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Abstract 
The purpose of this work is to present an effective tool for computing differ-
ent QR-decompositions of a complex nonsingular square matrix. The concept 
of the discrete signal-induced heap transform (DsiHT, Grigoryan 2006) is 
used. This transform is fast, has a unique algorithm for any length of the in-
put vector/signal and can be used with different complex basic 2 × 2 trans-
forms. The DsiHT is zeroing all components of the input signal while moving 
or heaping the energy of the signal to one component, for instance the first 
one. We describe three different types of QR-decompositions that use the ba-
sic transforms with the T, G, and M-type complex matrices we introduce, as 
well as without matrices but using analytical formulas. We also present the 
mixed QR-decomposition, when different type DsiHTs are used in different 
stages of the algorithm. The number of such decompositions is greater than 
( )13 N− , for an N × N complex matrix. Examples of the QR-decomposition are 

described in detail for the 4 × 4 and 6 × 6 complex matrices and compared 
with the known method of Householder transforms. The precision of the QR- 
decompositions of N × N matrices, when N are 6, 13, 17, 19, 21, 40, 64, 100, 
128, 201, 256, and 400 is also compared. The MATLAB-based scripts of the 
codes for QR-decompositions by the described DsiHTs are given. 
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1. Introduction 

The QR-decomposition, or factorization of a non-singular matrix =A QR  into 
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a unitary matrix Q and an upper triangular matrix R, as well as the factorization 
=A QL  with a low triangular matrix L are powerful tools for solving linear sys-

tems of equations =y Ax  in many applications in computing and data analy-
sis [1]-[7]. Here, the matrix A is a real or complex non-singular matrix. The ma-
trix Q is unitary, and therefore its inverse is the transpose conjugate ∗Q  matrix. 
The calculation of inverse of the triangular matrix is not a difficult task. There-
fore, the solution of the system of equation can be calculated by  

1 1− − ∗= =x A y R Q y  for the QR-decomposition, and 1 1− − ∗= =x A y L Q y  for the 
QL-decomposition. Many known methods of QR-decomposition of real matric-
es were modified for the complex case. They include the Gramm-Schmidt process 
[8], the method of Householder transformations (or Householder reflections) 
[9], and the Givens rotations [10] [11] [12]. 

In this work, we focus on the QR-decomposition and describe three types of 
decompositions, by using the concept of the discrete signal-induced heap trans-
form (DsiHT) [13] [14] [15]. In the case of real matrices, the detail description 
of the DsiHT method of QR-decomposition is given in [16]. For complex ma-
trices, there are different types of 2 × 2 basic complex unitary transforms can that 
transfer energy of the 2-point signal to the first components, while zeroing the 
second one. The path of the DsiHT, i.e., the order of sequential processing (or 
rotating in some cases) of data of the signal is an important characteristic of the 
transform. The DsiHTs with different paths result in different QR-decomposition 
of the same matrix, as shown in [17] on examples with the so-called weak and 
strong-DsiHTs. The interesting property of the QR-decomposition by the DsiHT 
is in the presence of analytical equations that allow calculating the transforms 
and their matrices without using the basic matrices of rotations. The case with 
complex matrices is much richer than real matrices, since there are many dif-
ferent basic transforms, not only “Givens rotations,” that can be considered in 
the DsiHT. Examples of such transforms and their application in QR-decom- 
position of complex matrices are described and compared with the complex 
Householder transform-based QR-decomposition.  

The rest of this paper is organized in the following way. In Section 2, the con-
cept of the DsiHT is described with examples of two-wheel carriages that illu-
strate the performance of the transform. The basic complex matrices of the 2 × 2 
transforms composing the N-point DsiHT are described in Section 3. These ma-
trices are classified by the basic transforms use them and are called the T, G, and 
M-type complex matrices. The concept of the DsiHT which can be calculated 
without matrices but by analytical formulas is also described. The QR-decom- 
positions with three types of DsiHTs are presented with examples in Section 4. It 
is shown that the M-type DsiHT based QR decomposition is close to the result 
of the Householder transform method, and other two types of QR-decomposi- 
tion differ much. The scripts for MATLAB-based codes for computing the DsiHT 
and described QR-decompositions are given in Section 5. In Section 6, the con-
cept of the mixed QR-decomposition is presented, when different type DsiHTs 
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are used in different stages of decomposition. The number of such decomposi-
tions is greater than ( )13 N−  for an N × N complex matrices, which is a very large 
number for large N. The questions related to the selection of the QR-decompo- 
sition from such large number of cases are not discussed here in detail, since it 
beyond the score of this work. 

2. Basic 2 × 2 Matrices in Complex Algebra 

In this section, we describe briefly the concept of the discrete signal-induced 
heap transform (DsiHT) [13] [15]. The transform is unitary and is defined by a 
non-zero vector, or signal ( )0 1 2 1, , , , Nx x x x −=x � , without any constrain on the 
length N and signal itself; it may be real and complex. This signal is called the 
generator of the DsiHT; the signal generates the unitary transform which is ap-
plying on other signals ( )0 1 2 1, , , , Nz z z z −=z � . We consider the case when the 
N-point DsiHT is calculating by (N − 1) basic transformations T, each of which 
is applying only on two components of the renewal vector z in a certain order, or 
a path.  

In the simple form, the DsiHT is calculated by applying a set of basic trans-
formations T. The 2 × 2 matrix of such a transformation is defined by a chosen 
vector ( ),x y  from the condition 

2 2 2and .
0

x x
x x y

y
′    ′= = +   

   
T                   (1) 

In the case when x and y are real, T can be considered as the Givens rotation 
with the matrix 

cos sin
, arctan .

sin cos
y
xϕ

ϕ ϕ
ϕ

ϕ ϕ
−   = = = −      

T T  

If 0x = , the angle of rotation 2ϕ = −π , or 2π . 
The concept of the N-point DsiHT of the signal z is illustrated in the diagram 

of Figure 1. This is the so-called weak carriage with two wheels, one “rotates” 
the generator x and another wheel “rotates” the signal z. When the carriage 
moves, the generator components work together with the first element x0 and 
update/renew its value at each step. At the same time, the transformation T, 
which is determined during the rotation of the first wheel, is applying to the two  
 

 
Figure 1. The two-wheel carriage of the DsiHT. 
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components of the input signal z. In this wheel, the components of z are 
processing together with the first element z0 and update its value. 

The N-point DsiHT with such a carriage is called a weak DsiHT, since the 
components nx  and nz  of the generator and signal are processed in the natu-
ral order of the index n, i.e., 0x  with 1x , then 2 3 1, ,, Nx x x −� , and the same for 
the signal z. This is the natural path of the DsiHT and the path can be chosen 
differently [16] [18]. For instance, the concept of the strong DsiHT is defined by 
the path in order 1Nx −  with 2Nx − , then 3 1 0,, ,Nx x x− � , and the same for the 
signal z. The carriage of the strong DsiHT is illustrated in Figure 2. 

We consider the DsiHT with the natural path.  
Algorithm of the DsiHT with the generator ( )0 1 2 1, , , , Nx x x x −=x � .  
The input signal is ( )0 1 2 1, , , , Nz z z z −=z � .  
1) Stage 1k = .  

• Calculate the matrix of the transform 1T  that is generated by the vector  
( )0 1,x x ′ . 

• Calculate the transform ( ) ( )( )1
1 0 1 0 1: , ,z z z z ′′ ′→T . 

• Calculate the new value ( )1
0x  of 0x  in the transform ( ) ( )( )1

1 0 1 0: , ,0x x x ′′ →T . 

2) Stage 2k = .  
• Calculate the matrix of the transform kT  that is generated by the vector  

( )( )1
0 ,k

kx x− ′ .  

• Calculate the transform ( )( ) ( )( )1
0 0: , ,k k

k k kz z z z− ′ ′′→T . 

• Calculate the new value ( )
0
kx  in the transform ( )( ) ( )( )1

2 0 0: , ,0k k
kx x x− ′ ′

→T . 

3) Stage 3,4, , 1k N= −� .  
• Continue calculations as in Step 2, to get the rest values of the output  

3 4 1, , , Nz z z −′ ′ ′� , and ( )
0

Nz . 

The output signal is ( )( )0 1 2 3 1, , , , ,N
Nz z z z z −′ ′ ′ ′ ′=z � .  

To simplicity the notations in the two-wheel carriage in Figure 1, 0x′  denotes 
( )
0
kx  and 0z′  denotes ( )

0
kz  on the kth stage of rotations. Thus, during the com-

position of the N-point DsiHT, H, a set of parameters, or angles 1 2 1, , , Nϕ ϕ ϕ −� , 
is calculated, which is called the angular representation of the generator x [15].  
 

 
Figure 2. The two-wheel carriage of the strong DsiHT. 
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The transformation H is separable and calculated as  

1 3 2 1
.

N
H T T T Tϕ ϕ ϕ ϕ−
= �                         (2) 

When =z x , the transform of the vector x is collected to one heap; it is trans-
ferred to the first component, ( ) ( )( )1

0 ,0,0, ,0NT x −=x � , where  
( )1 2 2 2
0 0 1 1

N
Nx x x x−
−= = + + +x � .  

Example 1: For the 6N =  case, we consider the generator ( )1,1,2,4,3,1=x  
with the norm 32 5.6569= =x . The matrix and the set of five angles (in ra-
dians) of the 6-point x-DsiHT are  

1

0.1768 0.1768 0.3536 0.7071 0.5303 0.1768
0.7071 0.7071 0 0 0 0
0.5774 0.5774 0.5774 0 0 0
0.3482 0.3482 0.6963 0.5222 0 0
0.1149 0.1149 0.2298 0.4595 0.8424 0
0.0318 0.0318 0.0635 0.1270 0.0953 0.9843

 
 − 
 − −

=  
− − −
− − − −
 − − − − − 

H ,




 

{ } { }1 2 3 4 5, , , , 0.7854, 0.9553, 1.0213, 0.5690, 0.1777 .ϕ ϕ ϕ ϕ ϕ = − − − − −  

The matrix 1H  of the transform can be written as 1 1 1=H D A , where the di-
agonal matrix  

{ }1 diag 0.1768, 0.7071, 0.5774, 0.3482, 0.1149, 0.0318= − − − − −D  

and the matrix 1A  is  

1

1 1 2 4 3 1
1 1 0 0 0 0
1 1 1 0 0 0

.
1 1 2 1.5 0 0
1 1 2 4 22 3 0
1 1 2 4 3 31

 
 − 
 −

=  
− 

 −
  − 

A  

The determinant of the matrix 1det 1=H . The first row of the matrix 1A  is 
the generator x and the last row is the same generator only with the splash at the 
end. This value is calculated by 2 2 231 1 1 2 4 3= + + + + ; it is the energy of the 
generator without the last component, i.e., 2 1−x .  

For the 6-point DsiHT with the path of the strong carriage, we have the fol-
lowing data. The angular representation is  

{ } { }1 1 6, , , 1.3931, 1.3902, 1.1970, 0.6690, 0.3218ϕ ϕ ϕ = − − − − −� , 

and the matrix 2H  of this DsiHT with 2det 1=H  is 

2

0.1768 0.1768 0.3536 0.7071 0.5303 0.1768
0.9843 0.0318 0.0635 0.1270 0.0953 0.0318

0 0.9837 0.0656 0.1312 0.0984 0.0328
.

0 0 0.9309 0.2864 0.2148 0.0716
0 0 0 0.6202 0.7442 0.2481
0 0 0 0 0.3162 0.9487

 
 − 
 −

=  
− 

 −
  − 

H  
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This matrix can be presented as  

2 2 2 2

1 1 2 4 3 1

31 1 2 4 3 1

0 30 2 4 3 1
, .

0 0 13 4 3 1

0 0 0 2.5 3 1

0 0 0 0 1 3 1

 
 
− 
 − = =  −
 
 −
  − 

H D A A  

Here, the diagonal matrix  
{ }2 diag 0.1768,0.0318,0.0328,0.0716,0.2481,0.9487=D . Thus, we have two dif-

ferent matrices 1H  and 2H  such that  

( ) ( )1 2 ,0,0,0,0,0 5.6569,0,0,0,0,0 .′ ′′ ′= = =H x H x x  

If we take a vector z, for instance equal ( )4, 2,3, 1,7,2= − −z  with the norm 
9.1104=z , we obtain the following transforms: 

( )1 1 4.7730, 4.2426,0.5774, 3.3075,5.4375,1.1748 ,′′= = − −z H z  

( )2 2 4.7730, 3.2068,2.7873, 1.4322,6.3258, 0.3162 ,′′= = − − −z H z  

and 1 2 9.1104= = =z z z . 
Below are the script of the MATLAB-based code to calculate the matrices of 

these two DsiHTs. 
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Calculation of the DsiHT by Analytical Equations 

It is important to note that the N-point DsiHT can be obtained without calcula-
tion of the angles kϕ  and trigonometric functions cos kϕ  and sin kϕ , but by 
using the analytical formulas [16]. For that, we consider the following notations, 
which represent respectively the partial cross-correlation of z with the vector 
generator x:  

( ) 0 0 1 1,k k kE z x z x z x= + + +z x � ,                   (3) 

and the partial and full energies of the signal generator  

( ) ( ) ( )2 2 2 2
0 1, 0,1,, , 1 .k k kE E x x x k N= = + + + = −x x x � �          (4) 

The components of the DsiHT on the k-th iteration can be expressed by the 
correlation data as follows: 

( ) ( ) ( )
( ) ( ) ( )1

1

, ,
, 1,2, , 1 .k k k k

k
k k

E z E x
z k N

E E−

−
= = −

x x z x
x x

�            (5) 

On the final stage, the value of the first component is defined by  
( ) ( ) ( )1
0 1 1, ,N

N Nz E E−
− −= z x x                    (6) 

which is the correlation coefficient of the input signal z with the normalized ge-
nerator x. For a given generator, all values of ( ),kE x x  and ( ) ( )1k kE E− x x  can 
be calculated in advance. In the case when =z x ,  

( ) ( )
( )

1 1
0 2

1

,N N

N

E
x

E
− −

−

= =
x x

x
x

 

and ( )1 0kx = , for all ( )1,2, , 1k N= −� .  
The coefficients ,n mh  of the matrix of the N-point DsiHT can be obtained 

from Equations (3)-(6). The m-th column of the DsiHT matrix H can be calcu-
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lated, by applying the unit vector ( )0,0, ,1, ,0m
′=e � �  with 1 on the m-th po-

sition, where { }0,1, , 1m N∈ −� . Therefore, the coefficients of the transform can 
be calculated by 

( )
( ) ( )1

0,
1

,
, 0 : 1 ,N m

m
N

E
h m N

E
−

−

= = −
e x

x
                  (7) 

( )( ) ( )
( ) ( )

2

,
1

,
,n m n m nn

n m
n n

E E x
h

E E−

−
=

x e e x
x x

                  (8) 

where ( )1: 1n N= − . 

3. Complex Basic Matrices 

The N-point DsiHT is calculated, by applying (N − 1) basic transformations T 
on two different components of the renewal vector in a certain order, or the 
path. In this section, we consider the concept of the complex DsiHT. The basic 
transformation of the DsiHT, which is defined by a complex vector ( )0 1,x x ′ , 
and then, is applied to a complex input ( )0 1,z z ′  is calculated as follows: 

( )( )0 0 10 0 0

2 2
1 01 1 1

0 1

sign Real
: .

x x xz z z
T

x xz z zx x

′       
→ =       ′ −      +

          (9) 

The complex matrix of this transformation is 

( )( )0 0 1

2 2
1 0

0 1

sign Real x x x
x xx x

 
=  − +

T  

and the determinant is 1. It is not difficult to verify that the matrix T is unitary, 
i.e., the multiplication of T with its conjugate transpositon ( )T =T T I , where I 
is the 2 × 2 identity matrix. 

When the input equals to the generator, i.e., ( ) ( )0 1 0 1, ,z z x x′ ′= , we obtain the 
real transform  

( )( )
2 2

0 0 1
0

1

: sign Real .
0

x x xT x
x

   + → 
    

            (10) 

3.1. DsiHT with Analytical Equations 

The complex DsiHT can also be calculated by using analytical Equations (5) and 
(6), similar to the case with real vectors. For complex vectors, the partial cross- 
correlation of z with the vector—generator x in the first k components is calcu-
lated by  

( ) 0 0 1 1,k k kE z x z x z x= + + +z x � ,               (11) 

and the energies in the first k components of the signal-generator by 

( ) ( ) ( )2 222
0 1, 0,1,, , 1 .k k kE E x x x k N= = + + + = −x x x � �      (12) 

The 2 × 2 matrix calculated by analytical Equations (7) and (8) for the 2N =  
case will be denoted by M. This matrix is different from matrix T and equals  
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0 1

0
2 2 1 0

0 1 0

1 .
x x

x
x xx x x

 
 = − +   

M                 (13) 

One coefficient of the matrix is a real number, and all coefficients are complex 
in the matrix T. The matrix M is unitary and the determinant of the matrix is 
the complex number 

0 0
0 0 1 12 2

0 00 1

1det x xx x x x
x xx x

 
= + = 

+   
M             (14) 

and det 1=M . The matrix product ( )0 1,x x ′M  equals  

0 1 2 2 2 2
0 0 1 0 10

2 22 21 0 1
0 1 0 10

1 1 .
0 0

x x
x x x x xx

x x xx x x xx

      + +  = =    −      + +    

 

3.2. DsiHT with Complex Givens Rotations 

We consider the known complex Givens rotation [4] which is defined by the 
matrix 

( )
( )

0
0 1

0 0 1 0

2 22 2 00 1 00 1 0 1 1 0
0

sign1 1 .
sign

x
x x

x x x x
xx x xx x x x x x
x

 
    = =   −  + + − 
 

G  (15) 

Here, the complex sign function is defined by ( )0 0 0sign x x x= . The deter-
minant of this matrix is 1. For the 0 0x =  case, the above matrix is defined as  

1

11

01 ,
0
x

xx
 

=  − 
G  

i.e., it is considered that ( )sign 0 1= . The matrix G is half-complex, meaning 
that in each row and column there is a real number 0x . It should be noted that 
all coefficients of the basic matrix T in Equation (9) are complex numbers. 
When applying the matrix G on the vector-generator ( )0 1,x x ′  we obtain  

20 2 2
0 0 10 0 0 1

02 2
1 00 1

1 ,
00

xx x xx x x xx
x xx x

   +  +   = =       +    

G  

or  

( )
2 2

0 0 1
0

1

sign ,
0

x x xx
x

   + = 
    

G                 (16) 

where ( )0sign x  is a complex number with norm 1. The matrix G is unitary, 
i.e., ( )T =G G I .  

It should be noted that one can express the matrix G by T and by M, as   

( )( )
0

0
0

0 0
0

0

0
0

sign Real , .
0 0 1

x
x

x
x xx

x

 
  
  = =   
   

 

G T G M         (17) 
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Example 2: Let us consider two complex numbers 0 1 3x i= +  and  

1 2 5x i= − + . For these numbers, 2 2
0 1 3 10x = + =  and 2 2 2

1 2 5 29x = + = . We 
obtain the following matrices: 

( )( )0 0 1

2 2
1 0

0 1

sign Real 1 3 2 51 ,
2 5 , 1 339

x x x i i
x x i ix x

− − −   
= =   − − +  +

T  

0 1

02 2 1 0
0 1 0

1 3 2 5
1 1 ,13 11 1039

10

x x i i
x ix xx x x

  − − − 
   = = − −   −+      

M  

and 

0
0 1

0

2 2
00 1 1 0
0

13 1110
1 1 10 .

13 1139 10| |
10

x ix x
x

x ix x x x
x

  − 
   
   = =
  − − + −      

G  

The determinants of these matrices, det det 1= =T G ,  
det 0.3162 0.9487i= −M , and det 1=M . Up to the coefficient 1 39 , the ma- 
trix T is integer-valued for integer complex generator, and matrices G and M are 
more complicated; they have additional coefficients with 10 3.1623= . When 
applying these matrices on the vector ( ) ( )0 1, 1 3 , 2 5x x i i′ ′= + − + , we obtain the 
following vectors: 

0 0 0

1 1 1

6.2450 1.9748 5.9245
, ,

0 0
x x x i
x x x

+        
= = =        

        
T M G  

and 1.9748 5.9245 6.2450i+ = . Thus, the results of the transforms T and M are 
different from G in the first component which is complex. Now, we consider the 
transforms of the vector ( ) ( )0 1, 7 2 ,3 5z z z i i′ ′= = − + − , 

0 0

1 1

5.1241 2.8823 5.1241 2.8823
, ,

2.2418 6.8855 7.2411 0.0506
z zi i
z zi i

− + − +      
= =      + +      

T M  

0

1

4.3548 3.9497
.

7.2411 0.0506
z i
z i

− −   
=   +  

G  

The outputs of T, M, and G are different. The matrix M has commom with 
matrices T and G. The second components of the transform G and M are the 
same, and the first components of the transform T and M are the same. For all 
these transforms, the energy of the input vector is preserved, 

2 2 2 25.1241 2.8823 4.3548 3.9497 34.5641+ = + = , 
2 27.2411 0.0506 52.4359+ = , 
2 22.24181 6.88551 52.4359+ = , 

( ) ( ) 22 2 2 234.5641 52.4359 87 7 2 3 5 z+ = = + + + = . 

To describe the difference between the DsiHT generated by basic 2 × 2 trans-
forms of different types, we consider the matrices of these DsiHTs for the  
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4N =  case. 
Example 3: The complex vector-generator is 

( ) ( )0 1 2 3, , , 7 4 ,3 7 , 6 2 ,1 2 .x x x x x i i i i= = + + − + +  

We have the following 4 × 4 matrices of the DsiHT calculated with basic trans-
forms T, M, and G: 

4 4

0.5401 0.2315 0.4629 0.0772
0.2705 0.6312 0 0
0.2401 0.0282 0.8687 0
0.0906 0.1027 0.0121 0.9850

0.3086 0.5401 0.1543 0.1543
0.6312 0.3607 0 0

,
0.2684 0.3390 0 0
0.0604 0.0060 0.0846 0

i

×

− 
 − =
 
 
− − 
− − − − 
 − +
 − −
 
− 

T

 

4 4

0.5401 0.2315 0.4629 0.0772
0.5480 0.7269 0 0
0.2401 0.0282 0.8687 0
0.0906 0.1027 0.0121 0.9850

0.3086 0.5401 0.1543 0.1543
0.4138 0 0 0

,
0.2684 0.3390 0 0
0.0604 0.0060 0.0846 0

i

×

− 
 − =
 
 
− − 
− − − − 
 − +
 − −
 
− 

M

 

4 4

0.6220 0.4687 0.3254 0.1435
0.5480 0.7269 0 0
0.2401 0.0282 0.8687 0
0.0906 0.1027 0.0121 0.9850

0 0.3541 0.3636 0.0957
0.4138 0 0 0

.
0.2684 0.3390 0 0
0.0604 0.0060 0.0846 0

i

×

− 
 − =
 
 
− − 

− − − 
 − +
 − −
 
− 

G

 

The determinants of these matrices equal det det 1= =T G ,  
det 0.8622 0.4961i= −M , and det 1=M . The matrices 4 4×T  and 4 4×M  are 
different only in coefficients of the 2nd rows. The difference of the matrices 4 4×T  
and 4 4×G  is in the first two rows. In the matrices 4 4×T  and 4 4×M , the first 
rows are proportional to the vector generator. Indeed, for the matrix 4 4×T  we 
have 

( ) ( ) ( ) ( )4 4 4 40,0:3 0,0:3

0.54017 4 ,3 7 , 6 2 ,1 2 0.5401 7 .
7

i i i i× ×= = + + − + + =T M x   

The vector-generator x is not in the first row of matrix G. The first coefficient 
of this matrix is the real number 0.6220, not complex as in the vector-generator.   

For the input vector ( )2 3 ,1 4 , 7 ,3 5i i i i= − − − + +z , the transforms equal 

( )4 4 2.6232 3.1632 , 0.3607 2.6148 , 7.7334 0.8404 ,2.3447 4.9129 ,i i i i× = − − − − − +T z  
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( )4 4 2.6232 3.1632, 1.6105 2.0914 , 7.7334 0.8404 ,2.3447 4.9129 ,i i i× = − − − − − +M z  

( )4 4 3.8469 1.4450 , 1.6105 2.0914 , 7.7334 0.8404 ,2.3447 4.9129 .i i i i× = − − − − − +G z  

It is not difficult to verify that in the general 4N ≥  case, the difference be-
tween the matrices N N×T  and N N×G  is only in the coefficeints of the first two 
rows. Thus, the DsiHT of signals differ only in the first components of the 
transform, if instead of the basic matrices T the matrices G are used.   

As illustrative example, we consider the complex signal z of length 500 with 
real and imaginary parts shown in Figure 3 in parts (a) and (b), respectively. 

The signal-generator x is calculated by  

( ) ( )24 1 8, 0 : 499.x n i n= + − =  

The complex signal z after processing by the DsiHT with generator x is shown 
in Figure 4. The basic transforms of this DsiHT are with the matrices of type T. 

The results of the DsiHT of the signal z, when using matrices of types M and 
G are almost the same as for the T-type DsiHT. As mentioned above, the differ-
ence of these transforms is in the first two components; 

{ }-based DsiHT 1962.3 389.2 , 5.3 3.9 , 9.8 9.6 , ,i i i= + − − − −T �  

{ }-based DsiHT 1962.3 389.2 , 5.1 4.1 , 9.8 9.6 , ,i i i= + − − − −M �  

{ }-based DsiHT 1973.5 327.8 , 5.1 4.1 , 9.8 9.6 , .i i i= + − − − −G �  

Thus, we have three types of matrices T, M, and G for basic transforms that  
 

 
(a)                                    (b) 

Figure 3. The complex signal z of length 500; (a) real and (b) imaginary parts. 
 

 
(a)                                    (b) 

Figure 4. The 500-point T-type DsiHT of the signal z; (a) real and (b) imaginary parts. 
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can be used in the QR decomposition by the DsiHT. These matrices are differ-
ent, but these transforms move the energy of vector ( )0 1,x x=x  to the first 
component and zeroing the second one. 

4. QR Decompositions with the DsiHT 

In this section, we analyze the application of the DsiHTs that are based on basic 
transformations T, M and G in QR decomposition of a square complex matrix. 
The QR-decomposition is described in detail on the example with a 4 × 4 matrix. 
Let X be the following 4 × 4 complex square matrix with ( )det 0≠X : 

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

a b c d
a b c d
a b c d
a b c d

 
 

=  
 
  

X . 

First, we take the first column of the matrix as the vector ( )0 1 2 3, , ,a a a a ′=a . 
This vecor will be the generator for the DsiHT, which we consider of the type M. 
We denote the matrix of DsiHT by aT . The application of the DsiHT on the 
same vector is a vector ( ) ( ),0,0,0T ′= =aa a a , where a  is the energy of the 
vector, 2 22 2

0 1 2 3a a a a= + + +a . Therefore, when multiplying the ma-
trices aT  and X, we obtain the matrix 1X  of the following form:  

0 0 0
1 1 1

1 1 1
1 1 2 2 2

2 2 2
3 3 3

3 3 3

ˆ ˆˆ ˆ ˆˆ
ˆ ˆˆ ˆ ˆˆ
ˆ ˆˆ ˆ ˆˆ
ˆ ˆ

0

ˆ

0
, .

0

b c d
b c d

b c d
b c d

b c d
b c d

b c d

 
  
  

= = =   
  
    

 

a

a

X T X Y  

In the second step, this 3 × 3 complex submatrix 1Y  is processed similarly.  

The first vector-column ( )1 2 3
ˆ ˆ ˆ, ,b b b ′=b  is used as a generator for the 3-point  

DsiHT. We denote by bT  the matrix of this DsiHT. As a result, we obtain the 
following matrix:  

( ) ( )

0 0 0

1 1
2 1 1

2 2

3 3

ˆ ˆˆ

1 0 0
1 1

0 0 0

0 0

b c d

c d

c d

c d

 
 

   
= = ⊕ = ⊕ =   
   

 
 

b b a
b

a

b
X X T X T T X

T

��
��
��

 

Here, 
2 2 2

1 2 3
ˆ ˆ ˆb b b= + +b . In the last stage of calculation, the basic trans-  

form with the vector-generator ( )2 3,c c ′=c � �  is applied on two vectors ( )2 3,c c ′� �  
and ( )2 3,d d ′� � . Denoting by cT  the matrix of this transform, we obtain the final 
triangularization,  

( ) ( )( )

0 0 0

1 1
2

2

3

ˆ ˆˆ

01 1 1 1 1
0 0
0 0 0

b c d

d
c d

d

 
 
 = ⊕ ⊕ = ⊕ ⊕ ⊕ =  
 
  

c c b a

a

bR T X T T T X
c
�

��
� , 
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where 22
2 3c c= +c � � . The matrix of the transformation, or triangularization 

→X R  is  

( )( )1 1 1 .= ⊕ ⊕ ⊕c b aT T T T                     (18) 

Each of these DsiHTs is unitary, and therefore this matrix T is unitary. The 
inverse matrix 1−=Q T  is also unitary and can be written as 

( )( )1 1 1 .′ ′ ′ ′= = ⊕ ⊕ ⊕a b cQ T T T T                  (19) 

Thus, we have an explicit representation of the matrix Q. Here, the operation 
A' denotes the conjugate transposition of a matrix A. Thus, =TX R  and we 
obtain the following decomposition of the matrix X: 

.=X QR                           (20) 

It should be noted that if we apply instead of M-type DsiHT the transform of 
type T or G in the above example, the diagonal coefficients of the matrix R will 
be changed as follows. In the case of the T-type DsiHT, 

( ) ( ) ( )0 1 2
ˆsign , sign , sign ,a b c→ → →a a b b c c�  

and in the case of the G-type DsiHT, these coefficients will be changed as  

( ) ( ) ( )sign , sign , sign .→ → →a a a b b b c c c  

Example 4 × 4: We consider the method of QR-decomposition that is similar 
to the method of the Householder transformations, only the DsiHTs will be used 
instead of the Householder transformations. First, we calculate the DsiHT by 
using the analytical equations, instead of matrix multiplications. 

Let X be the following complex 4 × 4 matrix: 
1 2 2 3 3 4 3 1
2 3 3 2 2 6 7

.
1 2 4 3 2 1 2
3 4 3 4 2 2 4

i i i i
i i i i

i i i i
i i i i

+ − + − + 
 − + − − − =
 − − + +
 

− + − + 

X  

The method of QR decomposition of X with the DsiHTs results in the follow-
ing presentations of the matrix =X QR . 

a) T-type DsiHT: 
The matrix Q is  

0.1826 0.3651 0.3448 0.6035 0.2415 0.1577 0.5158 0.0299
0.3651 0.5477 0.0771 0.1906 0.0032 0.4489 0.5682 0.0075
0.1826 0.1826 0.1407 0.5490 0.0966 0.5316 0.5457 0.1495
0.5477 0.1826 0.2859 0.26

T

i i i i
i i i i
i i i i
i

+ − − + − +
− + − − +

=
− − − − −
− +

Q

77 0.4710 0.4489 0.2990 0.0224i i i

 
 
 
 
 

− + + 

 

and the triangular matrix equals  
5.4772 2.5560 2.7386 6.5727 0.5477 1.6432 1.4606

0 7.3462 1.6743 2.9403 2.7497 0.5763
.

0 0 3.3243 3.6995 4.9272
0 0 0 5.6893 6.0780

T

i i i
i i

i
i

+ + − 
 − + − + =
 − −
 

+ 

R  

The first column of the matrix TQ  is proportional to the first column of the 
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matrix X, 
0.1826 0.3651 1 2
0.3651 0.5477 2 3

0.1826 .
0.1826 0.1826 1
0.5477 0.1826 3

i i
i i
i i
i i

+ +   
   − −   =
   − −
   

− −   

 

b) M-type DsiHT 
The matrix Q is  

0.1826 0.3651 0.3448 0.6035 0.2415 0.1577 0.5166 0.0088
0.3651 0.5477 0.0771 0.1906 0.0032 0.4489 0.5671 0.0350
0.1826 0.1826 0.1407 0.5490 0.0966 0.5316 0.5554 0.1083
0.5477 0.1826 0.2859 0.267

M

i i i i
i i i i
i i i i
i

+ − − − −
− + − + − −

=
− − + −
− +

Q

7 0.4710 0.4489 0.2999i i

 
 
 
 
 

− 

 

and the triangular matrix is  
5.4772 2.5560 2.7386 6.5727 0.5477 1.6432 1.4606

0 7.3462 1.6743 2.9403 2.7497 0.5763
.

0 0 3.3243 3.6995 4.9272
0 0 0 6.1279 5.6355

M

i i i
i i

i
i

+ + − 
 − + − + =
 + − +
 

+ 

R  

Up to the signs ±, many coefficients of the matrix MQ  are equal to the coef-
ficients of TQ , and the main difference in the 4th columns of these matrices. In 
the matrices MR  and TR , the last coefficients are different, others are the same 
or differ only in the sign.  

c) Householder Transforms 
We consider for comparison the Householder transform decomposition  

H H=X Q R . The Householder transformation [6] is defined as 2 ′= −H I ww , 
where the normalized vector w is calculated 

( ) ( )0,0,0, ,0 2 x′= − −w x x x x�   

and ( )0 1 2 1, , , , Nx x x x −
′=x �  is a given vector. When running the MATLAB func-

tion “qr.m,” we obtain the following matrices: 
0.1826 0.3651 0.3448 0.6035 0.2415 0.1577 0.3743 0.3562
0.3651 0.5477 0.0771 0.1906 0.0032 0.4489 0.3937 0.4097
0.1826 0.1826 0.1407 0.5490 0.0966 0.5316 0.4821 0.2963
0.5477 0.1826 0.285

H

i i i i
i i i i
i i i i
i

− − − + − +
− + − − − + +

=
− + − + + − −
− + −

Q

9 0.2677 0.4710 0.4489 0.2207 0.2030i i i

 
 
 
 
 

− − − − 

 

and  
5.4772 2.5560 2.7386 6.5727 0.5477 1.6432 1.4606

0 7.3462 1.6743 2.9403 2.7497 0.5763
.

0 0 3.3243 3.6995 4.9272
0 0 0 8.3252

H

i i i
i i

i

− − − − − − + 
 − − − =
 − +
 

− 

R  

The last column of the matrix HQ  is different from the last columns of the 
matrices TQ  and MQ , other coefficients are equal up to the sign. The same 
differences can be seen in the triangular matrices HR , TR , and MR .  

d) G-type DsiHT: 
The matrix Q is  
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0.4082 0.2457 0.6502 0.2362 0.1656 0.5166 0.0088
0.3266 0.5715 0.1061 0.1761 0.4179 0.1639 0.5671 0.0350
0.0816 0.2449 0.0527 0.5643 0.4576 0.2872 0.5554 0.1083

0.0816 0.5715 0.3244 0.2195 0.5

G

i i i
i i i i
i i i i

i i

− − − − −
− − + − − −

=
− − − − −

− + −

Q

918 0.2705 0.2999i

 
 
 
 
 

− 

 

and the triangular matrix is  

2.4495 4.8990 1.3064 3.5109 2.4495 6.1237 2.0412 0.8165
0 7.2550 1.1542 2.1155 2.6407 2.8061 0.1371

.
0 0 1.2353 3.0863 3.1997 5.2656
0 0 0 6.1279 5.6355

G

i i i i
i i i

i i
i

+ − + + + 
 + − + − + =
 − + − −
 

+ 

R  

This decomposition is very different from the above three QR-decompositions. 
All coefficients of the first 3 columns of matrices GQ  and GR  differ from the 
coefficients of the corresponding matrices of the above decompositions by the 
T-and M-type, as well as the Householder QR decomposition. The last columns 
in matrices GQ  and MQ  are equal, as well as in matrices GR  and MR . 

Here, we want to mention that if we apply the strong DsiHTs starting from 
the last column of the matrix, we obtain the decomposition of the matrix  

=X QL  with the left triangular matrix. For the G-type strong DsiHT, the ma-
trix Q is  

0.6434 0.1675 0.3605 0.5481 0.2101 0.0408 0.2858
0.1511 0.0403 0.1880 0.0742 0.1690 0.4448 0.8165 0.2041
0.6892 0.1466 0.2775 0.4503 0.3496 0.2445 0.2041
0.1270 0.2211 0.4693 0.5487 0.0886 0.48

G

i i i
i i i i
i i i

i i

− − − +
− − + − − − +

=
− + − −

+ + − −

Q

91 0.4082i

 
 
 
 
 
 

 

and the left triangular matrix is  

0.2137 1.5731 0 0 0
1.1871 1.9594 7.9344 0.8122 0 0

.
1.9415 4.1538 0.6302 0.7221 2.5389 7.6166 0
0.2858 1.0614 1.1431 1.4697 1.2247 0.2041 4.8990 9.7980

G

i
i i
i i i
i i i i

− + 
 − − =
 + + +
 
− + − − − + 

L  

One can notice from this example that the QR-decomposition by the G-type 
DsiHTs differs much from the decomposition by the Householder transforms. 
The QR-decomposition by M-type DsiHTs is very similar to the Householder 
transform method. The M-type DsiHT is fast and can be implemented by using 
2 × 2 basic transformations, as well by the analytical equations. To analyse the 
difference of these two decompositions in more detail, we consider the example 
with a 6 × 6 complex matrix X. 

Example 6 × 6: Let the matrix X be the following: 

1 2 2 3 3 4 3 4 2 3
2 3 3 2 2 6 7 2 5 2
4 3 2 4 5 2 3 4 7 6 2

.
5 2 5 3 2 8 3 7 2 2 3
4 3 5 2 1 2 4 3 2 1 2
7 2 6 3 4 3 4 3 2 4

i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i

+ − + − + − − − 
 − + − − − + − 
 − − − + + +

=  
+ + − − − + 

 − − − − − + +
 

− + − + + +  

X  
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The QR-decomposition by the M-type DsiHTs results in the following ma-
trices: 

0.0839 0.1419 0.3046 0.1235 0.4129 0.0136
0.1678 0.2321 0.2051 0.4530 0.2174 0.4402
0.3357 0.1232 0.2883 0.0854 0.0096 0.4182
0.4196 0.2579 0.0885 0.3133 0.3378 0.1404
0.3357 0.6763 0.0301 0.0356 0.3404 0.2840
0.5874

M

− −
−
− −

=
− −

− − − −

Q

0.2937 0.1343 0.0922 0.1331 0.1813

0.1678 0.3926 0.5185 0.0103 0.2061 0.4476
0.2518 0.2579 0.0226 0.4400 0.2949 0.1367
0.0839 0.1275 0.5164 0.1108 0.4122 0.3669

0.1678 0.0430 0.2965 0.3644 0.
i

 
 
 
 
 
 
 
 

− −  
− − −

− − −
− − −

+
− − − 4614 0.2323

0.2518 0.0330 0.2352 0.0055 0.1455 0.3004
0.1678 0.2465 0.2758 0.5705 0.0318 0

 
 
 
 
 

− 
 − − −
 
− −  

 

and 

11.9164 5.5386 6.9652 7.4687 6.1260 4.5316
0 9.8295 0.6133 1.5246 0.4542 4.0665
0 0 6.4709 3.2862 4.5013 0.9395
0 0 0 11.9062 1.6459 0.0832
0 0 0 0 6.3390 2.3524
0 0 0 0 0 2.1708

0 0.8392 2.8532 1.9301 2.8532

M

i

 
 − 
 − −

=  
 
 
 

−  
− − −

+

R

6.0421
0 0 0.3095 1.0603 4.2671 0.3324
0 0 0 3.2384 6.6643 0.1439

.
0 0 0 0 1.1619 3.4811
0 0 0 0 0 3.1871
0 0 0 0 0 3.5886

 
 − − − 
 
 

− 
 −
 

−  

 

The method of Householder transforms which is performed by the MATLAB 
function “qr.m” results in the following matrices HQ  and HR  in the QR-de- 
composition H H=X Q R . In the matrix HQ , the last column differs from the 
same column in the matrix MQ , when using the M-type matrices in QR-decom- 
position. The remaining part, or the 6 × 5 sub-matrix of HQ  differs from the 
same sub-matrix of MQ  only by the sign. Thus, we can write the matrix HQ  in 
the following way: 

( )6 5H M ×
= −Q Q ⨆

0.3900 0.2201
0.3448 0.3059
0.5304 0.1679

.
0.1261 0.2404
0.1100 0.3985
0.0939 0.1552

i

−   
   
   
   − −

+   
−   

   −
   
      �����������

 

All coefficients of the triangular matrix HR , except the last coefficient, equal 
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to the corresponding coefficients of the matrix MR  with the sign minus. In 
matrix HR , this coefficient equals −4.1941 and in the matrix MR  such coeffi-
cient is 2.1708 + 3.5886. Therefore, we can write that  

( )

0
0
0

.
0
0

4.1941 2.1708 3.5886

H M

 
 
 
 

= − +  
 
 
 

− +  

R R  

5. The Scripts for the Decomposition by the DsiHT 

Below are MATLAB-based codes for QR-decomposition of a complex square 
matrix X, by using the DsiHT. The function “amqr_compex.m” is for QR-de- 
composition of X by the DsiHT with the basic transforms T, M, and G. The 
Householder transform-based QR decomposition is calculated in this example 
by the MATLAB function “qr.” All matrices in the examples given in Section 4 
were calculated by these codes. 
 

 
 

The function amqr_complex is used to calculate the QR decomposition by 
the DsiHTs. The parameter “ntype” is selected as 1, 2, and 3 for the T, M, and 
G-type DsiHTs, respectively. If parameter “ntype” is set to 0, the M -type DsiHT 
is calculated by analytical Equations (4)-(6) in the function msob_enanalcomp. 
The calculation of 2 × 2 basic matrices of types T, M, and G are accomplished by 
the corresponding functions msob2T, msob2M, and msob2G in the main func-
tion msob_complexA that calculates the DsiHT. The scripts of all these func-
tions are given below. 
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Below is the script of the function “msob_complex1sp.m” to compute the 

strong G-type DsiHT. To calculate the strong T and M-types DsiHT, the cor-
responding function can be written in a similar way. 
 

 

https://doi.org/10.4236/alamt.2022.124005


A. M. Grigoryan 
 

 

DOI: 10.4236/alamt.2022.124005 107 Advances in Linear Algebra & Matrix Theory 
 

6. Mixed Type DsiHT QR Decomposition  

It is clear that on different stages of QR-decomposition by the DsiHT, we can 
change the type of the DsiHT. Such mixed type QR-decompositions can be con-
sidered and applied in practice together with the described above QR-decom- 
positions by the T, M, and G-type DsiHTs.  

As an example, we consider the matrix X given in Example 6 × 6 in Section 4 
with the following set of types of transforms: [T M G T T], or [1 2 3 1 1] in 
numbers when running the codes. It means that the first transform which will be 
used to obtain the first heap in the first column of in the matrix X is the T-type 
DsiHT. The second transform is the M-type DsiHT to get the second heap in the 
matrix, or coefficient number (2, 2) in the triangular matrix R, and so on. As a 
result, we obtain the decomposition of the matrix 12311 12311=X Q R , where the 
unitary matrix is  

12311

0.0839 0.1419 0.5953 0.1235 0.4129 0.3665
0.1678 0.2321 0.0986 0.4530 0.2174 0.1278
0.3357 0.1232 0.3685 0.0854 0.0096 0.0767
0.4196 0.2579 0.3079 0.3133 0.3378 0.2713
0.3357 0.6763 0.2063 0.0356 0.3404 0.40

− − −
− − −

− −
=

− −
− − − − −

Q

70
0.5874 0.2937 0.2043 0.0922 0.1331 0.0997

0.1678 0.3926 0.0853 0.0103 0.2061 0.2573
0.2518 0.2579 0.1812 0.4400 0.2949 0.4429
0.0839 0.1275 0.4625 0.1108 0.4122 0.5510

0.1678 0.0430 0.0305 0.3
i

 
 
 
 
 
 
 
 

−  
− −

− − − −
− − −

+
−

.
644 0.4614 0.0103

0.2518 0.0330 0.1170 0.0055 0.1455 0.0722
0.1678 0.2465 0.2289 0.5705 0.0318 0.1515

 
 
 
 
 

− 
 − − − −
 
− − −  

 

When comparing with the QR-decomposition by the M-type DsiHT, one can 
notice that the columns number 3 and 6 and the sign on the 5th column are dif-
ferent in matrices 12311Q  and MQ . The triangular matrix equals to  

12311

11.9164 5.5386 6.9652 7.4687 6.1260 4.5316
0 9.8295 0.6133 1.5246 0.4542 4.0665
0 0 2.4534 4.2425 7.8733 0.2230
0 0 0 11.9062 1.6459 0.0832
0 0 0 0 6.3390 2.3524
0 0 0 0 0 1.8050

0 0.8392 2.8532 1.9301 2.

i

 
 − 
 − −

=  
 
 −
 
  

− − −

+

R

8532 6.0421
0 0 0.3095 1.0603 4.2671 0.3324
0 0 5.9878 1.8131 1.6386 0.9239

.
0 0 0 0 1.1619 3.4811
0 0 0 0 0 3.1871
0 0 0 0 0 3.7858

 
 − − − 
 − −
 

− 
 
 

−  

 

In this matrix, the coefficients of the 3rd and 6th rows and the sign in 5th row 
differ from the corresponding coefficients of matrix MR .  
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It should be noted that instead of combination of types [1 2 3 1 1], we can use 
other combinations with 1, 2, and 3. The number of such combinations is 35 = 
243. In general case of the N × N matrix, we can choose one combination of with 
numbers presenting the types of the DsiHT. The number of such combinations 
equals ( )13 N−  and they can be used for calculating the QR-decomposition by the 
DsiHTs. The combinations with all 1s, 2s, and 3s correspond to the QR-decom- 
positions by the T, G, and M-type DsiHTs. Also, different paths can be used for 
the DsiHT, which increases the number of possible QR decompositions.  

In conclusion, we consider a few QR-decompositions which were calculated 
for the pseudorandom integer N × N matrices X with complex coefficients with 
real and imaginary parts in the range 1:N. For that, the MATLAB function “ran-
di.m” is used. Twelve values of N were arbitrary chosen to be 6, 13, 17, 19, 21, 
40, 64, 100, 128, 201, 256, and 400. The QR-decompositions for each of these 
values of N were calculated by the M-type DsiHT and the Householder trans-
forms; the script of the code is given below for the QR decomposition of the 
random complex 400 × 400 matrix. 
 

 

7. Summary Results 

To compare the results of the QR-decomposition, the precision of computation 
was estimated by the 2-norms of the matrix M M M= −X Q R∆  and matrix  

H H H= −X Q R∆ , by using the MATLAB function “norm.m.” The results of es-
timations are given in Table 1. 
 
Table 1. The precision of the QR-decomposition by the M-type DsiHT and Householder 
transforms. 

N norm ( M∆ ) norm ( H∆ ) N norm ( M∆ ) norm ( H∆ ) 

6 5.0854e−15 1.5907e−14 64 7.9044e−13 1.3359e−12 

13 2.8659e−14 5.9598e−14 100 2.4268e−12 2.9176e−12 

17 4.8721e−14 6.2739e−14 128 4.8050e−12 4.7850e−12 

19 5.7744e−14 7.0202e−14 201 1.0487e−11 2.1172e−11 

21 9.2941e−14 1.2370e−13 256 1.6789e−11 2.8667e−11 

40 3.6162e−13 4.7966e−13 400 4.8725e−11 5.5772e−11 
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One can notice that in most cases the 2-norm of the QR-decomposition by the 
M-type DsiHTs is less than the same norm when using the Householder trans-
forms. 

8. Conclusion 

We described three different types of QR-decompositions that include the DsiHT 
with T, G, and M-type complex matrices. The decomposition by analytical for-
mulas was also given for the M-type DsiHT. The mixed type QR-decomposition, 
when different type DsiHTs are used in different stages of the algorithm was also 
presented. For an N × N complex nonsingular matrix, the number of such de-
compositions is greater than ( )13 N− . Examples of the QR-decomposition were 
given in detail for the 4 × 4 and 6 × 6 complex matrices and compared with the 
Householder transform-based QR-decomposition. MATLAB-based scripts of the 
codes for calculating the DsiHTs and QR decompositions are given. The differ-
ent QL-decompositions of a complex matrix can be obtained in a similar way. 
We believe that the concept of the DsiHT can be generalized to the quaternion 
space [20] and the QR-decomposition of the quaternion matrix can be calculated 
and used together with the known methods of decompositions [19]. 
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