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Abstract 
In this paper, we modify the Bregman APGs (BAPGs) method proposed in 
(Wang, L, et al.) for solving the support vector machine problem with trun-
cated loss (HTPSVM) given in (Zhu, W, et al.), we also add an adaptive pa-
rameter selection technique based on (Ren, K, et al.). In each iteration, we use 
the linear approximation method to get the explicit solution of the subprob-
lem and set a function φ  to apply the Bregman distance. Finally, numerical 
experiments are performed to verify the efficiency of BAPGs. 
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1. Introduction 

SVM (Support Vector Machine) [1] is a supervised learning algorithm com-
monly used for classification tasks and has been successfully applied to many 
technological fields, such as text categorization [2], financial forecast [3], image 
classification [4] and so on. This paper focuses on a binary classification prob-
lem. Given training samples ( ){ }, , 1, ,= i ix y i m , where ∈n

ix , { }1,1∈ −iy , 
the objective of SVM is to identify an optimal separating hyperplane to separate 
data points into two classes. Scholars have proposed some classic SVM models 
based on convex loss functions, such as the hinge loss (also called L1 loss) in 
classic SVM [5], the least square loss in LSSVM [6] and the huberized pinball 
loss in HPSVM [7]. However, in practice, the real dataset often contain noise. 
Since convex loss functions are generally unbounded, convex losses are highly 
sensitive to outliers and potentially influenced by outliers. Therefore, some 
nonconvex loss functions are proposed to improve robustness compared with 
the convex loss functions [8]. For example, [9] proposed the ramp loss based on 
hinge loss, the truncated pinball loss was proposed by [10]. Recently, a noise in-
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sensitive and robust support vector machine classifier with huberied truncated 
pinball loss (HTPSVM) was proposed in [11], this loss is smooth and nonconvex 
loss function. The HTPSVM can be transformed into format of “Loss + Penalty”, 
in which the penalty is a hybrid of 1l  norm and 2l  norm penalty. 

Here, the HTPSVM model and algorithm of literature [11] are briefly introduced. 
Consider a classification problem with training samples { } { }1

, 1,1
=
⊂ × −m d

i i i
x y . 

The HTPSVM seeks to solve the following regularization problem:  

( )( )
2 2

T 2
1, 1

1min ,
2 2

λ
∈ ∈ =

+ + + +∑
 



d

m

htp i i
b w i

w by b w x w
m

           (1) 

the huberied truncated pinball loss ( )⋅htp  function is defines as  
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which is a nonconvex and smooth function. The HTPSVM combine the benefits 
of both 1l  and 2l  norm regularizers and and it has been demonstrated in [11] 
that it can reduce the effects of noise in the training sample. Therefore, we con-
sider that studying the HTPSVM model is meaningful. The APG algorithm was 
used to solve the model in [11]. [12] applied the APGs method (first proposed in 
[13]) to solve problem (1) and obtain better convergence behavior. However we 
find that the proximal operator for computing the 1l  norm causes the sub-
problem to be solved slowly in APG and APGs algorithms, we attempt to accele-
rate the solution process for this model. Recently, [14] propose the Bregman 
APGs (BAPGs) method, which avoids the restrictive global Lipschitz gradient 
continuity assumption. In this paper, we improve BAPGs algorithm to solve the 
problem (1) and replace the Lipschitz constant by an appropriate positive defi-
nite matrix and obtain better results after we perform numerical experiments on 
10 datasets to test our method. 

The rest of this paper is organized as follows. In the next section, we provide 
preliminary materials used in this work. In Section 3, we introduce the BAPGs 
algorithm proposed by [14] and present our algorithm based on the BAPGs me-
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thod for solving the HTPSVM model (1). The convergence of our method is also 
discussed. Section 4 performs some experiments.  

2. Preliminaries  

In this paper, we let   denote the set of real numbers. We work in the Eucli-
dean space n , and the standard Euclidean inner product and the induced 
norm on n  are denoted by ,⋅ ⋅  and ⋅ . The domain of the function 

( ]: ,→ −∞ +∞nf  is defined by ( ){ }dom := ∈ < +∞

nf x f x . We say that f is 
proper if dom ≠ ∅f . A proper function f is said to be closed if it is lower se-
micontinuous at any dom∈x f , i.e. ( ) ( )liminf →≤ z xf x f z .  

Definition 1. [[15], Definition 8.3] For a proper closed function f, the regular 
subdifferential of { }: → ∪ +∞ nf  at dom∈x f  is defined by  

( ) ( ) ( )
,

ˆ,ˆ ˆ: : liminf 0 .
→ ≠

 − − − ∂ = ∈ ≥ −  
 n z x z x

f z f x x z x
f x x

z x
         (3) 

The (general) subdifferential of f at dom∈x f  is defined  

( ) ( )ˆˆ ˆ ˆ ˆ: : , with for each , ∂ = ∃ → → ∈∂ 
 

f
k k k kf x x x x x x x f x k        (4) 

where →
f

kx x  means both →kx x  and ( ) ( )→kf x f x . Note that if f is also 
convex, then the general subdifferential and regular subdifferential of f at 

dom∈x f  reduce to the classical subdifferential [[15], Proposition 8.12], that is  

( ) ( ) ( ){ }ˆ ˆ: , for all .∂ = ≥ + −f x x f y f x x y x y             (5) 

Definition 2. (Kernel Generating Distances and Bregman Distances [16] [17] 
[18]) Let C be a nonempty, convex and open subset of n . Associated with C, a 
function ( ]: ,φ → −∞ +∞n  is called a kernel generating distance if it satisfies 
the following:  

1) φ  is proper, lower semicontinuous and convex, with domφ ⊂ C  and 
dom φ∂ =C ;  

2) φ  is continuously differentiable on int domφ ≡C .  
We denote the class of kernel generating distances by ( ) C . Given ( )φ ∈ C , 

the Bregman distance ( ]: dom int dom 0,φ φ φ× → +∞D  is defined by  

( ) ( ) ( ) ( ), : , .φ φ φ φ= − − ∇ −D x y x y y x y  

For exmple, when ( ) 2φ =x x , then ( ) 2,φ = −D x y x y . If ( ) Tφ =x x Ax , 
then ( ) ( ) ( )T,φ = − −D x y x y A x y . In this article, the gradient Lipschitz conti-
nuity condition of the function f is no longer required, instead it is replaced by 
the L-smooth adaptive function of pair ( ),φf . The definition of L-smooth 
adaptable as follows.  

Definition 3. A pair of functions ( ),φf , ( )φ ∈ C , ( ]: ,→ −∞ +∞nf  is a 
proper and lower semicontinuous function with dom domφ ⊂ f  and f is con-
tinuously differentiable on int domφ=C , is called L-smooth adaptable (L-smad) 
on C if there exists 0>L  such that φ −L f  and φ +L f  are convex on C.  
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Lemma 1. (Full Extended Descent Lemma [19]) A pair of functions ( ),φf  is 
L-smad on int domφ=C  if and only if:  

( ) ( ) ( ) ( ), ,φ− − ∇ − ≤f x f y f y x y LD x y , , int domφ∀ ∈x y . 
Definition 4. { }: → ∪ +∞ nf  is called μ-relative weakly convex to φ  

on C if there exists 0µ >  such that µφ+f  is convex on C [14].  

3. The Modified BAPGs Method for HTPSVM  

In this section, we first describe the BAPGs method proposed in [14], then the 
modified BAPGs method with adaptive parameter is given for HTPSVM.  

3.1. BAPGs Method  

Consider the following optimization problem:  

( ) ( ) ( ) ( )1 2min : ,
∈

= + −
nx

F x f x P x P x                   (6) 

where f is a μ-relative weakly convex continuously differentiable function, P1 is a 
proper, lower semicontinuous convex function and P2 is continuous and convex. 
Besides, F is level-bounded i.e., for every α ∈ , the set ( ){ }| α∈ ≤nx F x  is 
bounded; F is bounded below i.e., ( )inf

∈
> −∞

nx
F x . The iterative scheme of 

BAPGs [14] for solving probelm (6) is shown in Algorithm 1, where φD  is a 
Bregman distance defined in Section 2.  

 

 
 

We see that when ( ) 21,
2φ = −D x y x y , BAPGs reduces to APGs in [13]. [14] 

proved the global convergence of the iterates generated by BAPGs to a limiting 
critical point under some assumptions.  

3.2. Adaptive BAPGs Method for HTPSVM  

By writing the nonconvex loss htp  as the difference of three smooth convex 
functions, the problem (1) can be expressed as following from [12]  

( ) ( ) ( ) ( ) ( )1 2 3 1
,

min , , , , , ,
∈ ∈

= − − +
 

db w
F b w f b w f b w f b w P b w         (8) 

where ( )
2 2
2

1 1,
2 2

λ= + +
w bP b w w , λ  is the regularization parameter; for 
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1,2=j , ( ) ( )T
1

1,
=

 = + ∑ 

m
j j i iif b w y b w x

m
, and the smooth convex functions 

 j  are defined as  

( )
( )
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u

u uu

u u

                (11) 

Then we can apply the BAPGs to solve problem (8) in the form of (6)  
• 1 : 1 3= −f f f  (nonconvex), 2 2=P f  (convex);  
• 2 : 1 2= −f f f  (nonconvex), 2 3=P f  (convex).  
Next, We will briefly illistrate that the problem (8) can be solved by the BAPGs 

[14].  

Theorem 1. Let f as defined in 1  and 2 . Set ( ) T1:
2

φ =x x Qx , where 

1

1 5
2=

= ∑m
iiQ Q

m
, ( ) ( )TT T, ,=i i i i i i iQ y y x y y x . Then, the pair ( ),φf  is L-smooth 

adaptable on n  with 1=L .  
Proof. Firstly, for 1 , since  

( )1 3

5 31, ,
2 5

5 35 , 1,
2 5

15 5 7, 1 ,5 4 4 5
5 1 7 82 , ,
2 2 5 5
5 5 8, 2,
4 2 5
5 , 2,
2

−

 − ≤

 − < ≤

 − ≤ <
′ + = 
 + ≤ <


 + ≤ <



≥




u u

u u

u u
u u

u u

u u

u u

               (12) 
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and  

( )1 3

5 31, ,
2 5
5 3, 1,
2 5
5 5 7, 1 ,5 4 4 5
5 1 7 82 , ,
2 2 5 5
15 5 8, 2,
4 2 5
5 , 2,
2

−

 + ≤

 < ≤

 + < ≤
′− = 
 − ≤ <


 − ≤ <
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u u

u

u u
u u

u u

u u

u u

                (13) 

are monotonically increasing, it is easy to verify that ( ) 2
1 3

5
4− + u u  and 

( )2
1 3

5
4 −− u u  are convex. Then we can easily get the convexity of  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

TT T
1 3

1 1

TT
1 3

1

2T T
1 3

1

1 1 1 5, ; ;
2 2 2
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4

1 5 ,
4

−
= =

−
=

−
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 + = + + 

  = + +   
    = + + +     
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∑

∑







m m

i i i
i i

m

i i i
i

m

i i i i
i

f b w x Qx y b w x b w Q b w
m m

y b w x b w Q b w
m

y b w x y b w x
m

   (14) 

and  

( ) ( ) ( )2T T T
1 3

1

1 1 5, ,
2 4 −

=

    − = + − +     
∑ 

m

i i i i
i

x Qx f b w y b w x y b w x
m

    (15) 

the proof is similar for 2 . It is clear that ( ),φf  is 1-smooth adaptable on n , 
this further implies that there exists 0 1µ< ≤  such that µφ+f  is convex.  

We can see that the problem (8) satisfies the conditions required in [14] with 

( ) T1
2

φ =x x Qx  for the pair ( ),φf , where Q defined as Theorem 1. Therefore  

the BAPGs method (Algorithm 1), here we let 1τ =  and replace (7) with the 
following steps, can be used for solving (8)  

( )

( ) ( ) ( ) ( )
( )

T1
1

1 1

1 ,

arg min , ,
2

1 .

θ θ

θ
ξ

θ θ

+
∈

+ +

= + −

  = ∇ − − + + − −    
= + −



n

k k k
k k

k k k k k kk
z

k k k
k k

y z x

z f y z y P z z z Q z z

x z x

(16) 

The selection of parameter { }θk  in [14] as: for fixed positive integer N, let 

0 1θ = , 
4 2 2

1

4
, 1,2, ,

2
θ θ θ

θ +

+ −
= = 

k k k
k k N  

and θ θ≡k N  for all >k N . It is to see that the value of the positive integer N is 
difficult to determine. Combining with the adaptive parameter selection crite-

https://doi.org/10.4236/am.2024.154015


K. X. Ren 
 

 

DOI: 10.4236/am.2024.154015 273 Applied Mathematics 
 

rion proposed in [12]: let 0 1θ = , 
4 2 2

1 1 14
2

θ θ θ
θ − − −+ −

= k k k
k  for 1≥k  and 

compute  

( ) ( )
1
T1 1

: ,−

− −

−
=

− −
k k

k k k k k

H Hd
x x x x

                   (17) 

when 2≥k , where ( ) ( ) ( )T1 1:
2
β − −= + − −k k k k kk

kH F x x x Q x x  and 2
1

α
β

θ −

= k
k

k

 

(the assumption of sequence { }αk  given in [14, Assumption 2]). Let N be the 
first k satisfying 1+≤k kd d . The BAPGs algorithm with adaptive parameter for 
problem (8) (HTPSVM) is shown in Algorithm 2. 

 

 

4. Numerical Results  

In this section, we aim to show the performance of Algorithm 2 for solving 
problem (1) by using MATLAB R2020b on a 64-bit PC with an Intel(R) 
Core(TM) i7-10870H CPU (2.20GHz) and 16GB of RAM. 

First, consider the optimality condition (19) of Algorithm 2  
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( ) ( ) ( )
( ) ( )

1 1
1

1 1 1
1
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ξ θ

ξ λ θ
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∈∇ − + ∂ + −

= ∇ − + ∂ + + −

k k k k k

k k k k k k

f y P z Q z z

f y z z Q z z
 

Due to there is no explicit solution for this subproblem, we try to instead the 

1l  norm by linear approximation, that is, ( )T

1 1
≈ + −k k kz x v z x , where 

1
∈∂k kv x  (here we take ( ): sign=k kv x ), then we construct a new iteration 

step to replace the subproblem in Algorithm 2 as  

( ) ( )

( ) ( )

T1
1

TT

arg min ,

1 ,
2 2

ξ λ

θ

+
∈

= ∇ − − + + −


 + + − −   



n
k k k k k k k

z

k k

z f y z y x v z x

z z z z Q z z
  (20) 

it is easy to calculate its solution:  

( ) ( )T 1 10 ,ξ λ θ+ += ∇ − + + + −k k k k k kf y v z Q z z  

which means  

( ) ( )1 .θ θ ξ λ++ = −∇ + −k k k k kI Q z Qz f y v  

Then the update (18) and (19) are replaced by  

( ) ( )( )
( ) ( )( )

11

11

,

,

θ θ ξ λ

θ θ ξ λ

−′ ′ ′ ′ ′+
′ ′

−+

 = + −∇ + −


= + −∇ + −

k k k k k
k k

k k k k k

z I Q Qz f y v

z I Q Qz f y v
         (21) 

in experiments, where ( )sign′ ′=k kv x  and ( )sign=k kv x . The experiments are 
conducted on several real world datasets. We select 10 datasets from UCI [20], to 
compare the Algorithm 2 with APG (method in [11]), APGs [12] and GIST [21], 
where in GIST, we set 1= +F f P  with 1 2 3= − −f f f f . The corresponding 
parameters of these methods are set the same as in [12]. For each dataset, The 21 
initial points are used commonly for all methods: one zero vector, and 5 vectors 
selected independently from N (0, σ2I) for each { }1,2,4,8σ ∈ . All algorithms  

stop if 
( ) ( )

( ){ }
1 1

6
; ;

10
max 1, ;

+ +

−
−

<
k k k k

k k

b w b w

b w
 or the number of iterations hits 3000. The  

average results are given in Table 1 and Table 2, including the number of itera-
tions (iter), objective function value (fval) and CPU time in seconds (CPU) at 
termination with 31 10λ −= ×  and 45 10−× , where BAPGs- 1  and APGs- 1  
represent using BAPGs (algorithm 2) and APGs [12] for 1  respectively ( 1  
described in section 3.2).  

 
Table 1. Comparison on 10 datasets with 31 10λ −= × . 

Dataset 
Iter 

BAPGs- 1  BAPGs- 2  APGs- 1  APGs- 1  APG GIST 

Magic 89.81 87.05 91.81 89.33 3000.00 325.57 

Rice 78.95 78.81 80.10 80.24 171.43 1478.81 

Hepatitis 226.90 217.14 235.24 224.38 2580.14 1197.33 

Tic-Tac-Toe 150.76 151.71 158.33 159.14 161.62 177.19 
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Continued 

Spect heart 94.10 90.71 96.38 92.81 886.76 723.76 

Fourclass 44.81 42.86 46.05 43.48 3000.00 48.24 

German 258.81 250.62 268.67 258.71 1873.33 1523.71 

Ionosphere 219.95 216.52 228.00 223.19 660.90 1485.95 

Jain 41.57 41.19 41.81 41.81 2028.10 2857.24 

Haberman 394.43 363.43 404.29 3000.00 152.00 86.57 

 CPU 

Magic 0.353 0.258 0.355 0.263 17.368 5.424 

Rice 0.421 0.376 0.849 0.767 3.141 34.529 

Tic-Tac-Toe 0.215 0.143 0.419 0.268 0.454 0.162 

Spect heart 0.058 0.046 0.050 0.037 0.569 1.087 

Fourclass 0.075 0.049 0.076 0.050 3.454 0.056 

German 0.389 0.283 0.410 0.312 4.222 3.766 

Ionosphere 0.156 0.104 0.150 0.107 0.402 1.059 

Jain 0.037 0.035 0.039 0.036 1.549 3.213 

Haberman 0.194 0.128 0.189 0.120 1.585 0.051 

 Fval 

Magic 0.474381 0.473398 0.473398 0.516992 0.474964 0.473398 

Rice 0.346266 0.346256 0.346256 0.346626 0.721512 0.346256 

Tic-Tac-Toe 0.438651 0.368594 0.426611 0.368594 0.397603 18.161908 

Spect heart 0.388207 0.388016 0.388016 0.388016 0.392196 0.388016 

Fourclass 0.660204 0.657473 0.657473 0.657473 0.663052 0.657473 

German 0.579826 0.579553 0.579553 0.579553 0.584878 7.715915 

Ionosphere 0.506393 0.473385 0.502754 0.473385 0.506175 3.154305 

Jain 0.436192 0.435656 0.435656 0.435656 0.464155 2.600706 

Haberman 0.584050 0.583851 0.583851 0.583851 0.606839 0.583851 
 

Table 2. Comparison on 10 datasets with 45 10λ −= × . 

Dataset 
Iter 

BAPGs- 1  BAPGs- 2  APGs- 1  APGs- 1  APG GIST 

Magic 90.05 87.19 92.05 89.48 3000.00 326.38 

Rice 78.95 78.76 80.10 80.19 171.62 699.48 

Hepatitis 223.48 214.14 231.57 221.19 2580.05 1028.95 

Tic-Tac-Toe 150.71 151.76 158.24 159.14 159.62 168.43 

Spect heart 94.10 90.71 96.38 92.81 745.90 688.52 

Fourclass 44.81 42.90 46.05 43.52 3000.00 48.67 

German 255.48 246.57 265.19 254.52 1873.24 3000.00 

Ionosphere 219.81 217.00 228.00 223.76 659.33 740.19 

Jain 41.52 41.19 41.76 41.81 2167.62 2848.19 

Haberman 456.10 421.81 477.29 431.00 3000.00 95.24 
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Continued 

 CPU 

Magic 0.347 0.251 0.354 0.261 16.689 5.462 

Pima 0.308 0.216 0.550 0.372 0.144 0.795 

Rice 0.420 0.369 0.800 0.726 1.643 15.001 

Tic-Tac-Toe 0.215 0.145 0.318 0.199 0.240 0.171 

Spect heart 0.058 0.047 0.049 0.037 0.463 1.039 

Fourclass 0.076 0.050 0.071 0.046 3.489 0.058 

German 0.376 0.284 0.383 0.279 4.208 7.883 

Ionosphere 0.152 0.105 0.152 0.108 0.408 0.617 

Jain 0.038 0.043 0.027 0.025 1.662 3.356 

Haberman 0.220 0.136 0.210 0.131 1.592 0.055 

 Fval 

Magic 0.474348 0.473364 0.473364 0.473364 0.518649 0.473364 

Rice 0.345804 0.345794 0.345794 0.345794 0.346151 0.345794 

Tic-Tac-Toe 0.438395 0.368334 0.426351 0.368334 0.397342 18.144564 

Spect heart 0.387614 0.387422 0.387422 0.387422 0.390809 0.387422 

Fourclass 0.660128 0.657403 0.657403 0.657403 0.663006 0.657403 

German 0.579145 0.578871 0.578871 0.578871 0.584183 7.718112 

Ionosphere 0.505612 0.472627 0.501982 0.472627 0.505449 3.153792 

Jain 0.436192 0.435316 0.435854 0.435316 0.435316 2.600706 

Haberman 0.583966 0.583769 0.583769 0.583769 0.606836 0.583769 

 
From the above tables, we see that Algorithm 2 for 2  always obtain the 

smaller function values and converge faster than others, this means that Algo-
rithm 2 for solving HTPSVM model (1) performs well.  

5. Conclusions and Suggestions  

In this paper, based on the BAPGs method proposed by [14], we construct the 
modified BAPGs with the adaptive parameter selection technique introduced in 
[12] for solving the HTPSVM model. The linear approximation method is used 
to improve the subproblem in algorithm and a function φ  with a suitable ma-
trix Q is set to obtain the L-smad property. Finally, numerical experiments show 
that our algorithm convergence faster.  
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