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Abstract 

The use of the Unmanned Aerial System (UAS) has attracted scientific atten-
tion because of its potential to generate high-throughput phenotyping data. 
The application of UAS to guar phenotyping remains limited. Guar is mul-
ti-purpose legume species. India and Pakistan are the world’s top guar pro-
ducers. The U.S. is the world guar largest market with an import value of >$1 
billion annually. The objective of this study was to test the feasibility of UAS 
phenotyping of plant height and canopy width in guar. The UAS data were 
collected from a field plot of 10 guar accessions on July 7, 2021, and Septem-
ber 27, 2021. The study was organized in a Randomized Complete Block De-
sign (RCBD) with 3 blocks. A total of 23 Vegetation Indices (VIs) were com-
puted. The analysis of variance showed significant genotypic effects on plant 
weight (p < 0.05) and canopy width (p < 0.05) during the first flight, and only 
on plant height (p < 0.05) during the second flight. Genotyping effects on 
most VIs were significant for both flights (p < 0.05). Normalized Difference 
Vegetation Index (NDVI) and Red Edge Normalized Difference Vegetation 
Index (NDRE) were significantly and highly correlated with plant height (r = 
0.74) and canopy width (r = 0.68). The results will be of interest in developing 
high throughput phenotyping approach for guar breeding.  
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1. Introduction 

Guar, [Cyamopsis tetragonoloba (L.)], is a diploid legume species (2n = 2x = 14) 
belonging to the family Fabaceae [1]. The world estimate of guar production is 
3.4 million metric tons per year, with India and Pakistan accounting for more 
than 80% of this production (https://www.fas.usda.gov/). The U.S. is the largest 
guar market in the world and the country imports guar valued at more than $1 
billion annually (http://lubbock.tamu.edu/). Guar is a multipurpose legume. 
Guar seeds have a significant amount of galactomannan known as guar gum 
content [2]. This product is used in the oil drilling industry, used as a food/feed 
ingredient, and has several cosmetic and pharmaceutical applications [3]. The 
immature guar pods can be consumed as vegetables [4]. Guar is also a good ro-
tational crop because it fixes atmospheric nitrogen via symbiosis with soilborne 
bacteria [5], which contributes to soil fertility. Additionally, guar is also used as 
green manure or forage. Guar forage yield ranges between 2.9 and 4.7 Mg/ha (dry 
matter) and had 162 to 225 g crude protein and 606 to 712 g in vitro digestible 
dry matter per kg of dry forage [6]. 

Guar is a drought- and heat-tolerant crop that is well-adapted in water-limited 
areas [7]. In the U.S., guar is primarily grown in the southern part of the country 
with Texas and Oklahoma being the top guar-producing states [8]. In this re-
gion, guar is planted between mid-May and mid-July, and the first freeze occur-
ring in early fall defoliates guar leaves, allowing for the mechanical harvest of 
guar seeds [6]. In the U.S., only 9 guar varieties have been released in the past 
four decades [9]. As a result, farmers are limited to few guar variety options. There-
fore, innovative breeding strategies to accelerate guar breeding are required. 

Unmanned Aerial System (UAS) has recently attracted attention because it can 
be used as a high-throughput phenotyping tool to accelerate plant breeding [10]. 
UAS phenotyping consists of collecting field plot images using a sensor mounted 
on a drone. These images are analyzed to extract structural and vegetation indices, 
which will be used as a selection and prediction tool for crop traits in plant breeding 
[11]. This technology has been successfully used to estimate agronomic traits 
such as plant height and grain yield in maize [12], and maturity and grain yield 
in soybean [13]. This technology has also been used to identify drought and heat 
stress affecting crops [14]. 

Plant height and canopy width are important breeding traits because they 
dictate plant architecture that will have practical agronomic applications [15]. 
For example, spreading-type plants can be used as cover crops, whereas more 
erect-type plants are suitable for mechanical harvest [16] [17]. Plant height and 
canopy width can be easily phenotyped when a limited number of genotypes are 
evaluated. However, each year, public plant breeders evaluate thousands of lines, 
and private plant breeding companies deal with millions of breeding plots. In 
this context, the development of high-throughput phenotyping technology to 
evaluate plant height and canopy width will be needed. To the best of our know-
ledge, there is no study aimed to investigate the use of UAS in phenotyping guar 
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traits. Therefore, the objectives of this study were to assess possible genetic vari-
ation in vegetation indices collected using UAS and to identify vegetation indices 
that best correlate with plant height and canopy width in guar. 

2. Materials and Methods 
2.1. Materials and Growing Conditions 

Ten guar accessions were used for this study. Seven accessions were advanced 
breeding lines from Texas A&M AgriLife Research. These breeding lines had 
different plant architectures. Two accessions were released Texas A&M AgriLife 
Research varieties, which were “Kinman” [18] and “Lewis” [19]. The other ac-
cession was “Santa Cruz” which was a released variety from Texas Tech Univer-
sity [20].  

The experiment was established at Locket, TX. The research plot is a property 
managed by the Texas A&M AgriLife & Extension Center, Vernon, TX. The 
study was conducted between May 15, 2021, and September 30, 2021. Weeds 
were removed either manually or by running row crop sweeps. The research plot 
was rainfed.  

Prior to planting, seeds were mixed with a certified organic Bradyrhizobium 
powder inoculant. Seeds of each guar accession were sown on a four-row plot on 
May 15, 2021, using a cone planter. Row spacing was 40 inches and plot length 
was 12 feet. The seeding rate was 10 seeds/feet. The study was organized in a 
randomized complete block design with three blocks. An alley of 4 feet was used 
to separate each block. The experimental unit was defined by the four-row plot 
seeds of each guar accession were sown.  

2.2. Data Collection 

The Unmanned Aerial System (UAS) data were collected using a RedEdge-MX 
sensor (Micasense Inc., Seattle, WA, USA; http://www.micasense.com/) that was 
mounted on a Matrice 200 Series (SZ DJI Technology Co. Ltd., Shenzhen, Chi-
na). This sensor resolution is 1280 × 960 pixels. It captured five narrow high res-
olutions spectral bands: blue (475 × 20 nm width), green (560 × 20 nm width), 
red (668 × 10 nm width), red-edge (717 × 10 nm width), and near-infrared 
(NIR) (840 × 40 nm width) [21]. Two flights were conducted for this study. The 
first flight was conducted on 07/07/2021 corresponding to late vegetative stage, 
where differences in guar plant architecture can be easily identified. The second 
flight was performed on 09/27/2021 when senescence began in some plants. Five 
square wooden plaques served as Ground Control Points (GCPs). Four GCPs 
were established on each field corner and the remaining one was placed inside 
the field. GCPs were marked with field flags so that the GCP locations were used 
for the subsequent flight. Flight parameters were the following: flight height = 30 
feet, drone speed = 15 miles/hour, overlap = 85% front 85% back, and angle = 90 
degrees. Prior to drone flying, sensor calibration was conducted by taking a pic-
ture of the MicaSense calibrated reflectance panel at about 3 feet above this pan-
el. Plant height and canopy width were collected from ten randomly plants from 
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each middle row. 

2.3. Image Data Processing  

The raw data images were transferred from a Secure Digital (SD) card to com-
puter. The first step was image stitching that was conducted using the Pix4D 
Mapper software program (Pix4D SA, Prilly, Switzerland). The final output was 
the creation of orthomosaic images. For each image collected, there were five 
files corresponding to the five multispectral bands. Each file was processed as a 
“.tif” file in Pix4D Mapper. The following parameters were used during image 
orthomosaicing in Pix4D Mapper: Output Coordinate System was Auto Detected, 
Processing Options Template was Standard/Ag Multispectral. Then, the follow-
ing steps were performed: processing of initial images, creation of points and 
mesh creation, and establishment of digital surface model (DSM), orthomosaic, 
and index.  

The orthomosaic images were imported to QGIS 3.22.3  
(https://www.qgis.org/en/site/) to extract the mean values of each spectral band 
at the plot level. The blue, red, green, rede-edge, NIR, and NDVI maps from 
Pix4D Mapper were used for the data extraction in QGIS 3.22.3. Data were ex-
tracted from the two middle rows for each experimental unit. Table S1 shows 
the 23 vegetation indices. 

2.4. Data Analysis 

Analyze of variance (ANOVA) was conducted to assess the genotypic effects on 
the mean value of each spectral band and the NDVI and chlorophyll data used 
for ground truthing. ANOVA was performed using JMP Pro 16 ® (SAS Institute 
Inc., Cary, NC, USA). The statistical model for ANOVA was the following.  

ij i j ijY G Bµ= + + +∈  

where i = 1, 2, …, 10 and j = 1, 2, 3. 
In the above equation, Yij was the mean value of the spectral band/ground 

truthing data for NDVI and chlorophyll data corresponding to ith genotype 
(fixed effect) that was located in the jth block (random effect). ij∈  represented 
the experimental error associated with the ijth observation. ANOVA was con-
ducted separately for the spectral band data that were extracted from different 
plot numbers. 

Pearson’s correlation coefficients between all data were computed using JMP 
Pro 16® (SAS Institute Inc., Cary, NC, USA). These coefficients were used to as-
sess the accuracy of UAS phenotyping of canopy width, chlorophyll, NDVI, and 
plant height in guar.  

3. Results 
3.1. Descriptive Statistics for Plant Height, Canopy Width, and  

Vegetation Indices 

Table 1 shows the descriptive statistics for plant height, canopy width, and  

https://doi.org/10.4236/ajps.2022.1312097
https://www.qgis.org/en/site/


W. Ravelombola et al. 
 

 

DOI: 10.4236/ajps.2022.1312097 1431 American Journal of Plant Sciences 
 

Table 1. LS Means and standard deviation (Std, n = 30) for plant height, canopy width, 
and vegetation indices. 

Parameters 
Flight 1 Flight 2 

LS Means Std LS Means Std 

Plant height (cm) 37.82 6.58 49.97 5.59 

Canopy width (cm) 33.42 5.44 36.87 4.99 

RCC 0.43 0.04 0.53 0.06 

GCC 0.57 0.04 0.46 0.06 

ExG 299.08 46.61 176.65 81.81 

ExG2 0.72 0.11 0.39 0.18 

ExR 0.02 0.09 0.28 0.14 

ExGR 0.69 0.2 0.11 0.32 

GRVI 0.15 0.07 −0.07 0.12 

VDVI 0.45 0.06 0.26 0.11 

VARI 0.15 0.07 −0.07 0.12 

MGRVI 0.29 0.14 −0.13 0.22 

CIVE −112.97 20.54 −59.01 36.04 

VEG 7.6 0.87 5.45 1.09 

WI −3.25 5.51 2.55 33.33 

NDVI 0.42 0.04 0.96 0.04 

NDRE 0.42 0.04 0.96 0.01 

GNDVI −1 0.03 −1 0.03 

EVI2 −1.04 0.01 −1.04 0.01 

SRRE 2.46 0.21 54.73 2.88 

MSR −1 0.01 −1 0.02 

CIG −1 0.03 −1 0.01 

CIRE 1.46 0.21 53.73 2.88 

MTCI 0.2 0.01 0.4 0.01 

RTVIC 2405.84 165.4 2073.91 353.96 

 
vegetation indices. The average plant height during the first flight was 37.82 cm. 
The average plant height during the second flight was 49.97 cm. Canopy width 
increased from 33.42 cm to 36.87 cm from the first flight to the second flight.  

Overall, the average values of the 23 vegetation indices from the second flight 
were numerically higher that the ones from first flight. The most significant 
change between the two flights was found for SRRE and CIRE where a 50-fold 
change was identified. During the first flight, the average values of RCC, GCC, 
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ExG, ExG2, ExR, ExGR, GRVI, VDVI, VARI, MGRVI, CIVE, VEG, WI, NDVI, 
NDRE, GNDVI, EVI2, SRRE, MSR, CIG, CIRE, MTCI, and RTVIC were 0.43, 
0.57, 299.08, 0.72, 0.02, 0.69, 0.15, 0.45, 0.15, 0.29, −112.97, 7.60, −3.25, 0.42, 
0.42, −1.00, −1.04, 2.46, −1.00, −1.00, 1.46, 0.20, and 2405.84, respectively. Dur-
ing the second flight, the average values of RCC, GCC, ExG, ExG2, ExR, ExGR, 
GRVI, VDVI, VARI, MGRVI, CIVE, VEG, WI, NDVI, NDRE, GNDVI, EVI2, 
SRRE, MSR, CIG, CIRE, MTCI, and RTVIC were 0.53, 0.46, 176.65, 0.39, 0.28, 
0.11, −0.07, 0.26, −0.07, −0.13, −59.01, 5.45, 2.55, 0.96, 0.96, −1.00, −1.04, 54.73, 
−1.00, −1.00, 53.73, 0.40, and 2073.91.  

3.2. Genotypic Effects on Plant Height, Canopy Width, and  
Vegetation Indices 

Table 2 summarizes the analysis of variance showing the effects of the 30 guar 
genotypes on plant height, canopy width, and vegetation indices. During the first 
flight, the effect the guar genotypes on plant height, canopy wight, RCC, GCC, 
ExG, ExG2, ExR, ExGR, GRVI, VDVI, VARI, MGRVI, CIVE, VEG, WI, NDVI, 
NDRE, GNDVI, EVI2, SRRE, MSR, CIG, CIRE, and MTCI was statistically sig-
nificant. However, all genotypes were not statistically different in terms of 
RTIVIC, indicating this parameter might not be suitable to identify genotypic 
differences in guar during earlier season growth stage. For the second flight, ge-
notypic effects were statistically significant for plant height and all 23 vegetation 
indices. The 30 guar genotypes were not statically different in terms of canopy 
width.  

3.3. Correlation Analysis 

Table 3 shows the Pearson’s correlation coefficients between plant height, ca-
nopy width, and vegetation indices at each flight. During the first flight, plant 
height was significantly correlated with RCC (r = −0.47), GCC (r = 0.47), ExG (r 
= 0.48), ExG2 (r = 0.47), ExR (r = −0.47), ExGR (r = 0.47), GRVI (r = 0.47), 
VDVI (r = 0.47), VARI (r = 0.47), MGRVI (r = 0.47), CIVE (r = −0.48), VEG (r 
= 0.47), NDVI (r = 0.74), NDRE (r = 0.74), EVI2 (r = 0.44), SRRE (r = 0.62), 
MSR (r = 0.44), CIRE (r = 0.62), MTCI (r = 0.47), and RTVIC (r = 0.49). The 
following vegetation indices, NDVI (r = 0.74), NDRE (r = 0.74), SRRE (r = 0.62) 
and CIRE (r = 0.62) were best correlated with plant height during the first flight. 
Canopy width was significantly correlated with WI (r = 0.70), NDVI (r = 0.68), 
NDRE (r = 0.68), EVI2 (r = 0.39), SRRE (r = 0.38), MSR (r = 0.39), CIRE (r = 
0.48), MTCI (r = 0.39), and RTVIC (r = 0.32). WI (r = 0.70) and NDVI (r = 0.68) 
were best correlated with canopy width during the first flight. However, most ve-
getation indices that were significantly correlated with plant weight were not 
significantly correlated with canopy width. This indicates that the choice of ve-
getation indices should be taken into account when using UAS data for germplasm 
evaluation.  

During the second flight, plant RCC (r = 0.39), GCC (r = −0.39), ExG (r = 
−0.38), ExG2 (r = −0.39), ExR (r = −0.39), ExGR (r = −0.39), GRVI (r = −0.39),  
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Table 2. Genotypic effects on plant height, canopy width, and vegetation indices. 

Flight 1 Flight 2 

Plant height* Plant height* 

Canopy width* Canopy width 

RCC* RCC* 

GCC* GCC* 

ExG ExG* 

ExG2* ExG2* 

ExR* ExR* 

ExGR* ExGR* 

GRVI* GRVI* 

VDVI VDVI* 

VARI* VARI* 

MGRVI* MGRVI* 

CIVE CIVE* 

VEG* VEG* 

WI WI 

NDVI* NDVI* 

NDRE* NDRE* 

GNDVI GNDVI* 

EVI2* EVI2* 

SRRE* SRRE* 

MSR* MSR* 

CIG CIG* 

CIRE* CIRE* 

MTCI* MTCI* 

RTVIC RTVIC* 

*Incidates a significant genotypic effect (p < 0.05) on the responses. 
 
Table 3. Pearson’s correlation coefficients between vegetation indices, plant height, and 
canopy width. 

Vegetation 
indices 

Flight 1 Flight 2 

Plant height Canopy width Plant height Canopy width 

RCC −0.47 −0.35 0.39 −0.19 

GCC 0.47 0.35 −0.39 0.19 

ExG 0.48 0.34 −0.38 0.18 
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Continued 

ExG2 0.47 0.35 −0.39 0.19 

ExR −0.47 −0.35 0.39 −0.19 

ExGR 0.47 0.35 −0.39 0.19 

GRVI 0.47 0.35 −0.39 0.19 

VDVI 0.47 0.34 −0.38 0.19 

VARI 0.47 0.35 −0.39 0.19 

MGRVI 0.47 0.35 −0.39 0.19 

CIVE −0.48 −0.34 0.38 −0.18 

VEG 0.47 0.35 −0.39 0.18 

WI 0.17 0.7 −0.18 0.07 

NDVI 0.74 0.68 −0.34 0.19 

NDRE 0.74 0.68 −0.34 0.19 

GNDVI −0.06 0.19 0.39 −0.08 

EVI2 0.44 0.39 −0.31 0.26 

SRRE 0.62 0.38 −0.34 0.2 

MSR 0.44 0.39 −0.21 0.34 

CIG −0.06 0.19 0.39 −0.08 

CIRE 0.62 0.48 −0.34 0.2 

MTCI 0.47 0.39 −0.21 0.34 

RTVIC 0.49 0.32 −0.37 0.17 

Bold indicates a significant correlation at p < 0.05. 
 
VDVI (r = −0.38), VARI (r = −0.39), MGRVI (r = −0.39), CIVE (r = 0.38), VEG 
(r = −0.39), GNDVI (r = 0.39), CIG (r = 0.39), and RTVIC (r = −0.37). However, 
none of the vegetation indices (NDVI, NDRE, SRRE, and CIRE) that were best 
correlated with plant height during the first flight were correlated with plant 
height during the second flight. This indicates the need for temporal analysis of 
vegetation indices to model plant height in guar. In addition, none of 23 vegeta-
tion indices collected from the second flight were significantly correlated with ca-
nopy width. The highest correlation coefficients were identified between canopy 
and EVI2 (r = 0.26), canopy width and MSR (r = 0.340), and canopy width and 
MTCI (r = 0.34). 

4. Discussion 

To the best of our knowledge, this is one of the earliest reports investigating the 
feasibility of unmanned aerial system (UAS) for the phenotyping of plant height 
and canopy width in guar. UAS phenotyping consists of collecting filed plot im-
ages using a sensor mounted on a drone [10], These images were used to extract 
mean values of spectral bands (red, green, blue) at the field plot level, and vege-
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tations indices were computed using spectral bands value [10]. For UAS pheno-
typing, the vegetation indices were used to predict agronomic traits such as plant 
height, canopy coverage, pod set, biomass, yield, etc. [11]. The UAS data can also 
be used to identify crop stress drought, heat, disease, etc. [14]. 

Overall, this study identified guar genotypic differences based on vegeta-
tion indices. This result indicates that drone image data can be used to devel-
op UAS-based fingerprinting for guar cultivars. The vegetation indices from the 
UAS data can be modelled into structural vegetation indices specific to each guar 
accession. These structural vegetation indices can assist with identifying specific 
guar genotypes. Maimaitijiang et al. (2017) [11] also reported that UAS data can 
be used to differentiate between various soybean cultivars. These findings suggest 
that UAS-based phenotyping can help plant breeders identify varieties faster and 
more reliably. In addition, the results showed that Normalized Difference Vege-
tation Index (NDVI) and Red Edge Normalized Difference Vegetation Index 
(NDRE) were best correlated with both plant height and canopy coverage in this 
study, indicating that these parameters can be used when predicting these agronomic 
traits in guar. Similar results were also reported in crops such as soybean [14]. In fu-
ture projects, more guar lines will be evaluated to build machine learning models to 
better estimate the agronomics of guar. This study will provide a strong founda-
tion for future UAS-related work in establishing high-throughput phenotyping of 
guar. 

5. Conclusion 

Overall, genotypic effects on plant height were significant during both flights. 
However, genotypic effects on canopy width were significant only during the 
first flight. During the first flight, genotypic effects on 22 vegetation indices, ex-
cept Core Red Edge Triangular Vegetation Index (RTVIC), were significant. Dur-
ing the second flight, genotypic effects on all 23 vegetation indices were signifi-
cant. Normalized Difference Vegetation Index (NDVI) and Red Edge Norma-
lized Difference Vegetation Index (NDRE) were best correlated with both plant 
height and canopy width during the first flight.  
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Supplement 

Table S1. List of vegetation indices. 

Vegetation Index Abbreviation Equation References 

Red Chromatic Coordinate Index RCC R/(R + G + B) Woebbecke et al. (1995) 

Green Chromatic Coordinate Index GCC G/(R + G + B) Woebbecke et al. (1995) 

Excess Green Index ExG (2G − B − R) Woebbecke et al. (1995) 

Excess Green Index 2 ExG2 (2G − B − R)/(R + G + B) Woebbecke et al. (1995) 

Excess Red Index ExR (1.4R − G)/(R + G + B) Meyer et al. (1999) 

Excess Green minus Excess Red Index ExGR (ExG2 − ExR) Meyer et al. (2006) 

Green Red Vegetation Index GRVI (G − R)/(G + R) Hunt et al. (2005) 

Visible Band Difference Vegetation Index VDVI (2G − R − B)/(2G + R + B) Xiaoqin et al. (2015) 

Visible Atmospherically Resistant Index VARI (G − R)/(G + R − B) Gitelson et al. (2002) 

Modified Green Red Vegetation Index MGRVI (G^2 − R^2)/(G^2 + R^2) Bendig et al. (2015) 

Color Index of Vegetation CIVE (0.441R − 0.881G + 0.385B + 18.747) Kataoka et al. (2003) 

Vegetative Index VEG G/(R^0.667*B^0.334) Hague et al. (2006) 

Woebbecke Index WI (G − B)/(R − G) Woebbecke et al. (1995) 

Normalized Difference Vegetation Index NDVI (NIR − R)/(NIR + R) Rouse et al. (1974) 

Red Edge Normalized Difference 
Vegetation Index 

NDRE (NIR − RE)/(NIR + RE) 
Gitelson and 

Merzlyak (1994) 

Green Normalized Difference 
Vegetation Inxed 

GNDVI (NIR − G)/(NIR + G) 
Gitelson and 

Merzlyak (1994) 

Enhanced Vegetation Index 2 EVI2 2.5 × (NIR − R)/(NIR + 2.4 × R + 1) Huete et al. (2002) 

Red Edge Simple Ratio SRRE (NIR)/(RE) Gitelson et al. (2005) 

Modified Simple Ratio MSR (NIR/R − 1)/[((NIR/R) + 1))^(1/2)] Wu et al. (2008) 

Green Chlorophyll Index CIG (NIR/G) − 1 Gitelson et al. (2003) 

Red Edge Chlorophyll Index CIRE (NIR/RE) − 1 Gitelson et al. (2003) 

Medium Resolution Imaging Spectrometer 
Terrestrial Chlorophyll Index 

MTCI (NIR − RE)/(RE + R) Dash and Curran (2004) 

Core Red Edge Triangular 
Vegetation Index 

RTVIC 100(NIR − RE) − 10(NIR − G) Nicolas et al. (2010) 
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