permutations 

( ) ( ),kf x f x k= ∑  with auxiliary parameter variable k. 

The Dirichlet series with  

( ) ( )4 1 1s x
f s D f x

=
=                      (96) 

where it may be used in conjunction with the Laplace-Borel Transform first, as 
intermediary aid, to first convert the Exponential Generating Functions (EGF)  

( )2 1 !

n
n

nn

xf x a
n

=∞

=
= ∑                      (97) 

into the OGF form what may be the case for the confluent hyper-geometric 
functions of the first kind. The Laplace-Borel Transform is defined as  

( ) ( ) 1
1 20

e dtf x f tx t
∞ −= ∫                    (98) 

In [20] Vojta mentioned about the cannibalistic feature of the Mellin Trans-
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form with regard to the Laplace Transform and “many other functions” what 
may validate the two step approach to calculate the Dirichlet Transform result 
for the generalized Laguerre polynomials. 

Table B1 shows the study of several second order ODEs with regard to their 
solutions on the time domain, and the improper summation of their Dirichlet 
transforms on the warped frequency domain. The transform of the solution 
double argument functions ( )nf x  entails a variable swap between the domain 
variables n∈�  and x∈� . 

( )
1

2 2
1
2

e , 2 ,
x n

n
K x U n n x

−

−
=  is one of the independent solutions of the confluent 

hypergeometric differential equation. The row elements in the Table B2 are en-
closed in the integer sequence OIES A113025 [23] and the summation of the di-
agonal elements ,1 0

n n
n n kn ka a=∞

= =
= ∑ ∑  are the Dirichlet coefficients of  

( ) ( )4 1sf x D f x= . 

 
Table B1. Second order ODEs (Ordinary Differential Equations) and their solutions on time and warped frequency domains.  

Type D.e. Solution 
Dirichlet Transform of  
superposition of (discretized)  
solutions with explanation 

Dirichlet Transform of  
superposition of  
(discretized) solutions 

EULER 

2
2

2

0

u ux x
x x

u

α

β

∂ ∂
+

∂ ∂
+ =

(1) 
( ) ( ) ( )

( )
cos ln sin ln

exp ln

x i xu x x x

i xx

λ λ

λ

µ µ

µ

+

=

=
 

( )

( ) ( )

( ) ( ) ( )

1

 

1

exp ln

1 e exp ln e

, 1, ,

i

s

x

x x
x

s s

D x i x

i
s

i s i s i i

λ µ

µ λ

µ

µ λ

µ

µ

µ

ς λ λ

+

=∞

=

=∞ − −

=

−

Γ

= − − = −

=

Φ

∑

∑

�������

  

(99) 
Φ  is Lerch Transcedent function 

( ) ( ),si s iς λ−
− − . 

( )
( )0

1, n

sn
s

n
ς λ

λ
=∞

=
=

+
∑  (100) 

is the Hurwitz Zeta function as 
generalization of ( )sς  with 

( ) ( ),1s sς ς= . 

variant  
modified  
Hermite 

2

2 1
2
0

u n ux
x x
nu

∂ ∂ − + − ∂ ∂ 
+ =

(101) 
( )

�

2

1
2

1, ,
2 2 2

n

n

z

e

n

n zH z U p

− +

 
 − = +
 
 
 

���������

�  ( )

2 2
12 2

2
2

1
2 , 1,

2 2 2

s s
n s
n n

s
n

n

s s ns Uς

− =∞
=

=∞

=

∑

 − = − − + 
 

∑
�������������

 
( ) ( )1 n

n

s en
D H z sς

=∞

=
= −∑ �  (102) 

Confluent 
hypergeometric 

( )
2

2

0

u uc x
x x
au

∂ ∂
+ −

∂ ∂
− =

 

( ) ( )1 211 ; ; , ,u b F a c x b U a c x= + ; 
Special cases: 

( )
( ) ( ) ( )

11 , 1,

~ 1 1 n
n

F n n x

n n L x−

+

Γ + Γ −
 (103)  

with ( )n
iL x  the associated Laguerre  

polynomials [21] 
( ), 1, ~ nU n n x x−+  (107) 

( )
12
2

1
2

, 2 ,

e~ ~
2

x

n n
nn

U n n x

xx K a x
− −

−

 
 π  

 (109) 

( )

( )

( )

1

2

1

1

1
2

2

2

, 2 ,

e 1~
4 2 2

!

x
n

n

n
n

n

F n n x

x xn I

n x
n n

−

−

   Γ +   π    

∼

 (113) 

; With Γ, Γ(; ;), I, K, resp. the gamma  

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )

1 1

1 , 1,
1 1

!

1 , 1, 1

x
x

s

s

s s L n

U s s n
s s

s

U s s n s

−

−

−

Γ + Γ −

− +
= Γ + Γ −

−

= − + Γ +

 

(104) 
( ) ( )

( )1 11

1 1

, 1,

s

n

n

s s

F s s n

ς−

=∞

=

− Γ +

= +∑
 (105), since 

( ) ( )1
, 1,n

n
s U s s nς

=∞

=
= +∑ . 

( ) 1

n s
nn

s a nϕ
=∞ −

=
=∑  (110); 

,1 0

n n

n n kn k
a a=∞

= =
= ∑ ∑  (111) with 

,n ka  OIES A113025. See Table B2. 

( ) ( ) ( ) 1

n s
nn

s s s a nϕ
=∞ −

=
Γ = Γ ∑  (114); 

( )

( )2

n
n

n

n
a

n
=  (115); 

( ) 1

n s
nn

s a nϕ
=∞ −

=
=∑  (116);  

( )
( ) ( )

11 1 , 1,

1 1

n

s n

s

D F n n x

s sς

=∞

=

−

+

= − Γ +
∑  (106) 

( ) ( )1
, 1,n

s n
D U n n x sς

=∞

=
+ =∑  

(108) 

( ) ( )1
, 2 ,n

s n
D U n n x sϕ

=∞

=
=∑  

(112) 

( ) 1

n s
nn

s a nϕ
=∞ −

=
=∑  (110) 

( ) ( ) ( )11 1 , 2 ,n

s n
D F n n x s sϕ=∞

=
= Γ∑  

(116) 

( ) ( ) ( ) 1

n s
nn

s s s a nϕ
=∞ −

=
Γ = Γ ∑  

(114) 

( ) ( )1
, 2 ,n

s n
D U n n x sϕ

=∞

=
=∑

(118) 
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Continued 

  

function, the generalized gamma 
function, the modified Bessel function 
of first and second kinds, ( )nn  the 

Pochhammer symbol 

( ), 2 , 2
2

n
n

xU n n x θ−
−

 =  
 

 (115); θ  is 

a (reverse) Bessel polynomial [22] 
when n is a non-negative integer

 

,1 0
 n n

n n kn k
a a=∞

= =
= ∑ ∑ (117);  

with ,n ka  OIES A001497 
 
 
 
 
 

 

Generalized  
or associated 
Laguerre 

( )
2

2 1

0

u ua x
x x
nu

∂ ∂
+ + −

∂ ∂
+ =

 

(119); 

( ) ( ) ( )1
, 1,

!

n

a
nu L x U n a x

n
−

= = − +  

Special cases: 

( ) ( ) ( )

( )

1
, 1,

!
1

~
!

n

a
n

n

n

L x U n n x
n

x
n

−
= − − +

−
 

Step 1: Laplace-Borel  
Transformation of 

( ) ( )1 1

1
!

n
n n nn

n n
x x

n
=∞ =∞

= =

−
= −∑ ∑  

Step 2: 

( ) ( ) ( )1
2 2 2n n s s

s n
D x sς

=∞ −

=
− = − −∑  

( ) ( )
3 1

1
EGF

!

n
n n

n
f x x

n
=∞

=

−
≡ − =∑  

( ) ( )
( ) ( )

3

2 2 2

a
s s nn

s s

D f x D L x

sς−

− =

= − −

∑ 

(120) 

Bessel 

( )

( )

2
2

2

2 2 2

2 1

0r

u ux x p
x x

x a yβ

∂ ∂
+ +

∂ ∂
+ + =

1
2

p = , 0β = , 1r =  

1 2
p r r

q q
r r

a ay x c J x c Y x
r r

−  
=    +   

  
  


; 

( ) ( )
1
2

sin2 kx
J kx

x
=

π
 

( ) ( )
1
2

cos2 kx
Y kx

x
=

π
 

J and Y the Bessel function of first and 
second kinds. 

( ) ( )

( )

1 11
2 2

, 2

1

2 2

1 1 e
2

k

sk

kr ikx
k k k

D Y kx iJ kx

U
s

ξ ξ

=∞

=

=∞ π

=

 
π + π 

 

 =  Γ π

∑

∑

 

( )

( )

( ) ( )

2 2

1

1

1

1 1 e e
2

1 1
2

1 1  
2

kikx ikx
k k

k s

k

s

k dk
s

s
s s

ξ

ζ

=∞− π π

=

=∞ −

=

 
 Γ π

=
Γ π

= −
Γ π

∑

∑



(121)  
2 1s iβ= π − ; 0ξ = ; e xa −= ; 

2r = − , ( ) 2e , 0ikf fZ f π= >  

( ) ( )

( ) ( )

1 11
2 2

2 2

1 1  
2

k

sk
D Y kx iJ kx

s
s s

ζ

=∞

=

 
π + π 

 

= −
Γ π

∑
 

 
Table B2. Progression of the modified Bessel function of the first kind 1

2
n

K
−

. 

, |n ka n →

k ↓  
1
2

k
K

−
            

Expression for 

1
2

k
K

−
 

k = 0 1
2

K       1      
1

2 2e
x

x
−

−
π  

k = 1 1
2

K
−

     1  2     
1

2 2 2e 1
x

x
x

−
−  π + 
 

 

k = 2 11
2

K
−

    1  6  12    
1

2 2
2

12 6e 1
x

x
x x

−
−  π + + 
 

 

k = 3 12
2

K
−

   1  12  60  120   
1

2 2
3 2

120 60 12e 1
x

x
x x x

−
−  π + + + 
 

 

k = 4 13
2

K
−

  1  20  180  840  1680  
1

2 2
4 3 2

1680 840 180 12e 1
x

x
x x x x

−
−  π + + + + 
 

 

k = 5 14
2

K
−

 1  30  420  3360  4120  30,240 
1

2 2
4 3 2

1680 840 180 12e 1
x

x
x x x x

−
−  π + + + + 
 

 

 0x   1x−   2x−   3x−   4x−   5x−   
1

2 2
4 4 3 2

30240 4120 33160 420 30e 1
x

x
x x x x x

−
−  π + + + + + 
 
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