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Abstract 
Given a graph ( ),g V A= , we define a space of subgraphs M with the binary 
operation of union and the unique decomposition property into blocks. This 
space allows us to discuss a notion of minimal subgraphs (minimal coalitions) 
that are of interest for the game. Additionally, a partition of the game is de-
fined in terms of the gain of each block, and subsequently, a solution to the 
game is defined based on distributing to each player (node and edge) present 
in each block a payment proportional to their contribution to the coalition. 
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1. Introduction 

Cooperative game theory and graph theory are closely related areas, as both study 
relationships among independent agents (players-nodes). There are many ways 
to approach game theory via graph theory. The goal of this article is to introduce 
a new idea about the concept of coalition defined on graphs. 

In the 1950s, Shapley [1] introduced the well-known Shapley value, one of the 
most famous tools in the study of cooperative n-person games. Later, Myerson 
[2] used ideas from graph theory to provide a communication structure to the 
coalitions under study. Myerson’s idea is to define a restricted game that assigns 
to each coalition the sum of the payments achievable by the connected compo-
nents of the coalition. Two players are related if and only if both want to colla-
borate in t game. Owen [3] studied ways to define payoff values for situations 
like the one described by Myerson. 

In previous works, graphs were considered where players are the nodes of the 
graph. Later, the idea has been extended to games where edges also participate in 
the game. Alarcón et al. [4] extend Myerson’s ideas to these types of situations. 
Games defined on networks are a very active part of game theory research; Caulier 

How to cite this paper: Bravo, N. (2024) A 
Value for Games Defined on Graphs. Ap-
plied Mathematics, 15, 331-348. 
https://doi.org/10.4236/am.2024.155020 
 
Received: February 1, 2024 
Accepted: May 11, 2024 
Published: May 14, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2024.155020
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2024.155020
http://creativecommons.org/licenses/by/4.0/


N. Bravo 
 

 

DOI: 10.4236/am.2024.155020 332 Applied Mathematics 
 

[5] provides a good compilation of known results and applications. 
With the vision proposed by Myerson-Alarcón, a game defined on the nodes 

of the graph is considered, and then it is extended to the graph itself. What we 
aim to do now is to directly define a game on the components of the graph. We 
want to define a function that takes cooperative sub-structures and assigns their 
gain. One of the first problems encountered when trying to define a game in this 
context is the number of subgraphs that need to be studied. A solution to this 
problem is, instead of working with all possible subgraphs, to work with irre-
ducible blocks of subgraphs and with classes of these. We thus define a partition 
of our graph of interest and generate coalitions from unions of these blocks. This 
way, we obtain a significant reduction in the number of coalitions that need to 
be studied. 

In Section 2 of the article, we detail the process of partitioning graphs into 
blocks. In Section 3, we develop the theory of games defined on graphs, obtain a 
quasi-linear decomposition of the game in terms of the blocks, and then define a 
Shapley-type value for games of this style. The last section is dedicated to an ap-
plication example that illustrates the advantages of working through this method. 

2. Graphs 
2.1. Definitions 

Suppose we have n independent players. A natural way to model the situation of 
interest is by using graphs. In this section, we will first present the elementary 
definitions of graph theory, establish the notation, and introduce the concept of 
graph partition and domains of unique decomposition. 

Definition 2.1 (Graph) Given a set { }1, ,N n= � , a graph with nodes in 
V N⊆  is a pair ( ),g V A= , where A is a set containing pairs { },i j  such that 

{ }, , , , .i j A i j V i j∈ ∈ ≠  

The nodes N can be interpreted as the set of players, and A as the connections 
along with their intermediaries. Given V N⊆ , we define ( ),V

Vg V A= , where 

{ }{ }, : , , .VA i j i j V i j= ∈ ≠
 

That is, Vg  is the graph where all nodes in V are connected. Furthermore, 
Ng  is the graph where all players decide to cooperate with each other. Now, we 

would like to consider the set of all possible graphs with nodes in the player set N. 
Definition 2.2. Given a set of nodes N, we define 

( ) { }{ }, : , , , , .NG g V A V N i j A i j V i j= = ⊆ ∈ ⇒ ∈ ≠  

This is the set of all possible graphs that have nodes in N. Given a specific 
graph ( ), Ng V A G= ∈ , we define 

( ){ }, : , ,gS g V A V V A A′ ′ ′ ′ ′= = ⊆ ⊆
 

where gS  denotes the set of subgraphs contained in g. It is clear that 

N Ng
S G= , as Ng  is the complete graph, and every graph with nodes in N is 
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contained in it. 
Up to this point, we have defined the notion of a Cooperation Structure among 

the players. We will refer to each graph Ng G∈  as a coalition of players in N. We 
acknowledge that the intermediaries on the edges are also players; however, they 
act differently from the rest of the players. Their actions depend on the participa-
tion of players in N. In other words, the edge { },i j A∈  can only participate in 
the game (and, therefore, in the gain) if players ,i j  decide to collaborate. 

Remark 2.1. In practice, attempting to work with all possible subgraphs of a 
given graph proves to be very complicated. For instance, the number of subgraphs 
in NG  where N n=  is given by 

2

0
2 .

kn

N
k

n
G

k

 
 
 

=

 
=  

 
∑

 
On the other hand, many of these graphs may not provide relevant informa-

tion for our purposes. One of the goals of this conceptualization is to construct 
graphs in a more efficient manner and to focus on graphs that are of interest. 

2.2. Graph Decomposition 

Given a fixed graph ( ),g V A= , determined by the cooperation structure, with 
{ }1, ,V n= �  and { }{ }, : ,A i j i j N⊆ ∈ . From now on, we will consider g as the 

maximal graph with respect to the cooperation arrangement among players. We 
have defined an operation between the subgraphs of g, the union, which allows 
us to give an algebraic structure to the space of graphs. Formally, let gS  be the 
set of graphs of g, that is 

{ }: .gS h h g= ⊆  
We define the union of graphs as 

: ,g g gS S S× →∪  
where if ( ) ( )1 1 1 2 2 2, , , gh V A h V A S= = ∈ , then 

( )1 2 1 2 1 2, .h h V V A A=∪ ∪ ∪  
We have that ( ),gS ∪  has the structure of an abelian semigroup (the union is 

associative and commutative). Furthermore, if we consider the empty subgraph 
∅ , then ( ),gS ∪  is a monoid. 

Under what conditions is it possible that, given a certain subset of subgraphs 
{ }1, , kh h= � , we can uniquely decompose every graph gl M S∈ ⊆  in terms 

of the elements of  ? 
The above is, given a subset gM S⊆  that is closed under unions, we would 

like to obtain a subset of subgraphs   such that for every l M∈ , there exists a 
unique subset S ⊆   such that 

.
h S

l h
∈

= ∪
 

The above construction allows us to have a notion of decomposition of our 
graphs of interest in terms of certain minimal irreducible elements. In this con-
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text, we will think of   as the minimal coalitions of players that interest us and 
M as the coalitions of interest (we will call them measurable coalitions). 

Definition 2.3 (Generating Sets) Let gM S⊆  be a subset of measurable 
graphs. We will say that   generates M if for every l M∈ , there exists a subset 
S ⊆   such that 

.
h S

l h
∈

= ∪  

We will say that   generates M uniquely if for every l M∈ , the subset 
S ⊆   that generates l is unique. We call the elements of S the decomposition 
of l. We call the pair ( ),M   domain of unique decomposition. Given  

{ }1, , kh h= �  set of graphs, we define the set generated by   as 

: .
h S

h S
∈

 
= ⊆ 
 
∪ 

 
Example 2.1 (Edge Domain) Let 0 gM S⊆  be the subset of graphs without 

isolated vertices (a vertex is isolated if there is no edge connecting it to another 
vertex). Let   be the set of edges in g, that is, 

{ } { }{ }( ){ }: , , , .a g a i j i j= ⊆ =  

The elements of   are subgraphs that contain only two nodes and the edge 
that connects them. We have that every element l M∈  can be written as the 
union of the edges that compose it, i.e., 

.
a l

l a
⊆

=∪
 

The decomposition is unique because if ,S S ′ ⊆   are two distinct decom-
positions of l, without loss of generality, if a S∈  but a S ′∉ , then 

.
a S a S

l a a l
′∈ ∈

= ≠ =∪ ∪
 

Then ( )0 ,M   is a domain of unique decomposition. 
The purpose of the above construction is to provide a broader view of the 

concept of a game. We want to restrict our games to sets of coalitions that are of 
interest (measurable), which form a subset M. Moreover, this allows us to dis-
cuss on the existence of minimal coalitions that decompose our measurable coa-
litions and do so uniquely. 

Remark 2.2. If ( ),M   is a domain of unique decomposition, then M corres-
ponds bijectively to 2 , where the element 2∈   is associated with b

l b
∈

=∪ 
. 

In this way, we can work with subsets of subgraphs instead of considering all sub-
graphs as such (there are a total of 2 ). This represents a computational advan-
tage regarding the number of subgraphs presented in remark 2.1. 

3. Games Defined on Graphs 
3.1. Game Defined on a Unique Decomposition Domain 

Formally, given a domain of unique decomposition ( ),M  , an ( ),M  -cha- 
racteristic function game will be any function 
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: ,v M →  
where ( )v l  is interpreted as the gain obtained by the subgraph l M∈ . 

Example 3.1 (Unanimity Games) An elementary example is what we will 
henceforth refer to as unanimity functions (or games). Let l M∈ , and define 
the unanimity game as 

( )
1 if ,
0 otherwise.l

l h
u h

⊆
= 
  

Let ,M   be the set of ( ),M  -characteristic function games. We have that 
,M   is an  -vector space with pointwise addition and scalar multiplication 

of functions. Moreover, ,dim M M=�
 . It can also be shown that the set of 

unanimity games { }:hu h M∈  forms a basis for ,M  . Thus, every game 
,Mv∈   can be uniquely expressed as 

,h h
h M

v uα
∈

≡ ∑
 

for certain coefficients hα ∈  with h M∈ . We then have the relationship 

( ) .h
h l

v l α
⊆

= ∑  

We can think of the scalars { }hα  as the contribution of h to the gain of a 
certain graph l. This shows that the gain of l is the sum of the contributions of all 
sub-coalitions that compose it. 

As each element l M∈  is uniquely decomposed in terms of the elements  , it 
is reasonable to think that the gain must be distributed in some way among the 
components of l. In other words, there must be a partition ( ){ }: ,b l b b lΓ ∈ ⊆  
such that 

( ) ( )
,

,b
b b l

v l l
∈ ⊆

= Γ∑


 

where we understand ( )b lΓ  as the part that will be distributed to b from the 
gain of l. Once we know the corresponding amount that will be distributed to 
b∈  for each subgraph l, we can define the function :b MΓ → �  such that 

( )b lΓ  will be this quantity. We will assume that ( ) 0b lΓ =  if b l⊆/ . From 
now on, we denote 

{ }: : .bM l M b l= ∈ ⊆  

Definition 3.1 (Partition) Let :v M →   be an ( ),M  -characteristic func-
tion game. We will say that a partition of v is a collection { }: :b M bΓ → ∈�   
such that: 

1. ( ){ }: 0 b
b bsupp l M l MΓ = ∈ Γ ≠ ⊆ . 

2. For all l M∈ , 

( ) ( ) ( ).b b
b b l

v l l l
∈ ⊆

= Γ = Γ∑ ∑


 

If { }: :b M bΓ → ∈�   is a partition of :v M →  , we write 

.b b
b

v ω
∈

≡ Γ∑
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Before justifying the notation for partitions, we may go through an example. 
Example 3.2. Consider the graph { } { } { } { }{ }( )1,2,3,4 , 1,2 , 1,3 , 3,4g = , as 

shown in Figure 1. Consider the edge domain ( )0 ,M   as in Example 2.1, i.e., 

0M  consists of all subgraphs of g without isolated points, and   consists of 
subgraphs representing a single edge. We have that 

{ }1,2 1,3 3,4, , ,a a a=
 

where { } { }{ }( ), , , ,i ja i j i j= . Since 0M  is generated by unions in  , we can 
think of the elements of 0M  as subsets of   (subsets containing their respec-
tive edges). As we mentioned in Remark 2.2, there is a correspondence between 

0M  and 2 , and we will refer to an element 0l M∈  as well as the subset 
{ },i jS a l= ⊆  interchangeably. Let v be the game defined by 

( )

{ }
{ }
{ }

{ }
{ }
{ }

1,2

1,3

3,4

1,2 1,3

1,2 3,4

1,3 3,4

0
1

1

2

, 4

, 5

, 5

12

l v l

a

a

a

a a

a a

a a

∅

  
The coefficients of its linear decomposition into unanimity games are 

{ }
{ }
{ }

{ }
{ }
{ }

1,2

1,3

3,4

1,2 1,3

1,2 3,4

1,3 3,4

0
1

1

2

, 2

, 3

, 5

1

ll

a

a

a

a a

a a

a a

α
∅

  
Later, we will discuss the calculation of lα  in the general case, as it is possible to  

 

 

Figure 1. { } { } { } { }{ }( )1,2,3,4 , 1,2 , 1,3 , 3,4g = . 
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obtain a recursive formula for these coefficients. 
A possible partition for the game v (which we will discuss in detail later) will 

be the collection of functions { }1,2 1,3 3,4, ,Γ Γ Γ  such that 

{ } { } { }1,2 1,2 1,3 1,2 3,4

1,2

, ,

1 2 2 10 3

l a a a a a

Γ



 
{ } { } { }1,3 1,3 1,2 1,3 3,4

1,3

, ,

1 2 5 2 23 6

l a a a a a

Γ



 
{ } { } { }3,4 3,4 1,2 3,4 1,3

3,4

, ,

2 3 7 2 29 6

l a a a a a

Γ



 
Additionally, , 0i jΓ =  outside the given tables. 
The justification for our choice of notation for partitions of the ( ),M  -game 
:v M →   is that, for any l M∈ , we have 

 ( ) ( )
,

,b
b b l

v l l
∈ ⊆

= Γ∑


 (1) 

where we think of v being divided (in a non-linear way) into the sum of certain 
unanimity games 

( )
1
0 otherwise.b

b l
lω

⊆
= 
  

Thus, (1) is equivalent to writing 

( ) ( ) ( ) ( ) ( )
,

Γ Γ .b b b b
b b l b

v l l l l lω ω
∈ ⊆ ∈

= =∑ ∑
   

The advantage of working with this decomposition is that we obtain informa-
tion regarding the final distribution of gains in the coalition. Our goal now is to 
characterize a particular partition, which will satisfy a certain equilibrium prop-
erty and be well-defined for every ( ),M  -game :v M →  . 

Definition 3.2 (Balanced Profit) Given an ( ),M  -game :v M →  , we will 
say that a partition { }:b bΓ ∈  of v has Balanced Profit if, for any 1 2,b b ∈  
and l M∈  such that 1 2,b b M⊂ , the following holds: 

 ( ) ( ) ( ) ( )
1 1 2 22 1 .b b b bl l b l l bΓ −Γ = Γ −Γ   (2) 

The above condition can be interpreted as follows: the difference  
( ) ( )

1 1 2\b bl l bΓ −Γ  represents the gain of b1 obtained through collaboration 
with b2. Similarly, for ( ) ( )

2 2 1\b bl l bΓ −Γ . By demanding that these gains to be 
equal, it indicates that the collaboration of both agents is equally beneficial for 
both parties. We will prove that for every ( ),M  -game, there exists a unique 
partition { }bΓ  that satisfies Balanced Profit. For this, we have the following 
Lemma: 

Lemma 3.1. Let 
1

2
n

n

nP
 

+ × 
 ∈  be the matrix defined as follows: 1) The first 

row of nP  is a row vector with n entries, all equal to 1. 2) Enumerate all possi-

ble pairs { },i j  with 1 1, j n≤ ≤  in the set :1
2i

n
c i
   ≤ ≤  
   

. For each of these 
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2
n 
 
 

 elements, define the (k + 1)-th row of nP  as the row vector kv , where the 

i-th entry is 1 and the j-th entry is −1. Then, the rank of nP  is exactly n. There-

fore, given the linear system nP x v= , where nx∈  and 
1

2
n

v
 

+ 
 ∈ , if there is 

a solution to the system, it is unique. 
Proof. See appendix 6.1. ∎ 
With the previous lemma, we have the following theorem: 
Theorem 3.1. For every ( ),M  -game :v M →  , there exists a unique 

partition { }: :b M bΓ → ∈�   of v that satisfies Balanced Profit, and it is given 
by: 

 ( ) ( )
,h

b
b h l

l
A h
α

⊆ ⊆

Γ = ∑  (3) 

where ( )A h  is the number of elements b∈  that make up h, and { }hα  are 
the coefficients of the linear expansion in terms of unanimity games of v. 

Proof. Uniqueness. Suppose for a moment that such a partition exists. That is, 
{ }:b b BΓ ∈  verifies (2) for any 1 2,b b ∈  and any l M∈  that contains 1 2,b b . 
We will proceed by induction. In particular, we have that 

( ) ( ) ( ) ( )
1 1 3 21 2 1 1 2 2 ,b b b bb b b b b bΓ −Γ = Γ − Γ∪ ∪

 
however, ( ) ( )b b v bΓ =  for every 1b  (a property of being a partition). There-
fore, 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1

1 2

1 2 1 1 2 2

1 2 1 2 1 2

Γ Γ

.
b b

b b

b b v b b b v b

b b b b v b v b

− = −

⇔ Γ −Γ = −

∪ ∪

∪ ∪
 (4) 

Moreover, by being a partition, we have the equation 

 ( ) ( ) ( )
1 21 2 1 2 1 2 .b bb b b b v b bΓ +Γ =∪ ∪ ∪  (5) 

Combining (4) and (5), we obtain the linear system 

( )
( )

( )
( ) ( )

1

2

1 2 1 2

1 21 2

1 1
.

1 1
b

b

b b v b b
v b v bb b

Γ    
=      −− Γ    

∪ ∪

∪
 

Then, the solution is given by 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

1 2 1 2 1 2

1 2 1 2 1 2

,

,
b

b

b b v b b v b v b

b b v b b v b v b

Γ = + −

Γ = − +

∪ ∪

∪ ∪  
which are known values. Therefore, if ( ) 2A l = , we can determine ( )b lΓ  for 
b l⊂ . Suppose that, for some 2k ≥ , for every l M′∈  with ( )A l k′ = , we 
know the value of ( )b l′Γ  for b l′⊂ . Let l M∈  such that ( ) 1A l k= + . Sup-
pose that 

1

1

k
ii

l b+

=
=∪ . Due to the property of Balanced Profit for any pair ,i j , it 

holds that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )\ \ \ \ .
i i i j i i i jb b j b b i b b b j b il l b l l b l l l b l bΓ −Γ = Γ −Γ ⇐ Γ −Γ = Γ −Γ  

However, ( ) ( )\ \i jA l b k A l b= = , so ( ) ( )\ \ :
i j

ij
b j b il b l b dΓ −Γ =  is a known 
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value. For each pair ,i j , we obtained the equation 

 ( ) ( ) ,
i i

ij
b bl l dΓ −Γ =  (6) 

which means we have 
1

2
k + 
 
 

 distinct equations. Also, by being a partition, we 

have the equation 

( ) ( )
1

1
.

i

k

b
i

l v l
+

=

Γ =∑
 

We have a linear system with 
1

1
2

k + 
+ 

 
 equations in k variables, which, ex-

pressed in matrix form, gives 

 1 ,kP + Γ = d  (7) 

where ( ) ( )( )1 1
,.. ,

kb bl l
+

Γ = Γ Γ� , ( )( )0,v l=d d , 0d  is the vector of ijd  ar-
ranged according to the obtained equations, and 1kP +  is as in Lemma 3.1. Then, 
the solution to (7) is unique and depends solely on known and uniquely deter-
mined values. As the above is true for every l M∈  with ( ) 1A l k= + , we con-
clude by induction that the values of ( )b lΓ  are uniquely determined for every 
l M∈ . 

Existence. The collection of functions defined in (3) is a partition that satisfies 
Balanced Profit. For every l M∈  with b

l b
∈

=∪ 
 where ⊆  , it holds that 

( ) ( ) ( ) ( ) ( ) ( )Γ .h h h
b h

b b b h l b b b h l b
l A h v l

A h A h A h
α α α

α
∈ ∈ ⊆ ⊆ ∈ ∈ ⊆ ⊆ ∈

= = = = =∑ ∑ ∑ ∑ ∑ ∑ ∑
      

The equality above is due to a counting result (the term ( )h A hα  appears as 
many times as there are elements b h⊂ , i.e., ( )A h  times). Moreover, if 

1 2,b b ∈  and 1 2,b b l⊂ , it holds that 

( ) ( ) ( ) ( ) ( )1 1
1 1 2 1 2

2
\ ,

Γ Γ \ ,h h h
b b

b h l b h l b b b h l
l l b

A h A h A h
α α α

⊆ ⊆ ⊆ ⊆ ⊆ ⊆

− = − =∑ ∑ ∑  

similarly 

( ) ( ) ( )2 2
2 1

1
,

\ ,h
b b

b b h l
l l b

A h
α

⊆ ⊆

Γ −Γ = ∑  

so 

( ) ( ) ( ) ( )
1 1 2 22 1\ \ ,b b b bl l b l l bΓ −Γ = Γ −Γ  

verifying Balanced Profit. This concludes the proof. ∎ 
In Example 3.2, we already presented the calculation of the partition from the 

above theorem. 
Remark 3.1. The advantage of employing this formulation of graph-defined 

games is that it allows for the simplification of cooperative structure. Thus, we 
can work on a game defined over classes of blocks of the graph, instead of deal-
ing with restriction on a game as the Myerson way. 

As we will see later, our conception of graph-defined games enables us to ge-
neralize a Shapley-like value in a conceptually natural manner. 
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Remark 3.2. A potential disadvantage is the inability to consider that some 
nodes prefer to play alone. In other words, we cannot consider isolated nodes as 
blocks in   because this would imply that we cannot uniquely express a graph 
h M∈ . However, this allows us to analyze collective cooperative behavior 
beyond the individualism of players. 

Remark 3.3. Regarding the calculation of coefficients hα : recalling that g is 
our fixed ambient graph, with our domain ,M  . Suppose ( )A g m= = , 
where ( )A g  is taken as in the statement of Theorem 3.1. Then, 

( )
( ), 1

h g h
h M h M A h m

v g α α α
∈ ∈ ≤ −

= = +∑ ∑
 

( )
( ), 1

.g h h
h M h M A h m

v gα α α
∈ ∈ ≤ −

⇔ = = − +∑ ∑
 

Thus, gα  depends solely on ( )v g  and hα  for h M∈  with ( ) 1A h m≤ − . 
These coefficients are obtained recursively since ( )b v bα =  for all b∈ , and 
every h M∈  is the union of these b's. 

3.2. The Value for Games Defined on Graphs 

Now, we need to construct the payoff vector that will provide us with the final 
distribution of gains among the players. However, before proceeding, we have 
another important property that verifies the partition given by (1): 

Lemma 3.2 (Linearity) Let ( ),M   be a domain of unique decomposition, 

where { }1, , kb b= � . We define the operator ( ), ,:
kM MP →    as 

( )1
, , .

k

v v
b bv Γ Γ� �

 
Then, P is a injective linear operator, and { }v

bΓ  is the partition given by 
Theorem 3.1 for the game v. 

Proof. It is clear since the coefficients { }v
hα  of the linear expansion in terms 

of unanimity games depend linearly on the game v. That is, v w v w
h h hα α α+ = +  for 

any ,, Mv w∈  . ∎ 
Let us recall that the elements of M are subgraphs representing (interest) coa-

litions of a certain set of players (nodes) N, connected through the participation 
of intermediaries (edges) that enable the formation of links. We think of the 
elements of the generating set   as the minimal collaboration structures that 
can occur. 

For instance, if we consider the edge domain ( )0 ,M  , as in Example 2.1, the 
( )0 ,M  -games are those in which we impose the condition that a player cannot 
participate alone in the game (cannot be an isolated point). In other words, a 
player can participate if and only if there exists another player and an interme-
diary connecting them, meaning that the player has to be part of an edge. 

During the game development, the gain is determined solely by the presence 
or absence of the element b∈  in the formation of a coalition, without consi-
dering the specific players themselves. Now, our focus is on finding a distribu-
tion of gains among nodes and intermediaries. 
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For this purpose, assume that the element b∈  is a subgraph of the form 
( ),b bb V A= , meaning it is composed of players in { } { }1, , 1, ,b kV n n V n= ⊆ =� �  

and intermediaries in { } { }1 1, , , ,b r sA i i A a a= ⊆ =� � . From now on, we will 
refer to the elements of b bV A∪  as partners in b, always distinguishing between 
partners of the node class ( bV ) and partners of the edge class ( bA ). 

Let’s assume that the partners in b agree on a distribution of the gain obtained 
by b in the ( ),M  -game ,Mv∈   for coalition l. In other words, they define 
functions 

[ ]: 0,1 ,b bMαγ →  
where bM  is defined as in (3.1), such that 

 ( ) 1, .
b b

b

V A
l l Mα

α
γ

∈

= ∀ ∈∑
∪

 (8) 

These functions represent the fraction of utilities that each partner in b∈  
will receive for playing the game v and participating in coalition l. These func-
tions can either be agreed upon by the partners and the game context or defined 
in a fair manner. We will discuss possible definitions of these functions later on. 
Note that we can extend the functions b

αγ  to M, defining ( ) 0b lαγ =  for all 
bl M M∈  . 

Consider, for each l M∈ , the vector 

( ) ( ) ( )( ), ,
b b

b V A
V A V A

b l lα α
φ γ δ α

∈
= ∈ ∪

∪ ∪


 

where 
b bV Aδ ∪  is the indicator function of the set b bV A∪ , and thus, ( )bφ  is a 

vector such that in its entry corresponding to player j V∈ , it takes the value 
b
jγ  if bj V∈  and zero otherwise. Similarly, in the entry corresponding to edge 

a A∈ , it takes the value b
aγ  if ba A∈  and zero otherwise. The previous vector 

contains all players and intermediaries present in the game and indicates wheth-
er they belong to b. 

By Theorem 3.1, every game ,Mv∈   can be expressed in terms of the par-
tition given by (1), such that 

Γ .b b
b B

v ω
∈

≡ ∑
 

We define the operator ,: M V AMϕ × → ∪  as 

( ) ( ) ( ), Γ , .b
b

v l l b lϕ φ
∈

= ∑
  

Proposition 3.1. The operator ,: M V AMϕ × → ∪  is linear with respect 
to the first entry. Moreover, if ( ),j v lϕ  and ( ),a v lϕ  are the j-th entry with 
j V∈  and a-th entry with a A∈  of ( ),v lϕ  respectively, then 

 ( ) ( ) ( ), , .j a
j V a A

v l v l v lϕ ϕ
∈ ∈

+ =∑ ∑  (9) 

Proof. Equation (9) follows from our construction. It remains to verify linear-
ity. To see this, we note that the coefficients hα  in the linear expansion in terms 
of unanimity games are linear with respect to addition. That is, if v

h hh Mv uα
∈

= ∑  
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and w
h hh Mw uα

∈
= ∑ , then 

( ) .v w v w v w
h h h h h h

h M
v w uα α α α α+

∈

+ = + ⇔ = +∑
 

So, for every b∈ , it holds that 

( ) ( ) ( ) ( ) ( ) ( )Γ Γ Γ .
v w v w

v w v wh h h
b b b

b h l b h l b h l
l l l

A h A h A h
α α α+

+

⊆ ⊆ ⊆ ⊆ ⊆ ⊆

= = + = +∑ ∑ ∑
 

And the linearity holds. ∎ 
The operator φ provides us with an assignment rule for the profits of nodes 

and edges for each value of l, as it indicates how much of the total gain should be 
assigned to each player and intermediary. 

Remark 3.4. We can think of φ  as an operator that sends functions 
,Mv∈   to functions V AM → ∪ . 

The essence of this definition is that we obtain an operator that behaves in a 
quasi-linear way with respect to the partition decomposition. It is not a linear 
decomposition, as the coefficients in the expansion are functions M →  . That 
is, we have constructed a quasi-linear decomposition of the game v, and then we 
define an operator that preserves the quasi-linear structure in the sense that 

( )( ) ( ) ( ) ( ) ( )( )Γ Γ ,b b b b
b b

vϕ ϕ ω ϕ ω
∈ ∈

 
⋅ = ⋅ ⋅ = ⋅ ⋅ 

 
∑ ∑
   

where we have defined the image of our base ( )( ) ( ),b bϕ ω φ⋅ = ⋅ . Thus, ϕ  is an 
operator that preserves scalar functions. 

Remark 3.5. Given an V Aα ∈ ∪ , we can look at the α-th entry of the vector 
( ),v lϕ , and we can see that it is given by 

( ) ( ) ( ) ( ) ( ) ( ), Γ Γ .
b b

b b
b bV A

b b
v l l l l lα α α

α
ϕ γ α γ

∈ ∈ ∈

= =∑ ∑∪
   

The above expression means that, by participating in the coalition l, the player 
α will receive a payment of ( ) ( )Γ b

b l lαγ  for each of the blocks b in which they 
participate. 

4. Example: Productive Chains 
4.1. Problem Statement 

Let us examine a scenario pertaining to the production process of a specific com-
modity. The fabrication necessitates particular raw materials, subsequently sub-
ject to manufacturing processes for enhanced manageability. Subsequently, a man-
ufacturing facility undertakes the production of the designated product, culmi-
nating in its distribution to a final vendor. This comprehensive progression, com-
mencing with the extraction of raw materials and concluding with the ultimate 
sale of the product, is denoted as the production chain. From the initial produc-
tion phase to the treatment processes, assembly, and final product sale, we shall 
denote these junctures as distinct phases. Intervening between each phase is an 
intermediary tasked with orchestrating the transition, exemplified by a logistics 
enterprise overseeing the transportation of goods. 
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To exemplify this process, consider the instance of enjoying a morning cup of 
coffee. The prerequisite steps involve a farmer cultivating and harvesting the 
beans, transporting them to a processor for requisite treatment, conveying the 
processed beans to a packaging facility, and ultimately disbursing the product. 

It is imperative that the progression unfolds in a specific sequence: raw ma-
terial extraction, processing, assembly, and sale. Consequently, a prototype deli-
neating the sequential order of this process becomes indispensable. The entire 
chain can be graphically represented, wherein each process stage constitutes a 
node. Nodes are interconnected if they represent consecutive stages in the over-
all process. Thus, for the aforementioned coffee production process, the resul-
tant model would manifest as in Figure 2. 

Remark 4.1. The processes under consideration for our study will be produc-
tion processes, involving the transformation of an entity A into a product B. 
Consequently, it is imperative that the process stages do not exhibit cyclic beha-
vior. The entire process must culminate in a sales (distribution) stage. 

Due to our economic system, there will be several distinct companies respon-
sible for carrying out the same stage of the process, naturally engaging in com-
petition. Each of the companies assigned to different stages decides to collabo-
rate with one another to complete the entire process. If we anticipate deriving 
profit from this process, it becomes essential to have at least one company for 
each stage. In the absence of any one of these companies, the chain is disrupted, 
and consequently, no profit can be realized. We can conceptualize these situa-
tions, where different companies are responsible for various tasks, as scenarios 
of competition. 

Each of the companies involved in the chain represents a node. If two compa-
nies decide to collaborate to form the chain, we connect them with an edge (pos-
sibly requiring an intermediary to establish this connection). We group each of 
the companies based on the stage of the process they undertake. 

Returning to the coffee example: let’s assume there are 3 farmers cultivating 
coffee, 3 companies producing coffee beans, 3 packaging companies, and all of 
them sell their products to the same store. A possible graphical representation of 
this scenario is as in Figure 3. 

4.2. Mathematical Formulation 

Definition 4.1. We will say that a graph g contains cycles if there exists a se-
quence of vertices 1, , kv v�  such that iv  is connected to 1iv +  for 1 1i k≤ ≤ − ,  

 

 
Figure 2. Example of a productive chain. 
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Figure 3. Example of a competitive situation for coffee production. 

 
and kv  is connected to 1v . We will say that the connected graph g is a tree if it 
does not contain cycles. 

Let G be the graph representing a production chain. We have imposed that G 
does not contain cycles (stages that form a loop). On the other hand, in any 
process, there is a stage of public sale, and every stage of the process leads to its 
sale. Thus, there exists a node d in G representing this stage. Furthermore, for 
every node, there exists a path connecting it to d. From the above, we conclude 
that G is a tree. 

Definition 4.2 (Competition Scenario) A competition scenario will be a 
graph ( ),g V A=  associated with the production chain ( ),G V A′ ′=  if and 
only if 

1. There exists a partition { }:sP V V s V ′= ⊆ ∈  of the node set V. 
2. Given two nodes 1 2,v v V∈ , 1v  will be connected to 2v  if and only if 

11 ev V∈ , 
22 ev V∈ , and 1e  is connected to 2e . 

Now, we want to study the situation where different companies (nodes) col-
laborate to complete the production process and obtain profit. We need a notion 
of a complete chain with respect to the process defined in G; that is, a union of 
companies capable of completing the entire production process. 

Definition 4.3 (Subchain, complete subchain) Let ( ),g V A=  be a compe-
tition scenario associated with the production chain ( ),G V A′ ′= . A subchain c  
in g is a connected subgraph of g. This implies that c  is a tree. 

A subchain c  will be complete if there exists at least one subgraph ′ ⊆c c  
with ( ),V E′ ′ ′= c cc  such that ′c  is isomorphic (as graphs) to G, and moreover, 
if a node i in ′c  corresponds to node s in G, then si V∈ . We denote by   the 
set of complete subchains in g. 

In other words, a subchain is complete if and only if it contains a subgraph 
that corresponds one-to-one with the production process, and each node cor-
responds to a specific stage. Now, we can model the generation of profit in a 
competition scenario through a function (game) that takes the various possible 
alliances of companies and associates with them the profit obtained by such col-
laboration. 

Definition 4.4 (Production Game) Let ( ),g V A=  be a competition scena-
rio associated with the production chain ( ),G V A′ ′= . Take 0M  as the edge 
domain (as in Example 2.1) associated with g, and let   be the set of edges. 
We will say that a game 0 ,Mv∈   is a production game if and only if 
( ) 0v l =  for all l∉ . 
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Hereinafter, ( ),g V A=  will be a competition scenario associated with the 
production chain ( ),G V A′ ′=  with ( )0 ,M   as the edge domain regarding g 
as in Example 2.1. Let 0 ,Mv∈   be a fixed but arbitrary game. This game ad-
mits a decomposition into unanimity games 

0

.h h
h M

v uα
∈

≡ ∑
 

Since G is itself a graph, we can consider its own edge domain 0 ,M ′ ′ . Let 
m ′=   be the number of edges in G. Since G is connected and has m edges, 
there are 1m +  nodes (stages of the process). In this section, if 0h M∈ , we will 
reuse the notation ( )A h  to denote the number of elements a∈  composing 
h. 

Proposition 4.1. Suppose G has 𝑚𝑚 edges. If 0l M∈  is a subgraph such that 
( )A l m< , then 

0.lα =  
Proof. Any graph 0l M∈  such that ( )A l m≤  cannot be isomorphic to G. 

Isomorphisms of graphs preserve relationships between nodes (edges). 
If 1m = , any non-empty subgraph will be complete, as g is a competition 

scenario, so any edge-type subgraph is a subchain. There is nothing to prove in 
this case. 

Suppose then that 2m ≥ . For any edge a∈ , we have 

( ) ( )
0

,h h a
h M

v a u aα α
∈

= =∑
 

Since ( )A a m≤ , we have ( ) 0 av a α= = . Suppose that for 0l M∈  with 
( )A l k=  such that 1 k m≤ < , 0lα = . If 0l M′∈  with ( ) 1A l k′ = +  and 

1k m+ < , then 

( )
( )

( )
0 ,

,l h
h M A h k

v l v lα α′
∈ ≤

′ ′= − + = −∑
 

However, since l′  is not a complete chain, ( ) 0 lv l α ′′ = = . ∎ 
Corolario 4.1. If 0l M∈  is not a complete subchain, then 0lα = . 
Proof. Let m be the number of edges in G. If 0l M∈  , with ( )A l m< , then 

0lα =  by the previous proposition. If ( )A l m=  but l∉ , then any subgraph 
h l⊂  is not a complete subchain, and ( )A h m< , so 0hα = . Then 

( ) ( )
0

0.l h
h M

v l v lα α
∈

= − + = − =∑
 

Inductively, it is proven that if l∉ , any subgraph h l⊂  with ( ) ( )A h A l<  
satisfies 0hα = , so ( ) 0l v lα = − = . ∎ 

The above results indicate that for the study of production games, it suffices to 
examine coalitions in  . In this particular case, it significantly reduces the num-
ber of coalitions that need to be studied for the calculation of the payoff value. 

5. Conclusions 

Summarizing, we have defined a new view on the coalitional structure in the 
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graphs. We defined the concept of single decomposition domain, which con-
templates the concept of minimum measurable coalitions. That is, we eliminate 
non-relevant information and work directly on a space with algebraic structure. 
Moreover, because of this, we can prove some results such as the existence of a 
value for the set defined on edges. 

This new vision has the combinatorial advantage that it allows us to reduce 
the objects with which we have to work, which at a computational level can be 
useful. Furthermore, as we saw above, in specific cases, it allows us to elegantly 
model an industrial problem. For future work, this area can be directed towards 
the search for new game values that fit specific contexts, also in the generaliza-
tion and construction of cooperation structures with more general objects. 
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Appendix 
A1. Proof of the Lemma 

Lemma 5.1. Let 
1

2
n

n

nP
 

+ × 
 ∈  be the matrix defined as follows: 

1. The first row of nP  is a row vector with n entries of 1. 
2. Enumerate all possible pairs { },i j  with 1 1, j n≤ ≤  in the set  

:1
2i

n
c i
   ≤ ≤  
   

. For each of these 
2
n 
 
 

 elements, define the (k + 1)-th row of 

nP  as the row vector kv  where the i-th entry is 1, and the j-th entry is −1. 
Then, the rank of nP  is exactly equal to n. Therefore, given the linear system 

nP x v= , with nx∈  and 
1

2
n

v
 

+ 
 ∈ , if there exists a solution to the system, it 

will be unique. 
Proof. We proceed by induction. For the case 2n = , the matrix 2 2

nP ×∈  is 

1 1
,

1 1
 
 −   

which has rank 2. Suppose the above holds for some 2k ≥ . Then, the matrix 

nP  is of full rank and has the form 

( ), 1 1n n
n n

n

P
E

 
= = ∈ 
 

� 
1

1
 

and nE  is a matrix whose rows are given by point 2. The matrix 1nP +  is con-
structed as follows 

( ) ( )1

1
, 1 1 , 0 0 .

n
t t n

n n n n n

n n

P E
Id

+

 
 = − = − − = ∈ 
 − 

� � 
1

0 1 0
1  

Now, since ( )dimImg nP n= , we have 

n
n

n

P
E

 
=  
 

1

 

has n linearly independent column vectors. Let  
( ){ }1

1 1 1: , , , 0n
n nV v v v v v+
+ += ∈ = =� , then for v V∈  

1

1

1

1
0 ,

n
n

n n n

n n n

v
P

P v E
I

v

d v Id
v+

−

    
     = + =            

    

�
�

�
1

0

 

where ( )1, , n
nv vv = ∈��   for all v V∈ . Furthermore, since nP  is injective, 

the mapping nV →   that sends 

1 ,n
n

P v
v P v

v +
 

= 
 

�
 

is also injective. Additionally, dimV n= , so 1dimran 1nn P n+≤ ≤ + . Finally, the 
vector ( )T1 0 n−1  is linearly independent of the column vectors in the matrix 
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.
n

n

n

E
Id

 
 
 
 
 

1

 
Otherwise, it would imply that there exists a coefficient vector nv∈  such 

that 

1
,

n

n n

n n

E v
Id

   
   =   
   −   

1
0
1  

in particular 

1 0 .n n n nv E v Id v= = = −1 1  

From the last equation, it necessarily follows that nv = −1 , but this vector 
does not satisfy the other conditions. Thus, 1dim 1nP n+ = + . This completes the 
proof. ∎ 
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