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Abstract 
Modeling dynamic systems with linear parametric models usually suffer li-
mitation which affects forecasting performance and policy implications. This 
paper advances a non-parametric autoregressive distributed lag model that 
employs a Bayesian additive regression tree (BART). The performance of the 
BART model is compared with selection models like Lasso, Elastic Net, and 
Bayesian networks in simulation experiments with linear and non-linear data 
generating processes (DGP), and on US macroeconomic time series data. The 
results show that the BART model is quite competitive against the linear pa-
rametric methods when the DGP is linear, and outperforms the competing 
methods when the DGP is non-linear. The empirical results suggest that the 
BART estimators are generally more efficient than the traditional linear me-
thods when modeling and forecasting macroeconomic time series. 
 

Keywords 
BART Model, Non Parametric Modeling, Machine Learning, Regression 
Trees, Bayesian Network VAR 

 

1. Introduction 

Economists have long sought to design models for identifying structural rela-
tions among endogenous macroeconomic variables, for predicting/forecasting, 
and for performing impulse response analysis. Some of the widely used models 
to achieve the above goals include vector auto-regression models, dynamic factor 
models, and linear projection models, among others. One of the limitations of 
these traditional models is the assumption of a linear parametric model. The 
fundamental problem of these parametric linear models is that they can be very 
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restrictive, in the sense that, they do not allow for nonlinear interactions among 
explanatory variables. This can lead to model misspecification and predictive 
performance of the model. 

Many causal methods for observational data are conditional on the treatment 
and confounding covariates. Bayesian non-parametric modeling algorithm, 
Bayesian Additive Regression Trees (BART; [1]) with a very flexible function 
provides us with a strong and simpler model in estimating causal effects [2]. 
BART is most closely related to boosting in that it combines a large set of rela-
tively simple decision trees to a complex high-dimensional response. Bayesian 
additive regression trees (BART) provide a framework for flexible non-parametric 
modeling of relationships of covariates to outcomes. Recently, BART models 
have been shown to provide excellent predictive performance, for both conti-
nuous and binary outcomes, and exceed that of its competitors. BART model 
has been developed in several areas of knowledge, such as medicine, biology, and 
genetics, mainly in classification problems (see [3] [4] [5]). 

These techniques have been applied in macroeconomic and financial data sets. 
[6] has extended BART into the classification context by using financial state-
ment information on solvent and insolvent firms, and therefore term the result-
ing classification technique as the Bayesian Additive Classification Tree (BACT). 
[7] empirically evaluated the performance of two machine learning models, 
BART, and random forest, applied to credit scoring. They compared the models? 
Performance to that of logistic regression and the BART and the random forest 
was superior to logistic regression in both the balanced sample and the unba-
lanced sample. [8] has evaluated the real-time forecasting performance for a set 
of US macroeconomic and financial indicators of the various BART models, us-
ing a variety of loss functions and a BVAR-SV model as a (strong) benchmark. 
BART specifications can deliver more accurate tail forecasts than BVAR-SV, in 
particular for unemployment. 

[9] introduces a flexible local projection (LP; [10]) that generalizes the model 
to a non-parametric setting by using Bayesian Additive Regression Trees 
(BART). They apply BART-LP to US fiscal and financial shocks and show that 
financial shocks have non-linear effects on the economy. (VAR [11]) models as-
sume that the lagged dependent variables in influence the contemporaneous 
values in a linear fashion. [12] relaxes this assumption by blending the literature 
on BART models and VARs. BAVART model can handle arbitrary non-linear 
relations between the endogenous and the exogenous variables. They apply the 
model to the US term structure of interest rates and show BAVART model yields 
precise point and density forecasts. 

Leveraging BART for dynamic system modeling and forecasting in economics 
and other fields can lead to more accurate predictions, a better understanding of 
system dynamics, informed decision-making, and more effective policy devel-
opment. By harnessing BART’s capabilities, policymakers can make more da-
ta-driven, evidence-based decisions that contribute to the stability, growth, and 
resilience of economies and societies 
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ARDL is like VAR with just one equation and on the ARDL there is no as-
sumption that the errors are correlated and independent. In this case, we are 
only looking at the explanatory variable’s lag. This is like VAR but we only take 
them equation by equation. The covariance matrix of errors is considered in sit-
uations where we seek to identify the structural relationship. However, we are 
interested in forecasting each variable at the time and ARDL can help us achieve 
whatever the VAR and also forecasting. 

We want to show that in the non-parametric framework, important variables 
are lower Root-mean-square Error (RMSE) compared to parametric regression 
coefficients. BART has the lowest RMSE in linear and non-linear data generation 
processes, and also the performance of BART important variables in a set of 
macroeconomic data has an optimal performance than other regression estima-
tors. 

2. Bayesian Additive Regression Trees 

Applying Bayesian non-parametric to causal inference is rarely as simple as tak-
ing an off-the-shelf non-parametric prior and applying it in the same way one 
would to a prediction problem. Causal inference problems are often targeted in 
the sense that the final aim is to estimate a low-dimensional parameter, with 
non-parametric techniques used to deal with high or infinite dimensional nuis-
ance parameters. The shrinkage induced by non-parametric models on the caus-
al estimands introduces subtle, but serious, complications. Because of this, spe-
cial care should be taken when applying Bayesian non-parametric [13]. 

The BART algorithm is straightforward to implement and requires the re-
searcher only to input the outcome, treatment assignment, and confounding cova-
riates but requires no information about how these variables are para-metrically 
related. Yet BART can detect interactions and non-linearities in the response 
surface, which (among other advantages) allows it to more readily identify hetero-
geneous treatment effects. Also, BART naturally produces coherent posterior inter-
vals in contrast to methods such as propensity score matching and sub-classification 
[2]. 

Overall, BART represents a significant advancement in the field of dynamic 
system modeling and non-parametric regression techniques by offering a flexible, 
Bayesian approach that can effectively handle non-linearities, uncertainty, au-
tomatic variable selection, robustness to outliers and missing data, and modeling 
of temporal dynamics. Its ability to combine the strengths of tree-based methods 
with Bayesian inference makes it a valuable tool for a wide range of applications 
in various domains. 

Let ( )1x , , px x=   denote a p-dimensional covariate vector, or regressors. 
Capital letter ( )1x , , xnX ′′ ′=   denotes the n p×  predictor matrix, and  

( )1y , , ny y= 
 is a vector of target values for supervised learning. Suppose, un-

der the standard regression setting:  

( ) ( )2x , ~ 0,i i i iy f N= + ε ε σ                    (1) 
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It is assumed the residual term ε  is a Gaussian noise term with mean zero 
and variance 2σ . The BART model [1] assumes that the unknown function 
( )f x  in the regression model (1) can be approximated by a sum of regression 

trees, i.e.  

( ) ( )
1

x x,T ,
L

l l
l

f g
=

= ∑ µ                       (2) 

where Tl  represents a tree structure, which is a set of split rules partitioning the 
covariate space, and lµ  is a vector of leaf parameters associated with the leaf 
nodes in tree Tl . 

Trees are known to be prone to over-fitting due to their high flexibility. Thus, 
proper regularization is necessary to achieve good out-of-the-sample perfor-
mance. BART assigns a regularization prior to the tree structure that strongly 
favors weak, or small trees. The tree prior ( )Tlp  specifies the probability for a 
node to split into two child nodes at depth d to be  

( ) ( ) [ )1 , 0,1 , 0,d −+ ∈ ∈ ∞βα α β                  (3) 

which decreases exponentially as the tree grows deeper, implying strong regula-
rization in the size of the tree. The prior of each leaf parameter ( )lbp µ  is as-
sumed to be independent normal with variance τ , i.e. ( )~ 0,lb Nµ τ . The prior 
of the residual variance 2σ  is set to be inverse-Gamma ( ),a b . 

The ensemble of trees is fitted by Bayesian back fitting and MCMC sampling 
scheme. Let T l−  denotes the set of all trees except Tl , and similar define l−µ . 
Note that the conditional posterior ( )2T , | T , , ,l l l lp y− −µ µ σ  depends on other 
trees and parameters only through the residuals:  

( ) ( )ˆ ˆr : | x,T , x,T ,l h h l l
h l

y g g
≠

= − =∑ µ µ                 (4) 

The original BART model [1] draws trees from the posterior using a random 
walk Metropolis-Hastings MCMC (MH-MCMC) algorithm. Per iteration, the 
algorithm randomly proposes a single growing or pruning procedure to each 
tree and accepts or rejects according to the MH ratios [14]. 

2.1. Regularization of BART 

The main difference between BART and other methods is in choosing the num-
ber of trees, i.e. m. If BART is used to estimate ( )f x  or predict Y, it makes 
sense to treat m as an unknown parameter. The best value of m is selected 
through cross-validation, of course, this approach is not computationally effi-
cient, and to avoid the computational cost, [1] suggest the default value of 

200m = . In a single-tree model (i.e., 1m = ), a tree with many terminal node 
may be needed to model a complicated structure. However, for a sum-of-trees 
model, Especially with m or number of large trees, It is essential that the regula-
rization prior to keep the individual tree components small. 

2.2. Priors and Likelihood 

There are three priors for the BART model: a prior on the tree structure itself, a 
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prior on the leaf parameters, and a prior on the error variance 2σ . 
The prior on 2σ  is independent of the other two and each tree is indepen-

dent, yielding:  

( ) ( )( )

( ) ( ) ( ) ( ) ( )

1 1, , , , ,

, |

m m

j j j j j
j j

p T M T M

p T M p p M T p T p
   

= =   
   
∏ ∏

 σ

σ σ
         (5) 

where the last line follows from an additional assumption of conditional inde-
pendence of the leaf parameters given the tree’s structure. 

To preserve the effect of each single tree, prior settings for model parameters 
are considered. Also, the absence of these settings causes the creation of a large 
number of parameters, which creates additional limitations in the calculations. 
According assumption of priors independence, we specify only three priors: 

The first prior is on the locations of nodes within the tree. Nodes at depth d 
are non-terminal with probability ( )1 d −+ βα  where ( )0,1∈α  and [ ]0,∈ ∞β . 
This prior keeps the tree shallow, limiting the complexity of any single tree. De-
fault values for these hyper-parameters 0.95=α  and 2=β  are recommend-
ed by [1]. For non-terminal nodes, splitting rules have the following prior. First, 
a predictor is randomly selected to serve as the splitting variable. In the original 
formulation, each available predictor is equally likely to be chosen, but this is re-
laxed in our implementation to allow an arbitrary discrete distribution. Then, 
the splitting value is selected by randomly choosing a value of the selected pre-
dictor with equal probability. 

The second prior is on the leaf parameters. Given a tree with a set of terminal 
nodes, each terminal node (or leaf) has a continuous parameter (the leaf para-
meter) representing the best guess of the response in this partition of predictor 
space. 

Each leaf parameter is assigned a conjugate normal distribution ( )2~ ,iid


 µ µµ µ σ . 
In order to determine the parameters µµ  and 2

µσ , it should be noted that 
( )|E Y x  is the sum of m to ijµ  under the tree sum model, and since ijµ  

have an independent prior and the same distribution, therefore, the prior of 
( )|E Y x  has a distribution of ( )2,N m mµ µµ σ  and most likely ( )|E Y x  will 

be between miny  and maxy . By choosing µµ  and 2
µσ  pre-selected k values, 

the value of miny m k m= +µ µµ σ  and maxy m k m= +µ µµ σ  is determined. 
( )min max 2y y+  is chosen as the center of range. The variance is chosen empiri-
cally so that the center of range plus or minus 2k = , covers 95% variance of the 
response values provided in the training set (by default). If the values of k are 
between 0 and 1, the desired model will perform better and the value can be cal-
culated from the cross-validation method. The aim of this prior is to provide 
model regularization by shrinking the leaf parameters towards the center of the 
distribution of the response. 

The final prior is on the error variance and is chosen to be InvGamma 
( )2, 2ν νλ . We use data values to find v and λ  values. We assign a significant 
probability to sigma so as to avoid over-concentration and over-dispersion. 
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There are two choices for estimating σ̂ , a simple way is to let σ̂  be the sample 
standard deviation of Y, or alternatively, σ̂  can be expressed as the standard 
deviation of the residuals from a least-squares fit of a linear regression of X on 
the Y. considered Usually, the value of v is chosen between 3 and 10 and the 
value of λ  is considered as the qth prior quantile σ̂ , so that there is a prior 
chance 90%q =  (by default) that the BART model based on the criteria RMSE 
is better than ordinary least squares regression. Therefore, the majority of the 
prior probability density is lower than the RMSE of the least squares regression. 

2.3. Validity and Applicability Limitations of BART 

While Bayesian Additive Regression Trees (BART) offer numerous advantages 
for dynamic system modeling and forecasting, it’s essential to consider their li-
mitations and assumptions, as they can affect the validity and applicability of the 
analysis. 

First, BART assumes that the relationship between the response variable and 
predictors is additive. While this assumption holds for many real-world scena-
rios, there may be cases where interactions between predictors are significant, 
and an additive model may not accurately capture these relationships. Second, 
The performance of BART models can be sensitive to the choice of these hyper-
parameters, and suboptimal selections may lead to poor model performance or 
overfitting. Careful cross-validation and hyperparameter tuning are necessary to 
ensure robust and reliable results, which can add complexity to the modeling 
process. Third, Like many machine learning models, BART may struggle with 
extrapolation, particularly when making predictions outside the range of ob-
served data. Extrapolation uncertainty can lead to unreliable forecasts, especially 
in dynamic systems where future conditions may differ significantly from his-
torical observations. Fourth, BART assumes that the true relationship between 
predictors and the response variable can be adequately represented by a sum of 
regression trees. However, if the true relationship deviates substantially from this 
assumption (e.g., non-additive or non-tree-like relationships), BART may pro-
duce biased or misleading results. 

3. Competing Regression Estimator 
3.1. LASSO Estimator 

The LASSO proposed by [15] is a standard technique that minimizes the residual 
sum of squares subject to the sum of the absolute value of the coefficients being 
less than a constant. Because of the nature of this constraint, it tends to produce 
some coefficients that are exactly 0 and hence gives interpretable models. The 
LASSO solves a penalized log-likelihood function given by  

2

1 1 1

ˆ arg min
p pn

i j ij j
i j j

y X
= = =

  
 = − + 
   
∑ ∑ ∑

β
β β λ β              (6) 

where n is the number of observations, p the number of predictors, and λ  is 
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the penalty term, such that large values of λ  shrinks a large number of the 
coefficients towards zero. 

3.2. Elastic-Net Estimator 

The Elastic-Net (EN) estimator proposed by [16] is based on a compromise be-
tween the lasso and ridge regression [17] penalties. Similar to the lasso, the elas-
tic net simultaneously does automatic variable selection and continuous shrin-
kage, and it can select groups of correlated variables. Simulation studies and real 
data examples show that the elastic net often outperforms the lasso in terms of 
prediction accuracy. The EN estimator solves the following  

( )
2

2

1 1 1

1ˆ arg min 1
2

p pn

i j ij j j
i j j

y X
= = =

    = − + − +        
∑ ∑ ∑

β
β β λ α β α β        (7) 

where 0 1≤ ≤α  is a penalty weight. The EN with 1=α  is identical to the lasso, 
whereas it turns out to be ridge regression with 0=α  [18]. Setting α  close to 
1 makes the EN behave similarly to the lasso, but eliminates problematic beha-
vior caused by high correlations. When α  increases from 0 to 1, for a given λ  
the sparsity of the minimization (i.e., the number of coefficients equal to zero) 
increases monotonically from 0 to the sparsity of the lasso estimation. The elas-
tic net can select more variables than observations. 

3.3. Bayesian-Network Estimator 

The Bayesian-Network estimator is based on the concept of network models as a 
convenient representation of the relationships among a set of variables. The 
networks are defined by nodes joined by a set of links, describing the statistical 
relationships between a pair of variables. In a regression model, the relationship 
between a dependent variable y and a set of p-dimensional covariate vector 

( )1x , , px x=   is given by:  

( )2

1
, ~ 0,

p

i j ij
j

y X u u
=

= +∑ β σ                  (8) 

Suppose the coefficient of ( )1, , p= β β β  has some zeros elements corres-
ponding to sparsity (missing edges) in the underlying conditional independence 
structure which we refer to as a network. More specifically, if 0j =β  then jx  
has no relationship (or influence) on y. In network terms, this means a missing 
edge between variables y and jx . However, if 0j ≠β  then jx  has an impact 
(or influence) on y. Based on this illustration, there is a correspondence between 
the regression coefficients and the network structure defined by:  

( ) g= β φ                            (9) 

where operator (


) is the element-by-element product such that j j jg=β φ  
with  

0 if 0   
 

if 1   
j j

j
j j j

g x y
g x y

= ⇒ → /=  ∈ = ⇒ → 
β

φ
              (10) 
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where jx y→/  means that jx  does not influence y. 

4. Simulation Experiments 

In this section, we demonstrate the application of BART on empirical examples 
and evaluate BART capabilities on simulated data used by [19]. We make this 
comparison in linear and non-linear Data Generated Processes (DGP). Also, the 
foundation of our evaluation of the Competitive models is RMSE. 

The default hyperparameters generally follow the recommendations of [1] and 
provide a ready-to-use algorithm for many data problems. For both DGP, Our 
hyperparameter settings are 3v = , 0.9q = , 2k = , and, 200m = . Using the 
backfitting MCMC algorithm, we generated 20,000 MCMC draws from the 
posterior after skipping 250 burn-in iterations. 

As competitors, we considered 3 estimators: lasso, elastic net, and Bayesian 
network. These competitors were chosen because, like BART, they are black 
box predictors. In this simulation, we are looking for whether the BART model 
performs better in selecting predictors and forecasting in linear models or non- 
linear models. In the following, we will test this comparison for a set of US ma-
croeconomic data to compare the simulation results with the observed data re-
sults. 

4.1. Linear Data Generation Process (DGP-L) 

We next proceed to illustrate various features of BART on simulated data where 
we can gauge its performance against the true underlying signal. For this pur-
pose, we consider the following function as the data generation process assum-
ing a linear version of the [19] model. For this purpose, we constructed data by 
simulating values of ( )1 2, , , px x x x=   where:  

( )1 2, , ,  i.i.d. ~ Uniform 0,1px x x
  

( ) 1 2 3 4 52 10 5y f x X X X X X= + = + + + + +ε π π π ε         (11) 

where ( )~ 0,1Nε . Because y only depends on 1 5, ,x x , the predictors 

6 , , px x  are irrelevant. These added variables together with the interactions 
and non-linearities make it more challenging to find ( )f x  by standard para-
metric methods. 

[19] used this setup with p = 10 and to illustrate the potential of multivariate 
adaptive regression splines (MARS). We compare BART’s performance with the 
same set of competitors used by increasing variables up to p = 100. We increased 
the number of irrelevant predictors in the data to show BART’s effectiveness at 
detecting a low-dimensional structure in a high-dimensional setup. When p in-
creases, the BART model is still not the best, and the LASSO model has the low-
est RSME, and as a result, the BART models do not perform better than compet-
itive estimators in linear settings. 

4.1.1. Comparing Model Predictive Performance 
To perform comparisons across data sets, we considered RMSE and the mean 
and middle, and 50%, 75% RMSE quantiles are given in Table 1. 
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Table 1. Mean, middle and, 0.50, 0.75 quantiles of relative RMSE values for each method 
for DGP-L when p = 10, 100. 

p = 10 mean median Q 0.50 Q 0.75 
BART 1.292671 1.290039 1.290039 1.358976 
LASSO 1.039849 1.033391 1.033391 1.098285 

Elastic-Net 1.042411 1.034202 1.034202 1.098245 
Bayesian-Net 1.070179 1.042845 1.042845 1.139688 

p = 100     
BART 1.645258 1.640708 1.640708 1.790123 
LASSO 1.083434 1.089314 1.089314 1.137274 

Elastic-Net 1.113681 1.115589 1.115589 1.174979 
Bayesian-Net 1.547082 1.543075 1.543075 1.681589 

 
Although relative performance in Figure 1(a) and Figure 1(b) varies widely 

across the different problems. It is clear from the distribution of RMSE values 
that BART tended to more often obtain Bigger RMSE than any of its competitors. 
In fact, this is evidence of the lower performance of BART compared to other 
competitive linear models. When the p is small, the LASSO, Elastic-Net, and 
Bayesian-net are not so different but when the p is large, Bayesian-net is closer 
to BART.  

 

 

Figure 1. Boxplots of the RMSE of DGP-L for the competing methods over 100 simu-
lations when p = 10, 100. 
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4.1.2. Comparing Variable Importance 
After building a predictive model, it is natural to ask the question: which va-
riables are most important? This is assessed by examining the splitting rules in 
the m trees across the post-burn-in Gibbs samples which are known as “inclu-
sion proportions” [1]. The inclusion proportion for any given predictor re- 
presents the proportion of times that variable is chosen as a splitting rule out of 
all splitting rules among the posterior draws of the sum-of-trees model. The 
segments atop the bars represent 95% confidence intervals. The predictors with 
inclusion proportions of zero feature identically one value (after missing data 
was dropped). 

We do this for two linear and non-linear scenarios with p = 10 settings. We 
also repeat this process for p = 100 settings. 

In all four models of Figure 2, the most important variable is X4, and after-
wards is X3, X5, X2, and X1. In the sum of tree models, the variables that are at 
rest show a value between 0 and 0.05, while in competitive LASSO and Elastic 
Net models, this value is less than 0.01, and in the Bayesian network model, it is 
equal to 0. 

By increasing the number of variables to p = 100 on Figure 3, X4 is still the 
most important variable in all four methodologies, followed by X3 and X5. Also, 
the rest of the variables are the same. But the difference is that variable X1 is 
more important than X2 and also both X1 and X2 have zero value in the Bayesian 
Net model. 

 

 

Figure 2. Variable importance in the linear scenario when p = 10. 

4.2. Non-Linear Data Generation Process (DGP-NL) 

We consider the following function as the data generation process assuming a 
non-linear framework:  

( ) ( ) ( )2
1 2 3 4 510sin 20 0.5 10 5y f x x x x x x= + = + − + + +ε π ε       (12) 
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Similar to the linear DGP, we perform this simulation exercise by setting 

{ }10,100p = . Again, we compare the BART performance with the same set of 
competing methods. 

 

 

Figure 3. Variable importance in the DGP-L when p = 100. 

4.2.1. Comparing Model Predictive Performance 
Table 2 reports the RMSE of the competing methods for p = 10, 100. By com-
paring Table 2, it can be seen that the nonlinear data generate process average 
RMSE is smaller than the linear models and is a significant contribution, which 
shows that the BART model has a better response in nonlinear functions but in 
the nonlinear data generation process, it has a better performance than the other 
competing linear estimators.  
 
Table 2. Mean, middle and, 0.50, 0.75 quantiles of relative RMSE values for each method. 

p = 10 mean median Q 0.50 Q 0.75 

BART 1.806810 1.792002 1.792002 1.959392 

LASSO 2.728710 2.744029 2.744029 2.933420 

Elastic-Net 2.735580 2.750239 2.750239 2.949370 

Bayesian-Net 2.684871 2.721498 2.721498 2.865008 

p = 100 mean median Q 0.50 Q 0.75 

BART 2.612356 2.593971 2.593971 2.798618 

LASSO 2.848172 2.827754 2.827754 3.018718 

Elastic-Net 2.910745 2.881590 2.881590 3.091359 

Bayesian-Net 2.821050 2.794044 2.794044 3.042147 
 

Figure 4(a) and Figure 4(b) reports the boxplot of the RMSE of nonlinear 
DGP for p = 10, 100, respectively. According to both plots, the lowest RMSE is 
for the BART model, and with the increase in the number of variables, the 
amount of errors has also increased. Especially in competitive models, the Elastic 
Net model has suffered more errors than the LASSO model.  
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Figure 4. Box plot of the RMSE of DGP-NL for the competing methods over 100 si-
mulations when p = 10, 100. 

4.2.2. Comparing Variable Importance 
In the following, we specify the important variables for the non-linear scenario. 
In non-linear simulation with p = 10 settings, we observe that X1 ranks first (see, 
Figure 5) then, X2 and X3 are our most important variables. This is even though 
in LASSO, Elastic Net, and Bayesian Net, X4 is the most important variable, fol-
lowed by X1 and X2. Also, variable X3 is at rest.  

When variables increase by a factor of 100 in the BART model, X4 is the most 
important variable and this situation is the same in competitive models (see, 
Figure 6). In fact, by increasing the value of p to the settings of p = 100 in the 
MCMC algorithm, the calculation error has probably been resolved. Therefore, 
our suggestion is to identify the important variables of the BART model with a 
high number of variables. 

5. Forecasting Macroeconomic Time Series 

In this part, we test a set of macroeconomic data with 221 data and 8 variables in 
4 lag. The data set for our empirical application consists of quarterly observa-
tions, from 1959Q1 to 2022Q3, of 8 US-macroeconomic variables which were 
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originally used by [20]. The macroeconomic variables include (GDP)—real gross 
domestic product, (INF)—consumer price index, (FF)—Federal funds rate, 
(M2)—money stock M2, (PC)—real personal consumption, (IP)—industrial 
production index, (U)—unemployment, and (INV)—real gross domestic private 
investment. Table 3 gives the data description and transformation code from [20] 
used for our application. We transferred data to the first difference and first dif-
ference of the log variable and set the lag settings to n = 4.  
 

 

Figure 5. Variable importance in the non linear scenario when p = 10. 
 

 

Figure 6. Variable importance in the nonlinear scenario when p = 100. 

5.1. Comparing Model Predictive Performance 

We want to show a forecast of GDP and show which model gives the best fore-
casting, so we rank the BART model and competitive models. For forecasting the 
effect of GDP shock on GDP, the BART is minimum, and INF, PC, IP, U, and 
INV effects on GDP have the same condition. And this shows that the BART 
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model has provided the best performance for forecasting most variables (see Ta-
ble 4). 

 
Table 3. Data description and transformation code to achieve stationarity. The transfor-
mation code is as follows: 1 = no transformation, 2 = first difference, 3 = second differ-
ence, 4 = log, 5 = first difference of the log variable, 6 = second difference of the log varia-
ble. 

No Short ID Mnemonic Code Description 

1 GDP GDP251 5 
Real GDP, Quantity Index  

(2000 = 100) 

2 INF CPIAUCSL 5 CPI All Items 

3 FF FEDFUNDS 2 
Interest rate: Federal funds  
(effective) (% per annum) 

4 M2 M2SL 5 Money stock: M2 (bil$) 

5 PC PCE 5 
Real Personal Cons. Exp.,  

Quantity Index 

6 IP INDPRO 5 Industrial production index: total 

7 U UNRATE 2 
Unemp. rate: All workers,  

16 and over (%) 

8 INV GPDIC1 5 
Real gross domestic private  

investment 

 
Table 4. RMSE of the competing methods by ranking. 

 BART Rank LASSO Rank Elastic-Net Rank Bayesian-Net Rank 

GDP 1.8373 1 1.8376 2 1.9062 3 2.0475 4 

INF 0.6457 1 0.9541 4 0.9104 3 0.8675 2 

FF 0.5472 3 0.3593 2 0.3321 1 1.9648 4 

M2 1.5440 4 1.3614 2 1.3500 1 1.3861 3 

PC 3.9311 1 4.2034 4 4.0271 2 4.1056 3 

IP 3.4303 1 4.0299 2 4.3242 3 4.9381 4 

U 1.8548 1 1.9461 2 1.9529 4 1.9502 3 

INV 4.7414 1 8.8198 4 7.8913 2 8.6739 3 

5.2. Comparing Variable Importance 

Next, we will check the important variables for the observed data: Figure 7 illu-
strates the variable importance of the competing models for predicting GDP. In 
the BART model, The variables M2.lag1, INF.lag3, FF.lag4, IP lag1 and INV.lag1 
are key determinants. 

For the LASSO and Elastic Net model, The variables M2.lag1 rank first, but in 
the Bayesian Net model, GDP.lag2 is highly significant. In these competitive 
models, important variables are selected and this is the difference between re-
porting important variables and BART. See Figures A1-7 for the results of the 
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relative importance when predicting CPI, FF, M2, PC, IP, U and INV, respec-
tively. 

 

 

Figure 7. Variable inclusion proportions for predicting GDP according to the competing 
methods. The variables are arranged according to their lags as follows: (GDP, INF, FF, 
M2, PC, IP, U, INV). 

6. Conclusions  

This paper advances a non-parametric autoregressive distributed lag model that 
employs a Bayesian additive regression tree (BART). The performance of the 
BART methodology is compared with selection models like Lasso, Elastic Net, 
and Bayesian networks in linear and non-linear simulation scenarios, as well as 
application to forecasting macroeconomic data. 

Our results show that in the case of non-linear relationships between the va-
riables, the nonparametric structure like BART works better than the competing 
estimators, and very competitive against the linear parametric methods when the 
true model is linear. The result also show that when applied to modeling and fo-
recasting macroeconomic times series, the BART non-parametric model out-
performs the linear models like Lasso, Elastic Net, and Bayesian networks. This 
suggests that many macroeconomic variables have non-linear relationships and 
must therefore be modeled with non-linear models like the BART. 

Since most of the relationships between macroeconomic variables have nonli-
near relationships, we recommend future researchers make this comparison with 
the empirical application of economic theories as well as relationships between 
macroeconomic variables. 
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Appendix 

 

Figure A1. Variable inclusion proportions for predicting INF according to the competing 
methods. The variables are arranged according to their lags as follows: (GDP, INF, FF, 
M2, PC, IP, U, INV). 

 

 

Figure A2. Variable inclusion proportions for predicting FF according to the competing 
methods. The variables are arranged according to their lags as follows: (GDP, INF, FF, 
M2, PC, IP, U, INV. 
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Figure A3. Variable inclusion proportions for predicting M2 according to the competing 
methods. The variables are arranged according to their lags as follows: (GDP, INF, FF, 
M2, PC, IP, U, INV. 

 

 

Figure A4. Variable inclusion proportions for predicting PC according to the competing 
methods. The variables are arranged according to their lags as follows: (GDP, INF, FF, 
M2, PC, IP, U, INV. 
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Figure A5. Variable inclusion proportions for predicting IP according to the competing 
methods. The variables are arranged according to their lags as follows: (GDP, INF, FF, 
M2, PC, IP, U, INV. 

 

 

Figure A6. Variable inclusion proportions for predicting U according to the competing 
methods. The variables are arranged according to their lags as follows: (GDP, INF, FF, 
M2, PC, IP, U, INV. 
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Figure A7. Variable inclusion proportions for predicting INV according to the compet-
ing methods. The variables are arranged according to their lags as follows: (GDP, INF, FF, 
M2, PC, IP, U, INV. 
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