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Abstract 
A root system is any collection of vectors that has properties that satisfy the 
roots of a semi simple Lie algebra. If g is semi simple, then the root system A, 
(Q) can be described as a system of vectors in a Euclidean vector space that 
possesses some remarkable symmetries and completely defines the Lie algebra 
of g. The purpose of this paper is to show the essentiality of the root system 
on the Lie algebra. In addition, the paper will mention the connection be-
tween the root system and Ways chambers. In addition, we will show Dynkin 
diagrams, which are an integral part of the root system. 
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1. Introduction 

A root system in mathematics is a configuration of vectors in Euclidean space 
that satisfies certain geometric properties. The concept is fundamental in the 
theory of Lie algebras and Lie groups, especially in the theory of classification 
and representation of semisimple Lie algebras. Since Lie groups (and some 
analogues such as algebraic groups) and Lie algebras became important in many 
parts of mathematics during the twentieth century, the apparently special nature 
of root systems is inconsistent with the number of areas in which they are 
applied. 

Definition 1.1. A root system ( ),V R  is a finite-dimensional real vector space 
V wich an inner product (i.e. a Euclidean vector space), such that the following 
properties hold: 

a) The vectors in R span V. 
b) If α is in R and c R∈ , then cα  is in R only if 1c = ± , then R is called a 

reduced root system. 
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c) For any two roots ,α β , the number 

( )
( )

,
2

,αβ

α β
µ

β β
=

 
is integer. 

The dimension of V is called the rank of the root system and the elements of 
R are called roots. 

d) Let :s V Vα →  be defined by 

( )
( )

,
2

,
sα

β α
β β

α α
⋅ = −  

for Vβ ∈ . Another calculation also shows that sα  preserves the inner product 
( )_; _ , i.e., 

( ) ( )( ) ( ), ,s sα αα β α β=
 

for , Vα β ∈ , that is, sα  is in the orthogonal group ( )O V . Evidently, 

( )det 1sα = ± : 

Theorem 1.2. Suppose that α and β are linearly independent elements. Then 
1. ( ) ( ), , 0,1, 2 or 3c cβ α α β = . 
2. If ( ), 0c α β = , then ( ) ( ), , 0c cβ α α β= = . 
3. If ( ), 0α β <  and α β≤ , then ( ), 1c α β = −  and 

( ) ( ) ( ), , , 1, 2 or 3.c β α β β α α= − = − − −  
4. If ( ), 0α β >  and α β≤ , then ( ), 1c α β =  and 

( ) ( ) ( ), , , 1,2 or 3.c β α β β α α= =  
5. If ( ), 0α β >  and α β≤ , the ( ) ( )2 , , 0α β β β− + = . If ( ), 0α β <  

and α β≤ , then ( ) ( )2 , , 0α β β β+ = . 
Proof. 1. Since α and β are linearly independent, the Cauchy-Schwartz Inequality 

implies that 

( ) ( )( )2, , ,α β α α β β< . 

Hence 

( ) ( ) ( )
( )( )

2,
, , 4 4

, ,
c c

α β
β α α β

α α β β
= <

 
Since ( ),c α β  and ( ),c β α  are integers, we must have 

( ) ( ), , 0,1,2 or 3.c cα β β α =  
2. Obvious. If ( ), 0c α β = , then ( ) ( ), , 0c cβ α α β= = . 
3. If ( ), 0α β <  and α β≤ , 

( )
( )

( )
( )

, ,
2 2

, ,
α β β α
β β α α

>
 

So ( ) ( ), ,c cα β β α> . ( ) ( ), , 1, 2 or 3c cα β β α = − − − . we must have  
( ), 1c α β = − , whence 
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( ) ( )2 , ,α β β β= . Thus 

( ) ( )
( )

( )
( )

, ,
, 2 .

, ,
c

β α β β
β α

α α α α
= =

 
4. If ( ), 0α β >  and α β≤ , then 

( )
( )

( )
( )

, ,
2 2

, ,
α β β α
β β α α

<
 

So ( ) ( ), ,c cα β β α< . By Part (1), ( ) ( ), , 1, 2 or 3c cα β β α = . Since ( ),c α β  
is the smaller integer factor, we must have ( ), 1c α β = , whence  
( ) ( )2 , ,α β β β= . Thus 

( ) ( )
( )

( )
( )

, ,
, 2 .

, ,
c

β α β β
β α

α α α α
= =

 
5. Suppose that ( ), 0α β >  and α β≤ . Then by Part (4), ( ), 1c α β = , so 
( ) ( )2 , , 0α β β β− + = . On the other hand, if ( ), 0α β <  and α β≤ , then 

by Part (4), ( ), 1c α β = − , whence ( ) ( )2 , , 0α β β β+ = . 
The novelty of this work is based on the connection of root systems with Lie 

algebra. In addition, the importance of Dynkin diagrams and Ways chamebers 
with the rook system and Lie algebra is shown. Modern pictures and graphs were 
used with the help of modern tools to more closely convey the appearance and 
quality of the work. 

2. Basic Theory of Root Systems 

Theory 2.1. [1] Let V be a finite-dimensional vector space over R equipt with an 
inner product ( ), . The Cauchy-Schwartz inequality asserts that 

( ),u v u v≤
 

for ,u v V∈ . It follows that if ,u v V∈  are nonzero, then 

( ),
1 1

u v
u v

− ≤ ≤
 

If ,u v V∈  are nonzero, then we define the angle between u and v to be the 
unique number 0 θ≤ ≤ π  such that 

( ), cosu vu v ϑ=  
The inner product measures the angle between two vectors, though it is a bit 

more complicated in that the lengths of x and y are also involved. The term 
“angle” does make sense geometrically. 

Proposition 2.2. [2] Suppose that α and β are linearly independent roots and 
α β≤ . Let θ be the angle between α and β. Then we have the following Table 

1 & Figure 1. 

Proof. Here ( ) ( )cos ,θ α β α β= , so ( ) ( )cos , , 2c cθ α β β α= . Now 

( ) ( ), , 0,1, 2c cα β β α = , or 3 and ( )
2

2 ,c
β

β α
α

= . Moreover, cosθ  has the 
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same sign as ( ),c α β . This gives us Table 1 below. 
 

Table 1. ( ) ( ), , 0,1,2c cα β β α = , or 3 and ( )
2

2 ,c
β

β α
α

= . 

( ) ( ), ,c cα β β α
 ( ),c α β

 ( ),c β α
 

2 2β α
 cosϑ  ϑ  

0 0 0 − 0 
2
π

 

1 1 1 1 
1
2  3

π

 

1 −1 −1 1 
1
2

−
 3

2π
 

2 2 2 2 2
2  4

π

 

2 −2 −2 12 2
2

−
 4

3π

 

3 3 3 3 3
2  6

π

 

3 −3 −3 3 3
2

−
 6

5π

 
 

 
Figure 1. The allowed angles and length ratios, for the case of an acute angle. 
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Lemma 2.3. If 0 2ϑ< < π , then Rα β− ∈ . 
Proof If 1, 2 or 3 is written as a product of two positive integers, then one of 

the factors is 1. Up to swapping α and β we can assume that 1βαµ = . The 
reflection in α sends β to βαβ µ α− , thus Rβ α− ∈ . 

Definition 2.4. Suppose ( )1,V R  and ( )2 ,V Q  are root systems. Consider the 
vector space, 1 2V V⊕  with the natural inner product determined by the inner 
products on 1V  and 2V . Then R Q  is a root system in 1 2V V⊕ , called the 
direct sum of R and Q. 

Definition 2.5. A root system ( ),V R  is called reducible if there exists an 
orthogonal decomposition 1 2V V V= ⊕  with 1dim 0V >  and 2dim 0V >  such 
that every element of R is either in 1V  or in 2V . If no such decomposition 
exists, ( ),V R  is called irreducible. 

Example 2.6. [3] The following Figure 2 shows the root systems of rank 1 and 
2. All of them are indecomposable (except 1 1A A+ ), and reduced (except 1BC  
and 2BC ). 

Proposition 2.7. Every root system of the second rank is isomorphic to one of 
the systems in Figure 2. 

Proof: Suppose that 2
1V R= ; therefore, let 2R R  be the root system. Let 

be the smallest angle occurring between any two vectors in R. Since the elements 
of R span R2, we can find two linearly independent vectors α and β in R. If the 

angle between α and β is greater than 
2
π , then the angle between α and -β is less 

than 
2
π  therefore, the minimum angle is at most 

2
π . 

3. Root Systems For Classical Complex Lie Algebras 

Definition 3.1. A root Vα ∈  is said to be simple if α is positive and α is not 
the sum of two positive roots. The collection Γ of all simple roots is called a 
simple system of roots. 

Lemma 3.2. Let { }1, , nα αΓ =   be a simple system of roots. Then every 
positive root δ can be written as 

1 2 ki i iδ α α α= + + + , where each initial 
partial sum 

1 ji iα α+ +  (1 j k≤ ≤ ) is a root. 
Proof. For every positive root 1 i ii

nδ µ α
=

= ∑ , the height of δ is defined to be 
the positive number ht 1 ii

nδ µ
=

= ∑  We prove this lemma by induction on ht δ. 
If 1δ = , then δ is simple and there is nothing to prove. So assume that m > and 
that the lemma’s conclusion holds for all positive roots of height < m. Now 
suppose that δ is a positive root of height m. Now apply the induction hypothesis 
to the root iδ α− , which has height 1m − . Then 

1 1mi i iδ α α α
−

− = + + , where 
each initial partial sum is a root. Then 

1 1mi i iδ α α α
−

= + + + . Thus δ satisfies 
the conclusion of the lemma, completing the induction step as well as the proof. 

Definition 3.3. The root system Λ is decomposable if Λ is a union 1 2Λ = Λ Λ  
with 1Λ ≠ ∅ , 2Λ ≠ ∅ , and 1 2Λ ⊥ Λ . 

Definition 3.4. If Γ is a simple system of roots in Λ, we say that is Γ 
decomposable if Γ is a union 1 2Γ = Γ Γ , with 1Γ ≠ ∅ , 2Γ ≠ ∅ , and 1 2Γ ⊥ Γ . 
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Figure 2. The rank-two root systems. 

 

Lemma 3.4. Let Γ be a simple system of roots in Λ. Then Λ is decomposable if 
and only if Γ is decomposable. 

Proof. Suppose that Γ is decomposable, with 1 2Λ = Λ Λ  For 1,2i = , let 

i iΓ = Λ Γ . Then neither 1Γ  nor 2Γ  can be empty. For if, say 1Γ = ∅ , then 

2Γ = Γ  which implies that 1Λ ⊥ Γ  Since Γ is a basis of E, we conclude that 

1Λ ⊥ Λ , and so 1Λ = ∅ , contradiction. 
Conversely, suppose that Γ is decomposable, with 1 2Γ = Γ Γ . We arrange 

the elements of Γ so that { }1 1, , rα αΓ =   and { }2 1, ,r lα α+Γ =  . Now let 
δ ∈Γ . We claim that δ is a linear combination of elements of 1Γ  or δ is a 
linear combination of elements of 2Γ . To prove this claim, we may assume that 
δ is positive. Now suppose, to the contrary, that δ is a linear combination 

1 1

jn

i i i i
i i n

δ µ α µα
= = +

= +∑ ∑
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where both sums on the right are nonzero. Without loss of generality, we can 
assume that 

1 1iα ∈Γ . Let s be the smallest integer such that 
1 2iα ∈Γ . Then 

1 1s si i iγ α α α
−

= + + +  is a root. 
Now consider the root _

si
r γ . This root equals 

( )1 1 1 1
_ ,

s s s s si i i i i i ir α α α α α α
− −

+ + + = + + − 

 
which is not a linear combination of simple roots with nonnegative integer 
coefficients, a contradiction. This proves the claim. 

Using the claim, we now let 1Λ  be the set of roots which are linear 
combinations of elements of 1Γ , and let 2Λ  be the set of roots which are linear 
combinations of elements of 2Γ . Then 1Λ ≠ ∅ , 2Λ ≠ ∅ , 1 2Λ ⊥ Λ , and 

1 2Λ = Λ Λ . Thus Λ is decomposable. 
Definition 3.5. Let Γ be a simple system of roots in Λ. Then Λ is decomposable 

if and only if Γ is decomposable. 
Example 3.6. [2] Let E be a two-dimensional inner product space. We will 

show that, up to isometry, there are only three possible indecomposable simple 
systems of roots Γ on E. Suppose that { }1 2,α αΓ = . Then ( )1 2, 0α α ≠ , since Γ 
is indecomposable. We may assume that 1 2α α≤ . ( )1 2, 1c α α = −  and  
( )2 1, 1, 2 or 3c α α = − − −  (Figures 3-5). 

 

 

Figure 3. ( )2 1 1 2, 1c α α α α= − ⇒ =  and 
1cos
2

θ = − . 

 

 

Figure 4. ( )1 2 2 1, 2 2c α α α α= − ⇒ =  and 2cos
2

θ = − . 

 

 

Figure 5. ( )1 2 2 1, 3 3c α α α α= − ⇒ =  and 3cos
2

θ = − . 
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Let { }1 2,α αΓ = . be a simple system of roots in Λ. We introduce a partial 
ordering   on Λ as follows: if ,α β ∈Λ , then α β  if and only if 

I IIβ α µ α− = ∑  where each I Zµ +∈  and at least one Iµ  is positive. It is 
clear that   is indeed a partial order on Λ. Of course,   depends on the 
choice of Λ. Recall that the simple system Λ was obtained via a lexicographic 
order < on E. Since each simple root αi is a positive root under <, it is clear that if 
α and β are roots such that α β , then α β< . The converse is not true, as 
there are vectors in Λ which are not comparable under <. 

4. Weyl Chambers 

Definition 4.1. Let R be a root system in V. The hyperplanes Wα  subdivide F 
into finitely many polyhedral convex cones. We recall that each root Rα ∈ . 
The elements of the set 

( ){ }: , 0W x V xα α= ∈ =
 

Also, recall that a vector v V∈  is regular with respect to R if and only if 

( )reg R
v V R V Wαα∈
∈ = −

  
Evidently, regV  is an open subset of V. A path component of the space regV  

is called a Weyl chamber of V with respect to R. 
If C is a Weyl chamber, then { }/C x F x C− = ∈ − ∈  is also a Weyl chamber. 

It is called the Weyl chamber opposite to C. A hyperplane P F⊂  is called a 
wall of the Weyl chamber C if P C = ∅  and P C  contains a nonempty 
subset open in P. 

A subsystem Π of a root system Λ is called a system of simple roots (ora base) 
of the system n if Π is linearly independent and each β ∈Λ  can be represented 
in the form 

Λ
α

α
β η α

∈

= ∑
 

where αη , are integers, which are simultaneously either nonpositive or nonne- 
gative. In the first case is β said to be positive (β > 0), in the second negative (β < 
0) with respect to Π. 

Lemma 4.2. [3] For any Weyl chamber C the system Π(C) is a system of simple 
roots. The roots that are positive (negative) with respect to Pi(C) coincide with 
C-positive (respectively, C-negative) roots. The correspondence ( )C C→Π  
between the Weyl chambers and systems of simple roots is bijective. For any 
Weyl chamber C, we have 

( ) ( )( ){ }: , 0 ,C x V x x Cα α= ∈ ∈ > ∈Π
 

( ) ( )( ){ }: , 0 .C x V x x Cα α= ∈ ∈ ≥ ∈Π
 

The walls of the Weyl chamber C are the hyperplanes Wα  where ( )Cα ∈Π . 
Proof. The closure of C consists of C and points x V∈  with x C≠  such 

that there exists a sequence ( ) 1n n
x ∞

=
 of elements of C such that nx x→  as 
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n →∞  Let x be an element of C the this second type. Assume that there exists 
( )Cα ∈Π  such that ( ), 0x α < . Since ( ) ( ), ,nx xα α→  as n →∞ , there 

exists a positive integer n such that ( ), 0nx α < . This is a contradiction. It 
follows that C  is contained in ( ) ( )( ){ }: , 0x V x x Cα α∈ ∈ ≥ ∈Π . Let x be in 

( ) ( )( ){ }: , 0x V x x Cα α∈ ∈ ≥ ∈Π . we need to prove that x C∈ . Let 0x C∈ . 
Consider the sequence ( )( )0 1

1
n

x n x
∞

=
+  Evidently this sequence converges to x 

and is contained in C. It follows that x is in C . This proves the first assertion of 
the lemma. For the second assertion, let v V∈ . If ( )regv V R∈ , then v is by 
definition in some Weyl chamber. Assume that ( )2 regv V R= . Then ( )regv V R∉ , 
Define 

( ) ( ): by ,
R

p V R p x x
α

α
∈

→ =∏
 

The function p is a non-zero polynomial function on V, and the set of zeros 
of p is exactly R

Pαα∈
. Thus, ( ) 0p x = . Since p is a non-zero polynomial 

function on V, p cannot vanish on an open set. Hence, for each positive integer 
n, there exists vn such that 1nx x n− <  and ( ) 0np x ≠ . The sequence ( ) 1n n

x ∞

=
 

converges to x and is contained in ( )regV R ; in particular every element of the 
sequence is contained in some Weyl chamber. Since the number of Weyl chambers 
of V with respect to R is finite. We have ( ), 0

knx α ≥  for all ( )Cα ∈Π  and 
positive integers k. Taking limits, we find that ( ), 0x α ≥  for all ( )Cα ∈Π , so 
that x C∈



. 
Example.4.3. [3] Using the lexicographic order with respect to the basis 

composed of the weights iε , one can easily construct systems of simple roots 

gΠ , in the root systems g∆ , of the classical Lie algebras g, 

( )ng gl C=  of ( )nsl C  

{ }1 1, ,g nα α −Π =  , where 1i i iα ε ε += −  

{ }; , 1,| ,g i j i j i j nε ε∆ = − < = 

 
The corresponding Weyl chamber consists of the set of diagonal matrices 
( )1diag , , nx x  such that 1 2 nx x x> > > , 

( )2 , 2;lg so C l= ≥  
{ }1, ,g iα αΠ =   where 1i i iα ε ε −= −  ( )1, , 1i l= − , 1i i lα ε ε+= −  

{ }; , 1,| ,g i j i j i j lε ε+∆ = ± < = 

 

( )2 1 , 1;lg so C l+= ≥  
{ }1, ,g iα αΠ =   where 1i i iα ε ε −= −  ( )1, , 1i l= − , i iα ε=  

{ }, , 1, ,|g i j i i j lε ε ε+ = ± =∆ 

 
( )2 , 1;lg sp C l= ≥  

{ }1, ,g iα αΠ =   where 1i i iα ε ε −= −  ( )1, , 1i l= − , 2i iα ε=  

{ }|, 2 , 1, ,g i j i i j lε ε ε+∆ = ± = 
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Lemma 4.4. In this situation, if α and β are not orthogonal then 
2 2kα β= , 1, 2,3k =  

and 

( )( ) ( )2
2

2 2

,
cos ,

4
kα β

α β
α β

∠ = =
 

Proof: We know that 

( ) ( )
2 2

, ,
2 ,2 Z
α β α β

α β
∈

 
Taking the product, 

( )2

2 2

4 ,
Z

α β

α β
∈

 

but α and β are neither proportional nor perpendicular, so 
( )2

2 2

,
4
kα β

α β
=  

where k = 1; 2, or 3. Since α β≥ , the first term in the first equation is the 
smaller integer, hence 

( )
2

,
2 1
α β

α
=

 
Straightforward manipuulations of this imply what we want. 
Corollary 4.5. Suppose α,β are distinct simple roots and ( ), 0α β ≠ . Then 

( )
120 1

, 135 2
150 3

k
k
k

α β
=

∠ = =
 =





  
with 2 2kα β= , or vice versa. 

5. Cartan Matrices And Dynkin Diagrams 

Definition 5.1. A system { }1, , sα αΦ =   is said to be admissible if  

( )|ij i ja α α=  is a nonpositive integer for all i j≠ . The integer square matrix 
( ) ( )ijA aΦ =  is called the matrix of the system Φ. Let ij ij jim a a=  and let ijθ  

be the angle between the vectors iγ  and jγ  ( i j≠ ), implies that for an 
admissible system Φ the numbers ijm  and the angles ijθ  can assume only the  

following values: 0,1,2,3,4ijm = ; 11ij
ij

θ π
µ

 
= −  

 
, where 2,3,4,6,ijµ = ∞ , 

respectively. 
Definition 5.2. The Dynkin diagram of an admissible system of vectors is the 

graph described above in which the edge joining the vertices numbered by i and 
j ( i j≠ , 0ijm > ) is of multiplicity ijm . If ij jia a< , then the corresponding 
edge is oriented by an arrow pointing from the j-th vertex towards the i-th one. 

Theorem 5.3. The Dynkin diagrams of the classical simple Lie algebras g are 
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of the following list. 
The An root lattice—that is, the lattice generated by the An roots—is most 

easily described as the set of integer vectors in 1nR +  whose components sum to 
zero (Figure 6). 

 

 
Figure 6. An root system. 

 
Example: The A3 root lattice is known to crystallographers as a face-centered 

cubic lattice. 
 

 e1 e2 e3 e4 

α1 1 −1 0 0 

α2 0 1 −1 0 

α3 0 0 1 −1 

Simple roots in A3 
 

The A3 root system (as well as other third-order root systems) can be modeled 
in the Zometool Construction set (Figures 7-9). 

 

 
Root system-Wikipedia 

Model of the root system in the Zometool system. 

 

 
Brian C. Hall “Lie Groups, Lie Algebras, and Representations”—Fig. 8.16, 229. 

Figure 7. The roots in A3 make up the vertices of a cuboctahedron. 
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Brian C. Hall “Lie Groups, Lie Algebras, and Representations”—Fig. 8.17, 229. 

Figure 8. The roots in A3 lie at the midpoints of the edges of a cube. 
 

The Bn root lattice—that is, the lattice generated by the Bn roots—consists of 
all integer vectors. 

 

 
Figure 9. Bn root system. 

 
Example: 
B1 is isomorphic to A1 via scaling by 2 , and is therefore not a distinct root 

system (Figure 10). 
 

 e1 e2 e3 e4 

α1 1 −1 0 0 

α2 0 1 −1 0 

α3 0 0 1 −1 

α4 0 0 0 1 

Simple roots in B4 

 

 
Brian C. Hall “Lie Groups, Lie Algebras, and Representations”—Fig. 8.18, 230. 

Figure 10. The B3 root system, with the elements of the base in dark gray. 
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The Cn root lattice—that is, the lattice generated by the Cn roots—consists of 
all integer vectors whose components sum to an even integer (Figure 11). 

 

 
Figure 11. Cn root system. 

 
Example: 
C2 is isomorphic to B2 via scaling by 2  and a 45 degree rotation, and is 

therefore not a distinct root system (Figure 12, Figure 13). 
 

 e1 e2 e3 e4 

α1 1 −1 0 0 

α2 0 1 −1 0 

α3 0 0 1 −1 

α4 0 0 0 2 

Simple roots in C4 

 

 
Brian C. Hall “Lie Groups, Lie Algebras, and Representations”—Fig. 8.20, 229. 

Figure 12. Root system C3 with the elements of the base in dark gray. 
 

 
Brian C. Hall “Lie Groups, Lie Algebras, and Representations”—Fig. 8.31, 230. 

Figure 13. The C3 root system consists of the vertices of an octahedron, together with the 
midpoints of the edges of the octahedron. 
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The Dn root lattice—that is, the lattice generated by the Dn roots—consists of 
all integer vectors whose components sum to an even integer. This is the same as 
the Cn root lattice (Figure 14). 

 

 

Figure 14. Dn root system. 
 

Example: 
D3 coincides with A3, and is therefore not a distinct root system. The 12 D3 

root vectors are expressed as the vertices of, a lower symmetry construction of 
the cuboctahedron. 

D4 has additional symmetry called triality. The 24 D4 root vectors are expressed 
as the vertices of, a lower symmetry construction of the 24-cell. 72 vertices 
(Figure 15). 

 
 e1 e2 e3 e4 

α1 1 −1 0 0 

α2 0 1 −1 0 

α3 0 0 1 −1 

α4 0 0 1 1 

Simple roots in D4 

 

 
Figure 15. Root system D3. 

 
72 vertices of 122 represent the root vectors of E6 (Figure 16, Figure 17, 

Figure 18 & Figure 19). 
 

 
Figure 16. E6 root system. 
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Figure 17. E6 root system [5]. 

 
126 vertices of 231 represent the root vectors of E7. 

 

 

Figure 18. E7 root system. 
 

 
Figure 19. E7 root system [5]. 

 
240 vertices of 421 represent the root vectors of E8 (Figure 20, Figure 21). 

 

 
Figure 20. E8 root system. 
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Root system—Wikipedia. 

Figure 21. E8 root system. 
 

The F4 root lattice—that is, the lattice generated by the F4 root system is the 
set of points in R4 such that either all the coordinates are integers or all the 
coordinates are half-integers (a mixture of integers and halfintegers is not allowed). 
This lattice is isomorphic to the lattice of Hurwitz quaternions (Figure 22, 
Figure 23). 

 

 
Figure 22. F4 root system. 

 
 e1 e2 e3 e4 

α1 1 −1 0 0 

α2 0 1 −1 0 

α3 0 0 1 0 

α4 −1/2 −1/2 −1/2 −1/2 

Simple roots in F4 

 

 
Figure 23. F4 root system [5]. 
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The G2 root lattice—that is, the lattice generated by the G2 roots—is the same 
as the A2 root lattice (Figure 24). 

 

 
Figure 24. G2 root system. 

 
 e1 e2 e3 

α1 1 −1 0 

α2 −1 2 −1 

Simple roots in G2 
 

The root system G2 has 12 roots, which form the vertices of a hexagram. One 
choice of simple roots is: ( 1 2 1,α β α α= − ) where 1i i ie eα += −  for 1,2i = . 

Example 5.4. [4] The extended Dynkin diagrams of simple classical Lie 
algebras are of the following form (each diagram contains n+1 vertices, the right 
column lists the standard notation for each of the diagrams) (Figure 25):  

 

 
Figure 25. Simple classical dynkin diagrams. 

 
Lemma 5.5. A Coxeter-Dynkin graph is a tree (Figure 26). 
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Proof. Suppose, to the contrary, that there are circuits. Let 1, , nα α  be the 
vertices of a minimal circuit. 

 

 
Figure 26. Coxeter-Dynkin graph. 

 
Since the circuit is minimal, no root iα  is connected to a root jα  in the 

circuit unless ( )1 modj i n≡ +  or ( )1 modj i n≡ − . Suppose now that iα  and 

jα  are consecutive roots in the circuit. We claim that 

( ) ( ) ( )1 1, 2 , , 0
2 2i i i j j jα α α α α α+ + ≤

 
To show this, we may assume that i jα α≤ . Then obviously, 

( ) ( )1 1, , 0
2 2i i j jα α α α− ≤

 
We have, 

( ) ( )2 , , 0i j j jα α α α+ =
 

Adding the left hand sides of the last two relations above, we obtain inequality 

( ) ( ) ( )1 1, 2 , , 0
2 2i i i j j jα α α α α α+ + ≤ . Thus, in particular,  

( ) ( ) ( )1 1 1
1 1, 2 , , 0
2 2i i i i i iα α α α α α+ + ++ + ≤  for all 1, ,i n=  , where the index 

1i +  is counted modulo n. Adding these inequalities, we obtain 

( ) ( ) ( )1 1 1
1

1 10 , 2 , ,
2 2

n

i i i i i i
i

α α α α α α+ + +
≡

 ≥ + + 
 

∑
 

( ) ( )1
1 1

, 2 ,
n n

i i i i
i i

α α α α +
= ≡

+∑ ∑
 

On the other hand, 

1 1
0 ,

n n

i i
i i
α α

= =

 
 
 

≤ ∑ ∑
 

( ) ( )
1

, ,
n

i i i j
i i j

α α α α
= ≠

= +∑ ∑
 

( ) ( )1
1 1

, 2 ,
n n

i i i i
i i

α α α α +
= ≡

+∑ ∑
 

by our remark at the beginning of the proof about adjacent vertices. Inequalities 

( ) ( ) ( )1 1, 2 , , 0
2 2i i i j j jα α α α α α+ + ≤  and ( ) ( )11 1, 2 ,n

i ii i
n

i iα α α α += ≡
+∑ ∑ , imply 

that 0 ii
n α
=∑ . But this is a contradiction since the iα  are linearly independent. 

Lemma 5.6. In a Dynkin diagram, suppose that roots γ and δ are joined by a 
simple edge. Then the configuration resulting from the deletion of γ and δ and 
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replacement by the single root γ+δ, and then joining γ+δ to all roots connected 
to γ or δ by the same types of edges as γ or δ is also a Dynkin diagram. 

Proof. Note first that since γ and δ are connected, we have ( ), 0γ δ ≤  and 
thus γ + δ is a root. Moreover, since ( ) ( ), , 1c cγ δ δ γ= = − , we have  
( ) ( ), ,γ γ δ δ=  and ( ) ( )2 , , 1γ δ γ γ+ = . Hence ( ) ( ), ,γ δ γ δ γ γ+ + = . 

Let S be the collection of roots β in the Dynkin diagram such that β γ≠ , 
β δ≠ , and β is connected to γ or δ. 

So let Sβ ∈ . Without loss of generality, we can assume that β is connected to 
γ. Then ( ), 0δ β = , and so ( ) ( ), ,c cγ δ β γ β+ = . 

Moreover, 

( ) ( )
( )

( )
( ) ( )

2 , 2 ,
, , .

, ,
c c

β γ δ β γ
β γ δ β γ

γ δ γ δ γ γ
+

+ = = =
+ +  

Hence 

( ) ( ) ( ) ( ), , , , .c c c cγ δ β β γ δ γ β β γ+ + =  
This shows that the number of bonds in the edge joining β and γ + δ is the 

same as the number of bonds in the edge joining β and γ. 
Finally, since γ δ γ+ = , the direction of the edge joining β and γ + δ is the 

same as the direction of the edge joining β and γ (Figure 27). 
Example 

 

 
Figure 27. Dynkin diagrams β + γ. 

6. The Future Perspective of This Paper 

The future of this work is related to dealing with Lie algebras. The beauty of this 
science is learned every day by doing as much research and work on it as possible. 
The close connection with other mathematical disciplines creates abundant 
opportunities for further research and dealing with what our work is in the future. 
The primary goal of the paper was to be useful to anyone studying Lie algebra. In 
addition, this paper shows the influence of Dynkin diagrams on the root system, 
and the beauty of their diagram, as a close connection with Ways chambers. 
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