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Abstract 
This paper is made up of a desire for me to contribute to this beautiful field of 
mathematics that I have encountered in recent years. In addition, I would like 
to mention that I am not aware that there are papers in our Balkans on Lie 
algebra, although this is only an introductory part for which in the near fu-
ture in collaboration with several professors from abroad I will do a book in 
our mother tongue on Lie groups and algebras. The main content of this pa-
per is similar to the books that have been published regarding Lie algebras, 
from basic definition and example, structure, killing form, classification to 
root system. In my opinion, this paper is important in relation to Lie algebras, 
because it will be helpful to all those who write papers on algebra, as well as 
the fact that the paper will be written in Montenegrin, which is understood by 
almost more than 70 percent of the population. For me, this work has the sig-
nificance of being useful to all who need it. 
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1. Introduction 

[1] Lie theory has its roots in the work of Sophus Lie, who studied certain trans-
formation groups that are now called Lie groups. His work led to the discovery 
of Lie algebras. By now, both Lie groups and Lie algebras have become essential 
to many parts of mathematics and theoretical physics. In the meantime, Lie al-
gebras have become a central object of interest in their own right, not least be-
cause of their description by the Serre relations, whose generalizations have been 
very important. 

The study of Lie Algebra requires a thorough understanding of linear algebra, 
group, and ring theory. 
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Definition 1.1. A nonempty set G equipped with an operation on it is said to 
form a group under that operation if the operation obeys the following laws, 
called the group axioms: 
● Closure: For any ,a b G∈ , we have a b G⋅ ∈ . 
● Associativity: For any , ,a b c G∈ , we have ( ) ( )a b c a b c⋅ ⋅ = ⋅ ⋅ . 
● Identity: There exists an element e G∈  such that for all a G∈  we have 

a e e a a⋅ = ⋅ = . Such an element e G∈  is called the identity in G. 
● Inverse: For each a G∈  there exists an element 1a G− ∈  such that  

1 1a a a a e− −⋅ = ⋅ = . Such an element 1a G− ∈  is called the inverse of a in G. 
Definition 1.2. Let ( ),m nM x  be the set of m n×  matrices whose entries are 

in x. We will denote the ( ),i j  entry of an m n⋅  matrix A by ijA  or ija  and 
also write 

11 1

1

n

ij

m mn

a a
A a

a a

 
  = =   
  



  



 

We will use the special notations 

( ) ( ) ( ), ,1, .n
n n n nM x M x x M x= =  

( ),m nM x  is a x-vector space with the operations of matrix addition and scalar 
multiplication. The zero vector is the m n×  zero matrix ,m nP  which we will 
often denote P when the size is clear from the context. The matrices rsE  with 

1, , ; 1, ,r m s n= = 
 and 

( ) 1 if and
0 otherwise

rs
ir jsij

i r j s
E δ δ

= =
= = 


 

form a basis of ( ),m nM x ; hence its dimension as a x-vector space is 

( ),dimx m nM x mn=  

when n = 1 we will denote the standard basis vectors of ( ),1
n

nx M x=  by 

( )1 1, , .r
re E r m= =   

As well as being a x-vector space of dimension ( )2
nn M x  is also a ring with the 

usual addition and multiplication of square matrices, with zero ,n n nP P=  and 
the n n×  identity matrix In as its unity; ( )nM x  is not commutative except 
when 1n = . Later we will see that ( )nM x  is also an important example of a fi-
nite dimensional x-algebra. The ring ( )nM x  acts on nx  by left multiplication, 
giving nx  the structure of a left ( )nM x -module.  

Definition 1.3: But ( )nM x  is not just a vector space. It also has a multipli-
cation which distributes over addition (on either side). 

( )A B C AB AC+ = +  

( )B C A BA CA+ = +  

Such a system is called an algebra. When we use the word algebra we will always 
mean one with a two-sided multiplicative identity. For ( )nM x , 
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11 0

0 1
I

 
 =  
 
 







 

is the multiplicative identity. 
Definition 1.4: If G is an algebra, x G∈  is a unit if there exists some y G∈  

such that 1xy yx= = , i.e., if it has a multiplicative inverse. 
Definition 1.5: The group of units in the algebra ( )nM R  is denoted by 
( ),GL n R , in ( )nM C  by ( ),GL n r  and in ( )nM x  by ( ),GL n x  These are 

the general linear groups. 
Proposition 1.6. The determinant function ( )det : nM x x→  has the fol-

lowing properties. 
1) For ( ), nA B M x∈ , ( )det det detAB A B= . 
2) det 1nI = . 
3) ( )nA M x∈  is invertible if and only if det A O≠ . 
We will use the notation 

( ) ( ){ }: detn nGL x A M x A O= ∈ ≠  

for the set of invertible n n×  matrices (also known as the set of units of the ring 
( )nM x ), and 

( ) ( ){ } ( ): det 1n n nSL x A M x A GL x= ∈ = ⊆ ‚ 

for the set of n n⋅  unimodular matrices. 
Definition 1.7: a matrix ( )n nA M F×∈  is called orthogonal if tAA I= . 
Theorem 1.8: If A is a square matrix of order 1n > , then  
( ) ( ) nA adjA adjA A A I= = . The ( ),i j th element of ( )A adjA  is: 

1 1 0

n n

ik kj ij jk
k k

A i j
a a a A

i j= =

 ⇔ == = 
⇔ ≠

∑ ∑  

Therefore ( )A adjA  is a scalar matrix with diagonal elements all equal to A . 

( ) nA AdjA I⇒ =  

( ) ( )nAdjA A A I⇒ =  

where A  represents the determinant of A 
Proposition 1.8. The following equation denotes the inverse of A. 

1 AdjAA
A

− =  

2. Basic Definitions and First Examples 

The study of Lie Algebra requires a thorough understanding of linear algebra, 
group, and ring theory. The following provides a cursory review of these subjects 
as they will appear within the scope of this paper. 

Definition 2.1. A vector space V over a field F, is a Lie algebra if there exists a 
bilinear multiplication V V V× → , with an operation, denoted ( ) [ ],x y xy , 
such that: 
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1) It is skew symmetric where [ ], 0x x =  for all x in V (this is equivalent to 
[ ] [ ], ,x y y x= −  since character 2F ≠ ). 

2) It satisfies the Jacobi identity [ ] [ ] [ ] ( ), , 0 , ,x yz y z x z x y x y z V + + = ∈  . 
Example 2.2: Given an n dimensional vector space End(V), the set of all li-

near maps V V  with associative multiplication ( ),x y xy  for all ,x y , 
where xy  denotes functional composition, observe, End(V) is an associative 
algebra over F. Let us define a new operation on End(V) by ( ),x y xy yx− . If 
we denote xy yx−  by [ ],x y , then End(V) together with the map [ ].,.  satis-
fies Definition 1.1, and is thus a Lie algebra. 

Proof. The first two bracket axioms are satisfied immediately. The only thing 
left to prove is the Jacobi identity. Given ( ), , Endx y z V∈ , we have by use of the 
bracket operation:  

[ ] [ ] [ ], , 0x yz y z x z x y + + =   

( ) ( ) ( ) ( ) ( ) ( ) 0x yz zy yz zy x y zx xz zx xz y z xy yx xy yx z− − − + − − − + − − − =  

0xyz xzy yzx zyx yzx yxz zxy xzy zxy zyx xyz yxz− − + + − − + + − − + =  

( ) ( ) ( ) ( ) ( ) 0xyz xyz xzy xzy yzx yzx zyx zyx yxz yxz− + − + − + − + − =  

Definition 2.3. The Lie algebra End(V) with bracket [ ];x y xy yx= − , is de-
noted as gl(V), the general linear algebra. 

Example 2.4. We can show that real vector space 3R  is a Lie algebra. Recall 
the following cross product properties when a, b and c represent arbitrary vec-
tors and ,α β  and γ  represent arbitrary scalars: 

1) ( )a b b a× = − ×  
2) ( ) ( ) ( )b c a b a cα β γ β γ× + = × + ×  and 

( ) ( ) ( )a b c a c b cα β α β+ × = × + ×  

Proof. Note, ( )a a a a× = − × , by property (1), letting b a= , therefore, 
0a a× = . By the above properties, the cross product is both skew symmetric 

(property 1) and bilinear (property 2). 
By vector triple product expansion: ( ) ( ) ( )x y z y x z z x y× × = × − × . To show 

that the cross product satisfies the Jacobi identity, we have: 

[ ] [ ] [ ] ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

, ,

0

x yz y z x z x y x y z y z x z x y

y x z z x y z x y x y z x z y y z x

 + + = × × + × × + × × 
= ∗ − ∗ + ∗ − ∗ + ∗ − ∗ =          

 

Example 2.5. The Lie algebra ( )2,sl C  (or 1A ), 2 2×  matrices of trace 0. 
A basis is given by the three matrices 

1 0 0 1 0 0
, ,

0 1 0 0 1 0
H X X+ −

     
= = =     −     

 

One computes [ ] [ ] [ ]2 , 2 ,HX X HX X X X H+ + − − + −= = − = . This Lie algebra 
and these relations will play a considerable role later on. 

The standard skew-symmetric (exterior) form [ ] 1 2 2 1det ,X Y x y x y= −  on 2C  
is invariant under ( )2,sl C  (precisely because of the vanishing of the trace), 
and so ( )2,sl C  is identical with ( )1,sp C . 
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Example 2.6. L is itself a left L-module. 
The left action of L on L is defined as [ ]x y xy⋅ =  Then, we have 

[ ] [ ] [ ]xy z x yz y xz     = −       

which is a consequence of the Jacobi identity. This shows that L is a left 
L-module. This is called the adjoint module. We define  :ad x L L→  by 

[ ] for ,ad x y xy x y L−⋅ = ∈  

Then we have 

[ ]ad xy ad x ad y ad y ad x= −  

Now let V be a left L-module, U be a subspace of V and H a subspace of L. We 
define HU to be the subspace of V spanned by all elements of the form xu for 

,x H u U∈ ∈ . 
A submodule of V is a subspace U of V such that LU U⊂ . In particular V is 

a submodule of V and the zero subspace { }0O =  is a submodule of V. A prop-
er submodule of V is a submodule distinct from V and O. An L-module V is 
called irreducible if it has no proper submodules. V is called completely re-
ducible if it is a direct sum of irreducible submodules. V is called indecompos-
able if V cannot be written as a direct sum of two proper submodules. Of course 
every irreducible L-module is indecomposable, but the converse need not be 
true. 

We may also define right L-modules, but we shall mainly work with left 
L-modules, and L-modules will be assumed to be left L-modules unless other-
wise stated. 

Example 2.7. Let o(n) be the subspace of gl(n) consisting of skew-symmetric 
matrices, that is, TA A= − . Then 

( ) ( )( ) ( )( ) ( )T T T T TAB BA B A A B B A A B AB BA− = − = − − − − − = − −  

so that o(n) is closed under [ ]ab ab ba= − , and hence is a Lie algebra. 
To define a Lie bracket on a vector space with basis 1, , ne e  we need to spe-

cify the structure constants r
lmc , that is, elements of k such that 

[ ]
1

,
n

r
l m lm r

r
e e c e

=

= ∑  

For example, 

1 0 0 1 0 0
, ,

0 1 0 0 1 0
H X X+ −

   
= = =   − −

 
 
  

 

is a basis of the vector space sl(2). 
Definition 2.8. If g and g −  are Lie algebras, a homomorphism : g gφ −→  

is a linear map such that 

[ ]( ) ( ) ( ), ,x y x yϕ ϕ ϕ=     for all ,x y g∈  

As usual, the identity map is a homomorphism, and the composition of two 
homomorphisms is another homomorphism. 
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Definition 2.9. A bijective homomorphism is an isomorphism (its inverse is 
clearly also an isomorphism). We write g g −≅  to mean that g and g −  are 
isomorphic, i.e. there exists an isomorphism between them. 

Proposition 2.10. [2] Any two-dimensional Lie algebra is either abelian or is 
isomorphic to 2l . 

Proof. Let g be a two-dimensional non-abelian Lie algebra with basis x, y. We 
need to find another basis u, v of g such that [ ],u v v= . Suppose that  
[ ],x y ax by= + . At least one of a and b is nonzero since otherwise g would be 
abelian. If 0b ≠ , let 1u b x−=  and v ax by= + . Then 

[ ] [ ] [ ]1, , , .u v b x ax by x y ax by v−= + = = + =  

If 0b = , let 1 ,u a y v x−= − = . Then 

[ ] [ ]1 1, , .u v a x y a ax v− −= = =  

So, in either case we are done. 
The most important three-dimensional Lie algebra, namely 2sl , consisting of 

all 2 × 2 matrices with trace 0. The standard basis of 2sl  is e, h, f, where 

12 11 22 21

0 1 1 0 0 0
, ,

0 0 0 1 1 0
e e h e e f e     
= = = − = = =     −     

 

The Lie bracket is completely specified by the brackets of these basis elements, 
which are given by: 

Proposition 2.11. [2] 

[ ] [ ] [ ], , , 2 , , 2 .e f h h e e h f f= = = −  

Proof: We get 

[ ] [ ]12 21 11 22, , ,e f e e e e h= = − =  

[ ] [ ] [ ]11 12 22 12 12 12, , , 2 ,h e e e e e e e e= − = + =  

[ ] [ ] [ ]11 21 22 21 21 21, , , 2 .h f e e e e e e f= − = − − = −  

Example 2.12. Suppose that g is a three-dimensional Lie algebra with basis 

1 2 3, ,x x x  such that 

[ ]1 2 1 2, ,x x x x= +  

[ ]1 3 1 3, ,x x ax x= +  

[ ]2 3 2 3, ,x x x bx= +  

for some ,a b C∈ . Determine a and b. 
Example 2.13: Let V be a vector space over F, and let be a non-degenerate 

skew-symmetric bilinear form on V. The symplectic Lie algebra sp(V) or just 
sp(V) consists of the operators T on V that leave infinitesimally invariant:  
( ) ( ), , 0TX Y X TY+ = . 

3. Basic Structure of a Lie Algebra 

Subalgebra 

https://doi.org/10.4236/alamt.2021.113006


A. Hasić 
 

 

DOI: 10.4236/alamt.2021.113006 73 Advances in Linear Algebra & Matrix Theory 
 

Definition 3.1: A subspace K of V is called a (Lie) subalgebra if [ ]xy K∈  
whenever ,x y K∈ . 

Example 3.2: Important subalgebras of ngl  are the following spans of sub-
sets of the standard basis: the diagonal subalgebra 

{ }

0 0 0
0 0 0

0 0
0 0

1
0

0

n iiD C e i n

  
  
    = = ≤ ≤ 
  
      

∗
∗

∗
∗

  









 
 

the upper-triangular subalgebra 

{ }
0

0 0
0 0 0

1n ijC e i j nα

  
  
    = = ≤ ≤ ≤ 
  
     

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ 

 



  







 

and the strictly upper-triangular subalgebra 

{ }

0
0 0

0 0 0
0 0 0 0

1n ijC e i j nβ

  
  
    = = ≤ < ≤ 
  
     

∗ ∗



∗



∗
∗ ∗

   











 

The dimensions of these Lie algebras are as follows 
1

dim , dim , dim
2 2n n n

n n
D n α β

+   
= = =   

   
 

Definition 3.3: A subspace I of a Lie algebra L is called an ideal of L if 
;x I y L∈ ∈  together imply [ ];x y I∈ . The construction of ideals in Lie algebra 

is analogous to the construction of normal subgroups in group theory. 
By skew-symmetry, all Lie algebra ideals are automatically two sided. That is, 

if [x; y] 2 I, then [y; x] 2 I. The kernel of a Lie algebra L and L itself are trivial 
ideals contained in every Lie algebra. 

Proposition 3.4: [3]  
1) If H, K are subalgebras of L so is H K . 
2) If H, K are ideals of L so is H K . 
3) If H is an ideal of L and K a subalgebra of L then H +K is a subalgebra of L. 
4) If H, K are ideals of L then H + K is an ideal of L. 
Proof. 1) H K  is a subspace of L and  

[ ] [ ] [ ],H K H K HH KK H K⊂ ⊂    . Thus H K  is a subalgebra. 
2) This time we have [ ] [ ] [ ],H K L HL KL H K⊂ ⊂   . Thus H K  is 

an ideal of L. 
3) H K+  is a subspace of L. Also  

[ ] [ ] [ ] [ ] [ ],H K H K HH HK KH KK H K+ + ⊂ + + + ⊂ + , since [ ]HH H⊂ ,  
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[ ]HK H⊂ , [ ]KK K⊂ . Thus H K+  is a subalgebra. 
4) This time we have [ ] [ ] [ ],H K L HL KL H K+ ⊂ + ⊂ + . Thus H K+  is an 

ideal of L. 
Derivations and homomorphism 
The derivative between two functions f and g is a linear operator that satisfies 

the Leibniz rule: 
1) ( )fg f g fg′ ′ ′= +  
2) ( )f fα α′ ′=  where α  is a scalar. 
Given an algebra A over a field F, the derivation of A is the linear map δ  

such that ( ) ( ) ( ),f g f g f gδ δ δ= +  for all ,f g A∈ . The set of all derivations 
of A is denoted by Der(A). Given ( )Der Aδ ∈ , ,f g A∈  and Fα ∈ .  

( )( ) ( ) ( ) ( )( ) ( ) ( )fg fg f g f g f g f gαδ αδ α δ δ α δ αδ= = + = +  

where the Leibniz rule is satisfied if and only if af fa=  where F is a field. 
Definition 3.5. Let L be a Lie algebra over an arbitrary field F. Let 2L  and 

Z(L) denote the derived algebra and the center of L, respectively. A derivation of 
L is an F-linear transformation : L Lα →  such that  

[ ]( ) ( ) ( ), , ,x y x y x yα α α= +        for all ,x y L∈ . We denote by ( )Der L  the 
vector space of all derivations of L, which itself forms a Lie algebra with respect 
to the commutator of linear transformations, called the derivation algebra of L. 
For all x L∈ , the map :xad L L→  given by [ ],y x y→ is a derivation called the 
inner derivation corresponding to x. Clearly, the space ( ) { }|xIDer L ad x L= ∈  
of inner derivations is an ideal of ( )Der L . 

Proposition 3.6: Let g be any Lie algebra. For any x g∈ , define a linear 
transformation 

( ) [ ]: : ,gad x g g y x y→ →  

Then ( ):gad g gl g→  is a representation of g on g itself. 
Proof: It is clear that gad  is a linear map. We need to show that  

[ ]( ) ( ) ( ), ,g g gad x y ad x ad y =    for all ,x y g∈ , i.e. that 

[ ] [ ] [ ], , , , , ,x y z x y z y x z     = −       for all , ,x y z g∈ . 

This is, however, just a form of the Jacobi identity. 
Definition 3.7: [4] The map L DerL→  sending x to xad  is called the ad-

joint representation of L. This is akin to taking the ad homomorphism of 
( )g gl g→ . To show ad is a homomorphism: 

[ ]( ) ( ) ( ) ( ) ( ) ( ) ( ); , y xx y x yx yad ad ad ad ad ad ad = = −   

[ ] [ ] [ ], ; , , , ,x y z x y z y x z     = −       

[ ] [ ] [ ]0 , , , , , ,x y z y z x z x y     = + +       

That is, if and only if the Jacobi identity is satisfied, where  
[ ] [ ], , , ,x y z z x y   = −     and [ ] [ ]; , , ,y x z y z x   − =     by skew symmetry. 
Example 3.8: [4] The set of all inner derivations xad , x L∈ , is an ideal of 
( )Der L . Let ( )Der Lδ ∈ . By definition of inner derivations, for all y L∈ : 
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[ ]( ) ( ) ( )( )( ) [ ] ( )( )
( ) ( ) ( ) ( )( )

, ,

, , ,
x x x xad y ad ad y x y ad y

x y x y x y ad x y

δ δ δ δ δ

δ δ δ δ

= − = −

= + − =          
 

Therefore, xad  is an ideal of ( )Der L . 
Example 3.9: [2] In the adjoint representation of 2sl , the element e is 

represented by the linear transformation ( )ad e  of 2sl , which sends any ele-
ment x to [ ],e x . On the standard basis, this linear transformation acts as fol-
lows: 

( ) [ ] ( ) [ ] ( ) [ ], 0, , 2 , , .ad e e e e ad e h e h e ad e f e f h= = = = − = =  

Making similar calculations for ( )ad h  and ( )ad f , we deduce that the 
representing matrices are: 

( ) ( ) ( )
0 2 0 2 0 0 0 0 0

: 0 0 1 , : 0 0 0 , : 1 0 0
0 0 0 0 0 2 0 2 0

ad e ad h ad f
−     

     −     
     −     

 

Since ( ) { }2 0Z sl =  (or alternatively because these matrices are clearly linearly 
independent), this is a faithful representation of 2sl . 

Definition 3.10: An automorphism of A is an isomorphism of A onto itself. 
Aut A denotes the group of all such. 

The set of inner automorphisms of a ring, or associative algebra A, is given by 
the conjugation element, using right conjugation, such that: 

:a A Aφ →  

( ) 1
a x a xaφ −=  

Given ,x y A∈ : 

( ) ( ) ( )( ) ( ) ( )1 1 1 1 1
a a axy a xy a a xaa ya a xa a ya x yφ φ φ− − − − −= = = =  

where, aφ  is an (invertible) homomorphism that contains 1
aφ
− .  

Example 3.11: [4] Let L be a Lie algebra such that ( ),L sl n F= ; ( ),g GL n F∈ . 
The map : L Lφ →  defined by 1tx gx g −→ −  ( tx  = the transpose of x) be-
longs to Aut L. When n = 2, g = the identity matrix, we can prove that Aut L is 
inner. 

( ) ( ) ( ) ( )1 1t t ttr gx g tr gg x tr x tr x− −− = − = − = −  (Since g = the identity matrix) 

( ) ( )10 0ttr x tr gx g −= ⇔ − =  

Therefore, the map is a linear automorphism of ( ),sl n F . If we apply the 
transpose to the commutator, for ,x y L∈ , we have: 

[ ] ( ) ( ) ( ), t t t t t t t t t tx y xy yx xy yx y x x y y x = − = − = − =    

Therefore: 

[ ] [ ]
( )

( ) ( )

1 1

1 1 1

1 1 1 1 1 1

, , ,

,

,

t t t

t t t t t t t t

t t t t t t

x y g x y g g y x g

g y x x y g gy x g gx y g

gy g gx g gy g gx g gx g gy g

x y

φ

φ φ

− −

− − −

− − − − − −

 = − = −  

= − = −

 = = − 
=   
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Therefore, φ  is a homomorphism. Thus Aut L is inner. 
Cartan’s Criterion 
Theorem 3.12. (Cartan’s Criterion). Let L be a subalgebra of gl(V), V fi-

nite-dimensional. Suppose that ( ) 0Tr xy =  for all [ ],x L L∈ , y L∈ , The L is 
solvable. 

Proof: As remarked at the beginning of it will suffice to prove that [ ],L L  is 
nilpotent, or just that all x in [ ],L L  are nilpotent endomorphisms. For this we 
apply the above lemma to the situation: Vas given, [ ],A L L= , B L= , so  

( ) [ ] [ ]{ }, ,M x gl V x L L L= ∈ ⊂ . Obviously L M⊂ . Our hypothesis is that 
( ) 0Tr xy =  for [ ],x L L∈ , y L∈ , whereas to conclude from the lemma that 

each [ ],x L L∈  is nilpotent we need the stronger statement: ( ) 0Tr xy =  for 
[ ],x L L∈ , y M∈ . 

Now if [ ],x y  is a typical generator of [ ],L L , and if z M∈ , then identity (⋅) 
above shows that [ ]( ) [ ]( ) [ ]( ), , ,Tr x y z Tr x y z Tr y z x= = . By definition of M, 
[ ] [ ], ,y z L L∈ , so the right side is 0 by hypothesis. 

The Killing form 
Definition 3.13. Let L be a finite-dimensional Lie algebra over F. We define a 

map 

L L F× →  

, ,x y x y→  

given by 

( ) ( )( ),x y tr ad x ad y=  

for ,x y L∈ . We refer to as the Killing form on L. 
Proposition 3.14. Let L be a finite-dimensional Lie algebra over F. The Killing 

form on L is a symmetric bilinear form. Moreover, we have 

[ ] [ ], ,xy z x yz=  

Proof: 

[ ] [ ] ( )( ) ( ) ( ) ( ) ( )( ) ( )( ),xy z tr ad xy ad z tr ad x ad y ad y ad x ad z= = −  

( ) ( ) ( )( ) ( ) ( ) ( )( )tr ad x ad y ad z tr ad y ad x ad z−  

( ) ( ) ( )( ) ( ) ( ) ( )( )tr ad x ad y ad z tr ad x ad z ad y−  

( ) ( ) ( ) ( ) ( )( )( )tr ad x ad y ad z ad z ad y−  

( ) [ ]( ) [ ],tr ad x ad yz x yz=  

Lemma 3.15. Let L be a finite-dimensional Lie algebra over F. Let I be an ideal 
of L. Define 

{ }: , 0I x L x I⊥ = ∈ =  

Then I ⊥  is an ideal of L. 
Proof: It is evident that I ⊥  is an F-subspace of L. Let ,x L y I ⊥∈ ∈  and 

z I∈ . 
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Then 

[ ] [ ], , ,0 0xy z x yz x= = =  

It follows that [ ]xy I ⊥∈ . 
Example 3.16: [5] ( )2,sl C . We write the elements as X aX bH cX+ −= + + . 
From the brackets between the basis vectors one finds the matrix expressions 

2 0 0 0 2 0 0 0 0
0 0 0 , 0 0 1 , 1 0 0
0 0 2 0 0 0 0 2 0

ad H ad X ad X+ −

−     
     = = = −     
     −     

 

and then the values ( )tr adH adH  etc. of the coefficients of the Killing form, 
with the result 

( )( )2 2, 8 4 .X X b ac trXκ = + =  

The bilinear form ,X Yκ  is then obtained by polarization. 
Lemma 3.17: [6] Let F have characteristic zero and be algebraically closed. Let 

n be a positive integer. For ( ), ,x y gl n F∈  define 

( ) ( ),t x y tr xy=  

The function ( ) ( ): , ,t gl n F gl n F F× →  is an associative, symmetric bilinear 
form. If L is a Lie subalgebra of ( ),gl n F , L is simple, and the restriction of t to 
L L×  is non-zero, then L is non degenerate. 

Proof. It is clear that t is F-linear in each variable. Also, t is symmetric because 
( ) ( )tr xy tr yx=  for ( ), ,x y gl n F∈ . To see that t is associative, let  

( ), , ,x y z gl n F∈ . Then 

[ ]( ) ( )( )
( ) ( )
( ) ( )
( )( )
[ ]( )

, ,

, ,

t x y z tr x yz zy

tr xyz tr xzy

tr xyz tr yxz

tr xy yx z

t x y z

= −

= −

= −

= −

=

 

Assume that L is a subalgebra of ( );gl n F , L is simple, and the restriction of t to 
L L×  is non-zero. Let ( ){ }: , 0,J y L t x y x L= ∈ = ∈ . We need to prove that J = 
0. We claim that J is an ideal of L. Let y L∈  and z J∈ ; we need to see that 
[ ],y z J∈ . Let x L∈ . Now [ ]( ) [ ]( ), , , , 0t x y z t x y z= =  because z J∈ . 

It follows that J is an ideal. Since L is simple, J = 0 or J = L. If J = L, then the 
restriction of t to L L×  is zero, a contradiction. Hence, J = 0. 

Homomorphisms and Representations 
Definition 3.18. A linear transformation : L Lϕ ′→  is called a homomor-

phism if [ ]( ) ( ) ( ), ,x y x yϕ ϕ ϕ=    , for all ,x y L∈ . ϕ  is called a monomor-
phism if its kernal is zero, an epimorhpism if its image equals L′ , and an iso-
morphism if ϕ  is both a monomorphism and epimorphism, that is, if ϕ  is 
bijective. 

[7] A representation of a Lie algebra L is a homomorphism ( ): L gl Vϕ →  
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(V = vector space over F). Although we require L to be finite dimensional, it is 
useful to allow V to be of arbitrary dimension: gl(V) makes sense in any case. 
However, for the time being the only important example to keep in mind is the 
adjoint representation ( ):ad L gl L→  introduced, which sends x to ad x, 
where ( ) [ ]ad x y xy= . (The image of ad is in ( )DerL gl L⊂ , but this does not 
concern us at the moment.) It is clear that ad is a linear transformation. To see 
that it preserves the bracket, we calculate: 

[ ]( ) ( ) ( )
[ ]( ) [ ]( )

[ ] [ ]
[ ] [ ]

[ ] [ ]( )

,ad x ad y z ad x ad y z ad y ad x z

ad x yz ad y xz

x yz y xz

x yz xz y

xy z ad xy z

= −

= −

   = −   
   = +   
 = = 

 

what is the kernel of ad? It consists of all x L∈  for which ad x = 0, i.e., for 
which [xy] = 0 (all y L∈ ). So Ker ( )ad Z L= . This already has an interesting 
consequence: If L is simple, then ( ) 0Z L = , so that ( ):ad L gl L→  is a mo-
nomorphism. This means that any simple Lie algebra is isomorphic to a linear 
Lie algebra. 

Example 3.19. The special linear group ( ),SL n F  denotes the kernel of the 
homomorphism 

( ) { }det : , 0xGL n F F x F x→ = ∈ ≠  

where F is a feld. 
We will now forge a proof of Lie algebra isomorphism theorems analogous to 

the ring theory isomorphisms described in the introduction. 
Automorphisms 
Definition 3.20. The set of inner automorphisms of a ring, or associative 

algebra A, is given by the conjugation element, using right conjugation, such 
that: 

:a A Aφ →  

( ) 1
a x a xaφ −=  

Given ,x y A∈ : 

( ) ( ) ( )( ) ( ) ( )1 1 1 1 1
a a axy a xy a a xaa ya a xa a ya x yφ φ φ− − − − −= = = =  

where, sφ  is an (invertible) homomorphism that contains 1
aφ
− . Therefore aφ  

constitutes an isomorphism onto itself. Since the composition of conjugation is 
associative, 1a xa−  is often denoted as ax . 

Definition 3.21. An automorphism of L is an isomorphism of L onto itself. 
Aut L denotes the group of all such. 

An automorphism of the form exp(adx), with adx nilpotent, i.e., ( ) 0k
xad =  

for some 1k > , is called inner. 
[4] Example 3.22. Let L be a Lie algebra such that ( ),L sl n F= , ( ),g GL n F∈ . 
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The map : L Lϕ →  defined by 1tx gx g −→ −  ( tx  = the transpose of x) belongs 
to Aut L. When n = 2, g = the identity matrix, we can prove that Aut L is inner. 

( ) ( ) ( ) ( )1 1t t ttr gx g tr gg x tr x tr x− −− = − = − = −  {Since g = the identity matrix}  

( ) ( )10 0ttr x tr gx g −⇒ = ⇔ − =  

Therefore, the map is a linear automorphism of ( ),sl n F . If we apply the 
transpose to the commutator, for ,x y L∈ , we have: 

[ ] ( ) ( ) ( ), t t t t

t t t t t t

x y xy yx xy yx

y x x y y x

= − = −

 = − =  
 

Therefore: 

[ ] [ ] { }

( )

( ) ( )

1 1

1 1 1

1 1 1 1 1

, , , By properties of the transpase

,

,

t t t

t t t t t t t t

t t t t t t t

x y g x y g g y x g

g y x x y g gy x g gx y g

gy g gx y gy g gx g gx g gy g

x y

ϕ

ϕ ϕ

− −

− − −

− − − − −

 = − = −  

= − = −

 = = − 
=   

 

Therefore, ' is a homomorphism. Thus Aut L is inner. 
Definition 3.23.When adx is nilpotent, the inner automorphism constructed 

is called Int L. For Aut ,l x Lσ ∈ ∈ , 

( ) ( )
1

x xad adσσ σ − =  when ( ) ( )( )1exp expx xad adσσ σ − =  

[4] Example 3.24. Let σ  be the automorphism of ( )2,sl F  give by the fol-
lowing: let ( )2,L sl F∈ , with standard basis (x; y; h). Define  

( )exp exp expad x ad y ad xσ = ⋅ − ⋅ . We can show that ( )x yσ = − , ( )y xσ = − , 
( )h hσ = − . 
We have [ ] [ ] [ ], , , 2 , , 2x y h h y y h x x= = − = −  

( ) ( ) ( )

( ) ( )

( )( ) ( )( ) ( )

[ ] ( )( )( )

[ ]( )

2

2

exp exp exp

exp 1
2!

1exp
2!

1exp ,
2!

exp ,

x adx ad y adx x

ad y
adx ad y x

adx x ady x ad y x

adx x y x ad y h

adx x h y h

σ = ⋅ − ⋅

 −
 = ⋅ + − +
 
 

= ⋅ + 
 − + −

 = ⋅ − + − 
 

= ⋅ + + −

 
 

( )
( )

( ) [ ] [ ] [ ]( ) [ ] [ ] [ ]

( ) ( ) ( )

2

1
2!

, , 2 ,
, , ,

2! 2! 2!

2

ad x
adx x h y

x x x x x x h
x h y x x x h x y

x h y x h x
y

 
 = + + + −
 
 

   −  = + − + + − + + −
 
 

= + − + − − +

= −
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( ) ( ) ( )
( ) ( )

[ ] [ ]

( ) ( ) ( )

2

2

exp exp exp

exp 1
2!

, ,
exp ,

2

exp 1
2!

y adx ad y adx y

ad x
adx adx y

x x y
adx y x y

ad y
adx ad y y h x

σ = ⋅ − ⋅

 
 = ⋅ + +
 
 
    = ⋅ + +
 
 
 −
 = ⋅ + − + + −
 
 

 

( ) [ ] [ ] [ ]( )

[ ] [ ] [ ]

( )
( ) ( )

2

exp , , ,

, , , , , ,
2! 2! 2!

exp 2

1
2!

adx y h x y y y h y x

y y y y y h y y x

adx y h y x h y

ad x
adx x

x


= ⋅ + − + − + − − −


      − − − − − −       + + −

  
= ⋅ + − − − +

 
 = + + −
 
 

= −

 

( ) ( ) ( )

( ) ( ) ( )

( ) [ ] [ ]

( ) ( ) ( )

( ) [ ] [ ]( ) [ ] [ ]

2

2

exp exp exp

exp exp 1
2!

, ,
exp exp ,

2!

exp 1 2
2!

, , 2 , ,
exp 2 , 2 ,

2! 2!

h adx ad y adx h

ad x
adx ad y adx h

x h h
adx ad y h x h

ad y
adx ad y h x

y y h y y x
adx h x y h y x

σ = ⋅ − ⋅

 
 = ⋅ − ⋅ + +
 
 
    = ⋅ − ⋅ + +
 
 

 −
 = ⋅ + − + −
 
 
     − − − −     = ⋅ − + − − − + −

 
 




 

 

( ) ( ) ( )
( )

( ) ( )

( ) [ ] [ ]( ) [ ] [ ]

( ) ( )

2

exp 2 2 2 0 2

exp 2

1 2
2!

, , , ,
2 , 2 , 2

2 2

2 2 0

adx h x y h y

adx h x

ad x
adx h x

x x h x x x
h x x h x x

h x x
h

= ⋅ − + − − + +  
= − −

 
 = + + − −
 
 

        = − − + − − + − −
 
 

= − − + −

= −

 

4. The Classical Lie Algebras 

Classical algebras are finite-dimensional Lie algebras. Let F have characteristic 
zero and be algebraically closed. The classical Lie algebras over F are ( )1,sl l F+ , 

( )2 1,so l F+ , ( )2 ,sp l F  and ( )2 ,so l F  (for l positive integer) has an associated 
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algebra, represented by symmetric, skew symmetric, and orthogonal matrices. 
( )1,sl l F+ -special linear algebra ( 1l ≥ ) 

The set of all endomorphisms of V having trace zero is denoted by sl(V), the 
special linear algebra. ( )1,sl l F+  is inherited from ( )1,gl l F+ , and is de-
fined by [ ], XY YX Y X= −  for ( ), 1,X Y sl l F∈ + . 

That, 

[ ] ( ) ( ), 0tr x y tr xy tr yx= − = . Since the trace of a matrix preserves bilinearity g 

[ ] [ ] [ ]( ) [ ] [ ] [ ], , , , , , ,0 ,0 ,0 0tr x y z y z x z x y tr x tr y tr z     + + = + + =       

so actually not only is the bracket of two endomorphisms in ( )sl V  back in the 
subspace, the bracket of any two endomorphisms of ( )gl V  lands in ( )sl V . In 
other words: ( ) ( ) ( ),gl V gl V sl V=   . 

Choosing a basis, we will write the algebra as ( )1,sl l F+ . It should be clear 
that the dimension is ( )21 1l + − , since this is the kernel of a single linear func-
tional on the ( )21l +  dimensional, ( )1,gl l F+  but let’s exhibit a basis anyway. 
All the basic matrices ije  with i j≠  are traceless, so they’re all in ( ),sl n F . 
Along the diagonal, ( ) 1ijtr e = , so we need linear combinations that cancel each 
other out. It’s particularly convenient to define 

1, 1i ii i ih e e + += −  

So we’ve got the ( )21l +  basic matrices, but we take away the ( )1l +  along the 
diagonal. Then we add back the l new matrices ih , getting ( )2 11l + −  matrices 
in our standard basis for ( )1,sl l F+  verifying the dimension. 

We sometimes refer to the isomorphism class of ( )1,sl l F+  as lA  
( )2 1,sl l F+ -special orthagonal algebra ( 2l ≥ ) 

The set of all endomorphisms of V with dimension 2 1l + . Let F have charac-
teristic zero and be algebraically closed, and let l be a positive integer. Let 

( )2 1,s gl l F∈ +  be the matrix 
1 0 0
0 0
0 0

l

l

s I
I

 
 =  
  

 

corresponds to the orthogonal algebra. 
Here, lI  is the l l×  identity matrix. Recall a matrix ( )n nA M F×∈  is called 

orthogonal if tAA I= . The orthogonal algebra is a subalgebra of gl(V). 
We sometimes refer to the isomorphism class of ( )2 1,so l F+  as lB  

( )2 ,sp l F -simplectic algebra ( 3l ≥ ) 
The set of endomorphisms of V having dim 2V l= . Let F have characteristic 

zero and be algebraically closed, and let l be a positive integer. Let ( )2 ,s gl l F∈  
be the skew symmetric matrix  

0
0
l

l

I
s

I
 

=  − 
 

Here, lI  is the l l×  identity matrix. Recall that a matrix ( )n nA M F×∈  is 
called skew-symmetric if tA A= − . We have ( ) ( )2 , 2 ,sp l F sl l F⊂ . 
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We sometimes refer to the isomorphism class of ( )2 ,sp l F  as lC  
( )2 ,so l F -orthogonal algebra ( 4l ≥ ) 

The set of all endomorphisms of V with dimension dim 2l= . Let F have 
characteristic zero and be algebraically closed, and let l be a positive integer. Let 

( )2 1,s gl l F∈ +  be the matrix 

0
0
l

l

I
s

I
 

=  
 

 

Here, lI  is the l l×  identity matrix. We define ( )2 ,so l F  to be the Lie sub-
algebra of ( )2 ,gl l F .We have ( ) ( )2 , 2 ,so l F sl l F⊂ . 

We sometimes refer to the isomorphism class of ( )2 ,so l F  as lD  

5. Root Systems 

Definition 5.1: [6] Let V be a finite-dimensional vector space over R, and let 
( ).,.  be an inner product (here it is a positive definite, bilinear, symmetric form). 
By definition, ( ).,. :V V R× →  is a symmetric bilinear form such that ( ), 0x x >  
for all non-zero x V∈ . Let v V∈  be non-zero. We define the reflection de-
termined by v to be the unique R linear map :vs V V→  such that ( )vs v v= −  
and ( )vs w w=  for all ( )w Rv ⊥∈ . A calculation shows that vs  is given by the 
formula 

( ) ( )
( )

2 ,
,v

x v
s x x v

v v
= −  

for x V∈ . Another calculation also shows that vs  preserves the inner product 
( ).,. , i.e., 

( ) ( )( ) ( ), ,v vs x s y x y=  

for ,x y V∈ ; that is, vs  is in the orthogonal group ( )O V . Evidently, 

( )det 1vs = −  

We will write 

( ) ( )
( )
2 ,

,
,
x y

x y
y y

=  

for ,x y V∈ . We note that the function .,. :V V R× →  is linear in the first 
variable; however, this function is not linear in the second variable. We have 

( ) ( ),vs x x x v v= −  

for x V∈ . 
Definition 5.2: A root system R in V is a finite set R V  s.t. 
1) The set R is finite, does not contain 0, and spans V. 
2) If Rα ∈ , then α and −α are the only scalar multiples of α that are con-

tained in R. 
3) If Rα ∈  then ( )s R Rα = , so that sα  permutes the elements of R. 
4) for all , Rα β ∈  we have , Zα β ∈ , 
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Proposition 5.3: [6] Let the notation be as in the discussion preceding the 
proposition. The subset φ  of the inner product space V is a root system. 

Proof. It is clear that (1) is satisfied. (2) is satisfied. To see that (3) is satisfied, 
let ,α β φ∈ . Then 

( ) ( )
( ) ( )

2 ,
,

s hα α

β α
β β α β β α

α α
= − = −  

we have ( )hαβ β α φ− ∈ . It follows that ( )sα β φ∈  so that (3) is satisfied. To 
prove that (4) holds, again let ,α β φ∈ . We have 

( )
( )

2 ,
,

,
α β

α β
β β

=  

we have 

( )
( ) ( )2 ,

,
hβ

α β
α

β β
=  

Definition 5.4: [8] Let { } ( ): :W s R GL Vα α= ∈ ⊆ . The group W is called 
the Weyl group of R. 

Theorem 5.5: [6] (Weyl’s Theorem). Let F be algebraically closed and have 
characteristic zero. Let L be a finite-dimensional semi-simple Lie algebra over F. 
If ( ),Vϕ  is a finite-dimensional representation of L, then V is a direct sum of 
irreducible representations of L. 

Proof. By induction, to prove the theorem it will suffice to prove that if W is a 
proper, non-zero L-subspace of V, then W has a complement, i.e., there exists an 
L-subspace W' of V such that V W W ′= ⊕ . Let W be a proper, non-zero 
L-subspace of V. 

We first claim that W has a complement in the case that dim dim 1W V= − . 
Assume that dim dim 1W V= − . 

We will first prove our claim when W is irreducible; assume that W is irre-
ducible. The kernel ( )ker ϕ  of ( ): L gl Vϕ →  is an ideal of L. By replacing 

( ): L gl Vϕ →  by the representation ( ) ( ): kerL gl Vϕ ϕ → , we may assume 
that ϕ  is faithful. Consider the quotient V W= . By assumption, this is a 
one-dimensional L-module. Since [ ],L L  acts by zero on any one-dimensional 
L-module, and since [ ],L L L= . It follows that L acts by zero on V W= . This 
implies that ( )L V Wϕ ⊂ . In particular, if C is the Casmir operator1 for ϕ  
then CV W⊂ . Hence, ker(C) is an L-submodule of V; we will prove that 

( )kerV W C= ⊕ , so that ker(C) is a complement to W. To prove that ker(C) is a 
complement to W it will suffice to prove that ( )ker 0W C =  and  

( )dim ker 1C = . Consider the restriction WC  of C to W. This is an L-map from 
W to W. 

Since W is irreducible, there exists a constant a F∈  such that ( )C w aw=  
for w W∈ . Fix an ordered basis 1, , tw w  for W, and let v V∉ . Then 1, , tw w  
v is an ordered basis for V, and the matrix of C in this basis has the form 

 

 

1Let L be a Lie algebra over F, let V be a finite-dimensional F-vector space, and let ( ): L gl Vϕ →  

be a representation. Define :V L L Fβ × →  by ( ) ( ) ( )( ),V x y tr x yβ ϕ ϕ=  for ,x y L∈ . 
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0

a

a

∗ 
 ∗ 
 ∗
 
 



 

It follows that ( ) ( )dimtr C W a= . On the other hand,, we have ( ) dimtr C L= . It 
follows that ( )dim dimW a L= , and in particular, 0a ≠ . Thus, C is injective on 
W and maps onto W. Therefore, ( )ker 0W C = , and  

( ) ( )dim ker dim dim dim dim 1C V im C V W= − = − = . This proves our claim in 
the case that W is irreducible. 

We will now prove our claim by induction on dim V. We cannot have 
dim 0V =  or 1 because W is non-zero and proper by assumption. Suppose that 
dim 2V = . Then dim 1W = , so that W is irreducible, and the claim follows 
from the previous paragraph. Assume now that dim 3V ≥ , and that for all 
L-modules A with dim dimA V< , if B is an L-submodule of A of codimension 
one, then B has a complement. If W is irreducible, then W has a complement by 
the previous paragraph. Assume that W is not irreducible, and let 1W  be a 
L-submodule of W such that 10 dim dimW W< < . Consider the L-submodule 

1W W=  of 1V W= . This L-submodule has co-dimension one in 1V W= , and 

1dim dimV W V= < . By the induction hypothesis, there exists an L-submodule U 
of 1V W=  such that 

1 1V W U W W= ⊕  

We have dim 1U = . Let 1:p V V W→  be the quotient map, and set  
( )1M p U−= . Then M is an L-submodule of V, 1W M⊂ , and 1M W U= . We 

have 

1 1dim dim dim 1 dimM W U W= + = +  

Since 1dim 1 dim 1 dim dimM W W V= + < + ≤ , we can apply the induction hy-
pothesis again: let 2W  be an L-submodule of M that is a complement to 1W  in 
M, i.e., 

1 2M W W= ⊕  

Theorem 5.6: [6] Let V be a finite-dimensional vector space over R equipt 
with an inner product ( ).,. . The Cauchy-Schwartz inequality asserts that 

( ),x y x y≤  

for ,x y V∈ . It follows that if ,x y V∈  are nonzero, then 

( ),
1 1

x y
x y

− ≤ ≤  

If ,x y V∈  are nonzero, then we define the angle between x and y to be the 
unique number 0 θ≤ ≤ π  such that 

( ), cosx y x y θ=  

The inner product measures the angle between two vectors, though it is a bit 
more complicated in that the lengths of x and y are also involved. The term, an-
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gle does make sense geometrically. For example, suppose that 2V R=  and we 
have:  

 
Project x onto y, to obtain ty: 

 
Then we have 

x z ty= +  

Taking the inner product with y, we get 

( ) ( ) ( ), , ,x y z y ty y= +  

( ) ( ), 0 ,x y t y y= +  

( ) 2,x y t y=  

( )
2

,x y
t

y
=  

On the other hand, 

cos
ty
x

θ =  

cos
y

t
x

θ =  

cos
x

t
y

θ=  

If we equate the two formulas for t we get ( ), cosx y x y θ=  We say that two 
vectors are orthogonal if ( ), 0x y = ; this is equivalent to the angle between x and 
y being 2π . If ( ), 0x y > , then we will say that x and y form an acute angle; 
This is equivalent to 0 2θ< < π . If ( ); 0x y < , then we will say that x and y 
form an obtuse angle; this is equivalent to 2 θπ < < π . Non-zero vectors also 
define some useful geometric objects. Let v V∈  be non-zero. We may consider 
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three sets that partition V: 

( ){ } ( ){ } ( ){ }: , 0 , : , 0 , : , 0x V x v P x V x v y V x v∈ > = ∈ = ∈ <  

The first set consists of the vectors that form an acute angle with v, the middle 
set is the hyperplane P orthogonal to Rv, and the last set consists of the vectors 
that form an obtuse angle with v. We refer to the first and last sets as the 
half-spaces defined by P. Of course, v lies in the first half-space. The formula for 
the reflection sv shows that 

( )( ) ( ), ,vs x v x v= −  

for x in V, so that S sends one half-space into the other half-space. Also, S acts by 
the identity on P. Multiplication by −1 also sends one half-space into the other 
half-space; however, while multiplication by −1 preserves P, it is not the identity 
on P. 

Example 5.7: A1: The only rank 1 root system is V R=  with inner product 
( );x y xy=  and roots { }, 0R α α= − = . Its Weyl group is given by 2W Z= . 
We call this root system A1. This is the root system of sl2. 

 
Example 5.8: [8] 1 1A A× : Take 2V R=  with the usual inner product. Then 
{ }1 1 2 2, , , eR e e e− −=  with the standard basis vectors is a root system. Note that 

this is 1 1A A×  and therefore not irreducible. Here 2 2W Z Z= ×  (Figure 1). 

2A : Let ( ), , 1V Vα α β β α β= = = − . Then 3W S= . We call this root system 

2A , it appears as the root system of 3sl . 

2B : Let 1eα = , ( ), 1α α = , 2 1e eβ = − , ( ), 2β β = , ,α α β+  are short  
 

 
Figure 1. Root systems of rank 2. 

−α               α
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roots, , 2β α β+  long roots. Then W is the symmetry group of the square, i.e. 

8W D= , the dihedral group of order 8. This is the root system of 4sp  and 5so . 

2G : Also 12D  appears as Weyl group of a root system, called 2G . 
Example 5.9: Let V be a vector space over R with an inner product ( ).,. . Let 

,x y V∈  and assume that x and y are both non-zero. The following are equiva-
lent: 

1) The vectors x and y are linearly dependent. 
2) We have ( ) ( )( ) 2 22, , ,x y x x y y x y= = . 
3) The angle between x and y is 0 or π. 
Proof. Let θ  be the angle between x and y. We have 

( ) 2 22 2, cosx y x y θ=  

Assume that ( ) ( )( ) 2 22, , ,x y x x y y x y= = . Then ( ) 2 22, 0x y x y= ≠ , and 
2cos 1θ = , so that cos 1θ = ± . This implies that 0θ =  or 2θ = π . 

Suppose that ( ) ( )( )2, , ,x y x x y y= . We have 

( )
( )

( )
( ) ( ) ( )

( ) ( ) ( )
( )

( )

( ) ( )
( )

( ) ( )

( ) ( )

2

2

2

, , , ,
, , 2 , ,

, , , ,

,
,

,

, ( , )
,

( , )
, ,

0

x y x y x y x y
y x y x y y x y x x

x x x x x x x x

x y
y y

x x

x x y y
y y

x x
y y y y

 
− − = − +  

 

= −

= −

= −

=

 

It follows that ( )
( )

,
0

,
x y

y x
x x

− = , so that x and y are linearly dependent. 

Example 5.10: [6] Let V be a finite-dimensional vector space over R equipt 
with an inner product ( ).,. , and let R be a root system in V. Let , Rα β ∈ , and 
assume that α β≠ ±  and β α≥ . Let θ  be the angle between α and β. Ex-
actly one of the following possibilities holds Figure 2. 

Proof. By the assumption β α≥ . We have ( ) ( )2 2, ,β β β α α α= ≥ = , 
so that 

( )
( )

( )
( )

2 , 2 ,
, ,

, ,
β α α β

β α α β
α α β β

= ≥ =  

 

 
Figure 2. Possible angles and ratio of norms between pairs of roots. 
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we have that ,α β  and ,β α  are integers, and we have  
{ }, , 0,1, 2,3α β β α ∈ . These facts imply that the possibilities for ,α β  and 

,β α  are as in the table. 
Assume first that , , 0β α α β= = . From above, 2, , 4cosα β β α θ= .  
It follows that cos 0θ = , so that 2 90θ = π = . 
Assume next that , 0β α ≠ . Now 

( )
( )

( )
( )

( )
( )

, 2 , , ,
, , 2 , ,

β α β α β β β β
α β α α α β α α

= =  

so that 
,
,

β α
α β

 is positive and 

,
,

β α β
α β α

=  

This yields the β α  column. Finally, 

( )
( ) 2

2 cos2 ,
,

,
α β θα β

α β
β β β

= =  

, 2 cos
α

α β θ
β

=  

so that 

1cos ,
2
β

θ α β
α

=  

This gives the cosθ  column. 
Definition 5.11: R is simply laced if all the roots are of the same length (e.g. 

1A , 1 1A A× , 2A , not 2B , 2G ). 
Example 5.12: [6] Let 2V R=  equipt with the usual inner product ( ).,. , and 

let R be a root system in V. Let γ  be the length of the shortest root in R. Let S be 
the set of pairs ( ),α β  of non-colinear roots such that α γ=  and the angle θ 
between α and β is obtuse, and β is to the left of α. The set S is non-empty. 

Fix a pair ( ),α β  in S such that θ is maximal. Then 
1) ( 2A  root system) If 120θ =  (so that α β= ) then R, α, and β are as 

follows Figure 3: 
2) ( 2B  root system) If 135θ =  (so that 2β α= ) then R, α, and β are 

as follows Figure 4: 
3) ( 2B  root system) If 150θ =  (so that 3β α= ) then R, α, and β are 

as follows Figure 5: 
Proof. Let ( ),α β  be a pair of non-colinear roots in R such that α γ=  

such a pair must exist because R contains a basis which includes α. If the angle 
between α and β is acute, then the angle between α and −β is obtuse. Thus, there 
exists a pair of roots ( ),α β  in R such that α γ=  and the angle between 
αand β is obtuse. If β is the right of α, then −β forms an acute angle with and is 
to the left of α; in this case, ( )sα β  forms an obtuse angle with α and ( )sα β  is 
to the left of β. It follows that S is non-empty. 
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Figure 3. A2 root system θ = 120˚. 

 

 
Figure 4. B2 root system θ = 135˚. 

 

 
Figure 5. B2 root system θ = 150˚. 

 
Assume that 120θ =  so that α β= . It follows that  
, , , , , Rα β α β α β α β+ − − − − ∈ . By geometry, α β α β+ = + . It follows 

that R contains the vectors in 1. Assume that R contains a root other than  
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, , , , ,α β α β α β α β+ − − − − . We see that must lie halfway between two adjacent 
roots from , , , , ,α β α β α β α β+ − − − − . This implies that θ  is not maximal, a 
contradiction. 

Assume that 135θ =  so that 2α β= . We have , 2 Rα β α β+ + ∈ . It 
follows that R contains , , , 2 , , , , 2α β α β α β α β α β α β+ + − − − − − −  so that R 
contains the vectors in 2. Assume that R contains a root δ  other than  

, , , 2 , , , , 2α β α β α β α β α β α β+ + − − − − − −  
Then δ  must make an angle strictly less than 30° with one of  
, , , 2 , , , , 2α β α β α β α β α β α β+ + − − − − − −  
Assume that 150θ =  so that 3α β= . We have ,3 Rα β α β+ + ∈ . By 

geometry, the angle between α  and 3α β+  is 30°. By geometry, the angle 
between β  and 3α β+  is 120°. By 3 3 2 Rβ α β α β+ + = + ∈ . It now follows 
that R contains the vectors in 3. Assume that R contains a vector δ  other than 

, , , 2 ,3 ,3 2 , , , , 2 , 3 , 3 2α β α β α β α β α β α β α β α β α β α β+ + + + − − − − − − − − − − . 
Then must make an angle strictly less than 30° with one of  

, , , 2 ,3 ,3 2 , , , , 2 , 3 , 3 2α β α β α β α β α β α β α β α β α β α β+ + + + − − − − − − − − − − . 

6. The Future Perspective of This Paper 

The future perspective of this paper is to support me in writing a book on Lie 
algebras. In addition, it is possible to do work for each of the titles in the paper. 
Each of the titles creates an opportunity for research, because from each title, 
there are many opportunities for research and to write. My future is to work on 
comparing many facts and applying leftist algebras in everyday life. Comparing 
all these disciplines with left algebras, we see closely connectivity and the need to 
apply and use it properly. 
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