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Abstract 
It is commonly known that polyploidization has become one of major forces 
for a speciation and evolution, especially with evolutionary fixed potential 
agronomic traits in plants. Although several studies demonstrate that allopo-
lyploid plants were successful in developing novel crops, autopolyploid ones 
are also more substantial and worth exploring. Obviously, autopolyploid de-
velopment via sexual or asexual pathways can lead to advantages in biomass, 
changing process of development, and lots of benefits on coping with climate 
changes do not comprehend as a whole. This review shed light on 1) gaining 
gigantic effect and increasing phytochemical content; 2) enhancing biotic and 
abiotic tolerance to adapt to climate change; 3) changing in process of devel-
opment; 4) adapting ecology. Based on these benefits, this review provides 
breeders with several choices when they need in the breeding strategies. Also 
further review on prospects of polyploidy potato in food security is con-
cerned. 
 

Keywords 
Polyploidisation, Evolution, Agronomic Trait, Potato 

 

1. Introduction 

To start with, polyploidy is really vital for human beings mainly because it can 
open doors of opportunities for success in gaining newly potential crops. Over a 
century from finding an event that had a set of doubled chromosomes in some 
plants which was suggested as a polyploid hypothesis by Wing 1917, polyploids 
have actually undergone an ample history and numerous approaches [1] [2]. 
Based on origin of parental chromosome resulting polyploidization, two types of 
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polyploids could be classified, namely, paleopolyploids and neopolyploids. Pa-
leo-polyploid flora originated from polyploidy progenitor evolved and went 
through the milestones of genome doubling, but they existed as diploid due to its 
re-diploidization via reorganization of various chromosomal sets derived from 
their ancestors. Neopolyploid plants owned numerous sets of chromosomes 
which occurred on the periodic polyploidization after combining the parental 
chromosomes existing independence of each other [3]. According to homolog-
ous genomes originated from progenitors, polyploidy plants are also divided in-
to allopolyploid and autopolyploid. With regard to the former, it is combined 
from parents being different species which forms heterozygous genomes. Auto-
tetraploid results in the same genetic background of their parents having homo-
genous genomes [4]. Polyploidization was formed by either sexual pathway or 
somatic chromosome doubling. Concerning the first pathway, the form com-
prising of the somatic number of chromosomes in diploid pollen and eggs 
created in meiosis barring the gametophytic number was so-called unreduced 
gametes or 2n gametes to make polyploidy progenitors and the basic component 
was for polyploidy development in flora. While, a somatic chromosome doubl-
ing was established as chromosomal doubling in somatic cells through mitosis 
pathway [5] [6]. 

With polyploidisation in plant species becoming more prevalent and recur-
rent than ever, as well as being one of the most essential evolutionary phenome-
na, resulting in extensively investigating the research field is concerned. Moreo-
ver, polyploidy plants become such attention, several favorable agronomic traits 
are observed that refer to large organ size, vigor, lasting flowers period etc. [7]. 
When polyploidization occurred, several changes affected by allele dosage re-
lated to gene expression and regulation would lead to sequence elimination, 
methylation, transposon activation, up- and downregulation, subfunctionalisa-
tion and neofuctionalisation to form potential agronomic traits [8] [9]. Regard-
ing the former, loss and gain DNA sequences occurred in autotetraploid C. la-
vandulifolium, A. thaliana, B. rapa [10] [11] [12] [13] and changed in polymor-
phism at difference of generation of Phlox drummondii Hooker [14]; gene inte-
raction in A. arenosa [15]. Alteration on gene expression in polysomic polyploid 
was not high such as Paspalum notatum in 10,000 genes showed 42 homologous 
genes to 26 divergent genes having function and 22 novel sequences [16], 4.3% 
divergent expression in Isatis indigotica [17], 10% genes changed expression in 
potato [18], 6.09% pivotal differential expression in P. fortunei [19], 2.87% 
changed level of gene expression in Mulberry (Morus alba L.) [20], 11.5% of 
transcriptome and proteome correlation between diploid and tetraploid P. to-
mentosa [21], 17% differential gene expression in Tolmiea (Saxifragaceae) [22], 
2677 unigenes were significantly divergently expressed in tetraploid P. tomento-
sa [23], 22 genes that happened alternative splicing, showing abilities of making 
the difference of isoforms of protein in watermelon [24]. Methylation occurred 
in polysomic polyploid in rice, Malus × domestica Borkh, B. rapa [13] [25] [26]. 
Translocation appeared in rice and methylated class II of transposable elements 
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shown in A. thaliana [27] [28]. Change in miRNA in C. nankingense [29] [30]. 
Neofunctionalization was discovered in autotetraploid [16] [31] [32] [33] [34]. 
Subfunctionalization which is couples of genes exercise a subset of their original 
genetic functions revealed in maize, Arabidopsis [35] [36] [37]. Autotetraploid 
Lycopersicon esculentum changed the level of gene expression of the gene do-
sage such as malate dehydrogenase, acid invertase, glutamate dehydrogenase, 
and nitrate reductase [38]. Cis-regulatory elements showed extensive difference 
in regulatory elements and networks in ploidy Arabidopsis. Further, after po-
lyploidisation, dominance effects of allele interaction can occur and be heritable 
[39]. Another way to contribute to elite polyploidy rice is concerned, heterosis 
analysis and molecular regulation support long rice panicles [40]. The resur-
gence of interest in polyploid in recent decades has changed the previous hypo-
thesis which was evolutionary dead-ends in polysomic polyploids by major 
players in evolution [41] is pointed in Figure 1. This work provides insight into 
the features of naturally typed and resynthesized polysomic polyploid plants 
aimed to study evolutionary fixed potential agronomic traits including in ex-
tending size of organs and gaining more phytocompounds; reducing the effects 
of climate change by increasing biotic and abiotic tolerance; altering the deve-
lopmental process; and widening environmental living and having been typically 
summarized in Table 1, with special references in potato.  

2. Gigantic Effects and Enhance Phytochemical  

That polysomic polyploidy outrank diploid one in terms of organ size and bio-
mass typically asserts that up-regulation of genes related to cell division and cell 
expansion such as ARGOS, ANT (AITEGUMENTA), CYCD3;1, Growth Regu-
lating Factor 1 (AtGRF1) and EXPASIN 10 (AtEXPA10) [42] [43] [44], EXPB3  
 

 
Figure 1. Diagram of evolutionary fixed potential traits in polyploidisation modified 
from Van Hieu, 2019. 
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Table 1. Some polysomic polyploidy lead to evolutionary fixed potentially agronomic traits. 

Scientific name Ploidy Chromosome The alternation after polyploidisation Agronomic traits Ref. 

Lonicera japonica 
Thunb 

Diploid & 
autotetraploid 

2n = 2x = 18,  
2n = 4x = 36 

Increasing Na+ extrusion in root and supporting Na+ 
transport to leaf, enhancing photosynthesis 

Salt stress [73] 

Oryza sativa 
Nipponbare 

Diploid & 
autotetraploid 

2n = 2x = 24,  
2n = 4x = 48 

Increasing proline and proton transport; deducing MDA, 
and Na+ influx into the root 

Salt stress [71] 

Brassica rapa L. 
Diploid & 
autotetraploid 

2n = 2x = 20 
2n = 4x = 40 

Up-regulation of antioxidant APX, CAT, POD, SOD, and 
GR; mitigating ROS 

Salt stress [70] 

Paulownia tomentosa 
Diploid & 
autotetraploid 

2n = 2x = 40,  
2n = 4x = 80 

RNA transporter, phytohormone transduction and  
photosynthesis signal, protein processing, 
AP2/EREBP, MYB, NAC, and bHLH 

Salt stress 
[75] 
[79] 

Medicago sativa L. 
Diploid & 
autotetraploid 

2n = 2x = 16,  
2n = 4x = 32 

SNP markers associated to salinity stress, genes  
functionalized to abiotic stress linked to markers  
supporting salt tolerance 

Salt stress [76] 

Malus domestica 
Diploid & 
autotetraploid 

2n = 2x = 34,  
2n = 4x = 68 

Up-regulation of aquaporin gene  
(MdPIP1;1 and MdTIP1;1) 

Salt stress [72] 

Hordeum bulbosum 
Diploid & 
autotetraploid 

2n = 2x = 14,  
2n = 4x = 28 

miRNAs pitfall salinity stress Salt stress [78] 

Paulownia fortunei 
Diploid & 
autotetraploid 

2n = 2x = 40,  
2n = 4x = 80 

Rising of soluble sugars, up-regulated ATP synthase to 
increase ion transport changing proton 8 miRNAs more 
enhanced and new miRNAs 

Salt stress 
[74] 
[77] 

P. australis; 
P. fortunei; 
P. tomentosa; 

Diploid & 
autotetraploid 

2n = 2x = 40,  
2n = 4x = 80 

miRNAs and target genes associated to transcriptional  
regulation, hormone metabolism, and plant defense 

Drought stress 
[81] 
[82] 
[83] 

Dioscorea zingiberensis 
Diploid & 
autotetraploid 

2n = 2x = 20,  
2n = 4x = 40 

Initiation of the antioxidant defense system and increased 
heat tolerance 

Heat stress [85] 

Nicotiana benthamiana 
Tetraploid 
&octaploid 

2n = 4x = 38,  
2n = 8x = 76 

Rising antioxidant (SOD, CAT, APX...) Cold stress [86] 

Arabidopsis thaliana 
Diploid & 
autotetraploid 

2n = 2x = 10,  
2n = 4x = 20 

Genes related to Cu transported, AtHMA5, AtCOX17,  
and AtMT2b, activation of antioxidative defense, positive 
regulation of expression ABA-responsive genes 

Copper stress [89] 

Citrus sinensis L.  
Poncirustrifoliata L. 

Diploid &  
autotetraploid 

2n = 2x = 22,  
2n = 4x = 44 

Alternation of root anatomical characters Boron stress [88] 

Betula platyphylla 
Diploid & 
autotetraploid 

2n = 2x = 28,  
2n = 4x = 56 

Up-regulated genes associated to proline biosynthesis NaHCO3 stress [90] 

Malus ×  
domesticaBorkh 

Diploid & 
autotetraploid 

2n = 2x = 34,  
2n = 4x = 68 

Significantly increased Rvi6 resistance gene-locus 
Resistance of  
Venturia 

[91] 

Solanum chacoense Diploid & 
autotetraploid 

2n = 2x = 24,  
2n = 4x = 48 

Scab resistance originated from Solanum chacoense has 
introgressed into tetraploid 

Scab resistance 
[92] 
[114] 

Papaver somniferum L. 
Diploid & 
autotetraploid 

2n = 2x = 22,  
2n = 4x = 44 

Up-regulated alkaloid biosynthesis pathway through gene 
expression 

Increase morphine  
25% - 50%. 

[56] 

Citrullus lanatus 
Diploid,  
autotriploid and 
autotetraploid 

2n = 2x = 22,  
2n = 3x = 33,  
2n = 4x = 44 

Enhancing lycopen biosynthesis pathway via up-regulation 
genes related 

Increase  
lycopene contents 

[58] 

Linum album Diploid and 
autotetraploid 

2n = 2x = 18,  
2n = 4x = 36 

Increasing the pathway of PTOX biosynthesis by  
upregulated genes related 

Increase  
podophyllotoxin 
(PTOX) 

[59] 
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and TCP [45], the expression of lipid transport genes, wbc11-2 and cer5-2 [46] 
[47] [48] and by proteins related to cell proliferation, glutathione metabolic 
pathways and cellulose, chlorophyll, pectin, lignin synthesis [49] [50]. Cytosine 
methylation genome-wide was as a way to make large body size autotetraploid 
[51]. Enlarged organ size in polysomic polyploid plants usually leads to in-
creased yield and production crops [52]. These aforementioned benefits, poly-
somic polyploid enlarged size of plants, but in the case of autotetraploid Birch 
plant (Betula platyphylla) and apple plants (Malus domestica) were a dwarf 
morphology that affects by reduced phytohormone cues [53] [54].  

Likewise, polysomic polyploid also increased phytochemical in several plants 
[55], the best example of which are those which involve natural compounds such 
as tetrasomic tetraploid opium poppy (Papaver somniferum L.) enhanced many 
genes expression related to alkaloid biosynthesis pathway lead to increased 
morphine content 25% - 50% [56]. Cytosine methylation of genome-wide en-
hanced phytochemical in autotetraploid Cymbopogon [51]. Investigation on 
autotetraploids A. thaliana Col-0 showed that metabolites and genes related to 
TCA (tricarboxylic acid cycle) and GABA (γ-amino butyric acid) changed com-
pare with its diploid [57]. Lycopene in autotriploid watermelons increased due 
to a regulation of phytohormone on metabolic pathways and upregulation of 
genes related to biosynthetic lycopene [58]. Autotetraploid Linum album in-
creased concentration of podophyllotoxin (PTOX) caused by upregulated genes 
related to pathway of PTOX biosynthesis [59]. Autotetraploid Anoectochilus 
formosanus Hayata produced significantly more contents of total flavonoid and 
gastrodin [60]. Tetraploid cytotypes of Physalis angutala Linn. from Rajasthan 
increased palmitic acid, linoleic acid and linolenic acid [61]. In the last century, 
many plant breeders have given objects based on the outstanding advantages of 
polyploids. Those breeders have utilized natural and artificial polyploidy as a 
way to gain elite plant cultivars due to the fact that the increment in plant organs 
size derived from some of the most significant consequence of polyploidisation 
[62]. 

3. Changing Process of Development 

Polyploidy plants offer myriad benefits from enlarged flowers to more extensive 
the blooming period. A case in point is that whole genome duplication shifted 
the flowering time and tolerance to new environments in tetraploid Anacamptis 
pyramidalis [63]. Thus, based on study Brassica rapa (Chinese cabbage) by 
RNA-seq and sRNA-seq, it was revealed that autotetraploid one prolonged flo-
wering time due to an increase of phyto-hormone levels including the jasmonic 
acid and indole-3-acetic acid, while a decrease of the abscisic acid as well as re-
gulating of miRNA–target mRNA related to flowering period, petal growth, flo-
wering blooming, and pollen development [64]. After polyploidisation, meiotic 
stability becomes important because this processing becomes complicated. In 
studying autotetraploid Arabidopsis lyrata, it is uncovered that novel alleles of 
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ASY1 and ASY3 supported greater stability in the meiotic process [65] [66]. Te-
traploid Centaurea phrygia showed greater seed production [67]. Due to gigantic 
characteristics, autotetraploid rice is not only long and wide grains but also long 
panicle and seed setting that showed high heterosis and more potential agro-
nomic traits [68]. Based on using CRISPR/cas9 to knout out two genes TMD9-1 
and TMS5 in autotetraploid rice helped more pollen development which led to 
increasing rate of seeds [69]. 

4. Enhancing Abiotic & Biotic Stress Tolerance  

That polysomic polyploid plants increased abiotic stress tolerance and biotic re-
sistance was clearly observed in coping with adversely environmental conditions. 
In case of salinity stress, polysomic polyploid flora used several processes to 
adapt to high salt concentration condition such as increasing Na+ extrusion in 
root, higher Na+ transport to leaf, adjust osmotic, enhanced of genes expression 
related to antioxidant, mitigating ROS, photosynthesize cues, phytohormone 
transduction cues, protein processing, regulated transcription factors, changing 
SNP marker related to salt stress, upregulation of aquaporin genes, up-regulated 
ATP synthase to enhance ion transport changing proton; using miRNAs 
[70]-[79]. To cope with drought stress, polysomic polyploid plants used miRNAs 
pathways and target genes related to transcriptional regulation, hormone meta-
bolism and plant defense, an increase in ABA content [80] [81] [82] [83] [84]. 
Activation of antioxidant defense systems supported heat tolerance [85]. Poly-
somic polyploid plants enhanced cold stress tolerance by increasing antioxidant 
and epigenetic [86] [87]. Autotetraploid enhanced boron by changing root ana-
tomical characters and copper tolerance by enhanced Cu transport gene, activa-
tion of antioxidative defense, positive regulation of expression ABA-responsive 
genes [88] [89]. Autopolyploid birch plant (Betula platyphylla) increased ability 
to NaHCO3 stress tolerance by enhancing expression of some genes related to 
proline biosynthesis [90]. Autopolyploid enhanced to resistance of Venturia by 
significantly increased Rvi6 resistance gene-locus [91]. Likewise, Autotetraploid 
potato increased common scab resistance after crossing 2n gametes from diploid 
Solanum chacoense [92]. 

5. More Adaptation Ecology 

Polyploidization is one of the major adaptation ecologies such by focusing on 
growth, morphological traits as well as ecology invasion, pollinators [93]. After 
polyploidisation, the cell size increased to lead to change physiological manners 
with their environmental condition as well as combining multiple novel alleles 
and altering regulatory processes can create new potentially advantageous mor-
phological variation. These are to expand ecological space to polyploidy plants 
[94]. The adaptive potential from polyploidy Arabidopsis thaliana is caused by 
the increase resources of TE insertions in higher ploidy plant [95]. One of prior-
ities in genotype development is to gain through combination of potential traits 
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which benefits in stress tolerance and nutritional aspects as a way to reduce the 
effects of climate change [96]. The view is that polyploidization contributes to 
better adapting environment in terms of suitability for growth and other benefits 
of cell size. Breeders can benefit immensely from more ecological adapting after 
polyploidisation since it improves potential traits as a whole.  

6. Prospect of Polyploidy Potato Is a Main Non-Grain Staple  
Food  

The statistics display the world’s population will reach 9.7 billion people by 2050 
so this leads to 70% increase in food demand [97]. Producing more food, how-
ever, in conditions having the same or less resources will become the huge chal-
lenges for human beings. The global food need can be met by the potato crop 
because of diversities of cultivation and environment which are gained by being 
adaptable, high yielding and nutrition-rich. Productivity improvement can be 
achieved by the way of increasing yield or expanding areas where potatoes 
grown. Nowadays, a potato staple food accounts for the production of 380 mil-
lion metric tons according to Faostat 2019, and contributes for 1.3 billion people 
worldwide with popularly increasing the nutritious tubers [98]. Besides, the po-
tato’s adaptation with several soils and climates with being widely located from 
plain to high mountain regions of 4700 m compared with the sea level and also 
resist new drawbacks from biotic and abiotic are concerned [99]. Potato also 
impacts on society due to its having majority of nutrition and economy, espe-
cially with developing countries where potato output surpasses that in the other 
part of worldwide in ensuring food security [100] [101]. Being a source of em-
ployment and income also help to improve global food security from potato in 
developing countries due to the fact that potato can provide the major of vita-
mins, mineral, phytonutrients starch, protein as well as a source of energy and 
micronutrients [102] [103] [104]. Thus, potato utilizes water more efficiently 
than that for cereal crops that were up seven times (International Potato Center 
(CIP) 2018). With regard to the biodiversity, over 4000 native varieties including 
more than 180 wild relative potato were recorded [105]. In addition to being po-
lyploidy, potato seems to be one of the most complex genetic modes with the 
various ploidy levels such as 76% were identified diploids, 3% triploids, 12% te-
traploids, 2% pentaploids, and 7% hexaploids, among which tetraploid has the 
highest yield due to more level of genetic heterogeneity [106] [107] [108]. The 
practically empirical proofs shown that there were an existance of two groups of 
cultivated potato, one existed in high Andes of northern and central South 
America called the Andigenum group which consists of wide range of ploidy 
level, and the others are distributed in the lowlands southern Chile named the 
Chilotanum group which is tetraploid only [109]. 

In the history of potato development, the farmers have carefully selected po-
tato to maintain the diversity of high landraces in the native field based on 1) 
giving that features of flavor, textures, color and shapes to enhance their diet; 2) 
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providing cultivars that are capable of abiotic tolerance and biotic tolerance 
(diseases, pests) to assure the survival and harvesting; 3) contributing in special 
consuming in food processing or ceremonial cultures [109]. To succeed in se-
lecting the right traits after full testing and to create the number of seed tubers 
which supply to farmers, the breeders can take at least 15 years due to commer-
cial potato being tetraploid contains four copies of each chromosome, hundreds 
of thousands of seedlings must be created and tested to select just one with the 
potential traits [99]. Moreover, with the biological features making hereditary 
improvement in potato was more complexity than in other staple crops, a po-
werful and effective approach conducted by potato breeders was the unique ca-
pacity of among ploidy and wild relative potato to cross as a way to introgress 
favorable agronomic traits derived from their genetic pools into the aim of the 
potato breeding strategies [110] [111]. For instance, the genetic diversity of Jap-
anese potato cultivar was broadened by breeding with Andigena [112]. In 
another study, QTL associated with disease such Early Blight in tetraploid potato 
was identified in specific chromosomes [113]. The major QTL which is scab re-
sistance originated from Solanum chacoense has introgressed into tetraploid 
offspring to exhibit stability in common scab resistance [92] [114]. The two 
traits of tuber starch and plant maturity were mapped by QTL to support the 
prospect of breeding potato programs [115]. A large number of elite traits in te-
traploid potato linked to transcripts relating to development processes such as 
growth rate, high yield, tuber greening and early flowering … as well as biotic 
resistance were investigated to elucidate the relationship between phenotype and 
gene expression [116]. In addition to the flavor and textural traits having identi-
fied genes and marker related to beneficial alleles may contribute to improve 
nutritional basis of novel potato cultivars [117]. Several traits correlation to abi-
otic and biotic stress have been investigated and utilized as an artificial selection 
marker in breeding programs, including both modern and conventional me-
thods. However, that the adverse effects could be created by accumulating ra-
pidly deleterious mutations during the polyploidisation of potato notes that in 
development novel crops [118]. Based on studying transcriptome of cultivated 
potato varieties, it is revealed that tetraploid potato confers the genetic diversity 
of the high heterozygous [119]. With the genomic era becoming more useful 
than ever, it is more efficient to introgress multi-genic traits which will make it 
possible to utilize recessive alleles and identify rare alleles. Potato cultivars con-
taining favorable agronomic traits must be evaluated and planted in order to 
ensure high yield [120]. Using Next Generation genome sequence to study six 
polyploidy potato genomes revealed that valuable genetic resources relating to 
traits derived from native landraces have functioned in disease and pest resis-
tances as well as nutrition and fiber using breeding strategies [121]. Advances in 
technology are successfully applied in developing new potato cultivar. For ex-
ample, the CRISPR/cas 9 was also applied in tetraploid potato to successfully 
knockout StPDS gene or nucleotide transitions and transversions in the StALS1 
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gene by introduction of simultaneous nucleotides [122] [123]. This is essential 
for success to breeders for crop improvement goals [124].  

7. Conclusion 

In brief, due to advances in biotechnology, polyploidization is now capable of 
potentially making various crops containing favorable agronomic traits. While it 
is accepted that allopolyploid plants can often have positive effects on agricul-
ture, other views of autopolyploid ones are significantly more important. Ob-
viously, using autopolyploid developed by sexual or asexual method can be ad-
vantageous for reasons related to biomass, effectiveness on changing process of 
development, and lots of benefits on coping with climate changes. Concerning 
the former, whole genome doubling can perform better than (di)haploid coun-
terparts, and as a result utilizing autopolyploid enables gaining not only gigantic 
effect but also increasing phytochemical content. As far as ecological prospects 
are concerned, autopolyploids are comparatively more effective than (di)haploid 
ones due to enhancing biotic and abiotic tolerance to adapt to climate change. 
Eventually, autopolyploid plants can also be more beneficial in the process of 
development that is adequate enough which provides breeders with a wide range 
of options when they need. It seems to human beings that the technological 
progress which allows us to perform autopolyploid development via unreduced 
gametes and somatic chromosome doubling does outweigh the benefits in-
volved. With climate change becoming more serious than ever, we should create 
more elite crops as a way to address this problem assuring food security to those 
living on our planet. The polyploidy plants gained by sexual and asexual or so-
matic chromosomal doubling may affect how successful they are in their future 
crops development. It is unquestionable that polyploidy, whether sexual or so-
matically doubled chromosomes, is essential for success in gaining favorable 
agronomic traits.  
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