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Abstract 
Plants, just like any other living organism, naturally get attacked by various 
pathogenic microorganisms such as bacteria, fungi and viruses. However, un-
like animals that utilize their specialized circulatory macrophage system to 
protect themselves, plants instead use a multi-layered complex system termed 
the plant innate immunity, which recognizes pathogens and transducing 
downstream defense responses. They have developed a unique type of trans- 
membrane receptors or R proteins, which extracellularly, are capable of re-
cognizing pathogen-associated molecular patterns (PAMP) such as flagellin 
and chitin, while intracellularly, they activate their harbored nucleotide cyc-
lases (NCs) such as adenylyl cyclases (ACs), to generate second messenger 
molecules such as 3’,5’-cyclic adenosine monophosphate (cAMP), which then 
propagates and magnifies the defense response. To date, only a single R pro-
tein from Arabidopsis thaliana (AtLRR) has been shown to possess AC activ-
ity as well as having the ability to defend plants against infection by biotroph-
ic and hemi-biotrophic pathogens. Therefore, in order to further broaden in-
formation around the functional roles of this protein (AtLRR), we explored it 
further, using an array of web-based tools or bioinformatics. These included 
structural analysis, anatomical expression analysis, developmental expression 
analysis, co-expression analysis, functional enrichment analysis, stimulus- 
specific expression analysis and promoter analysis. Findings from structural 
analysis showed that AtLRR is a multi-domain, trans-membrane molecule 
that is multi-functional, and thus consistent with all known R-proteins. 
Findings from anatomical and developmental expression analyses showed 
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that AtLRR is mostly expressed in pollen grains and flowers, senescing leaves 
as well as during the development of seeds, shoots, roots, seedlings, leaves, 
flowers, and siliques, linking it to the three key plant physiological processes 
of reproduction, defense and development respectively. Lastly, findings from 
co-expression, functional enrichment, stimulus-specific expression and pro-
moter analyses, showed that AtLRR is mostly co-expressed with several other 
proteins linked to disease resistance, plant reproduction and plant develop-
ment. Activities and functions of such protein are also commonly regulated 
by cAMP via a common W-box promoter. So, all in all, our study managed to 
establish that besides being strongly involved in disease resistance against bi-
otrophic and hemi-biotrophic pathogens, AtLRR also plays key roles in plant 
development (seed, shoot, root, seedling, leaf, and silique development) and 
reproduction (flowering, and pollen tube growth and re-orientation), whereby it 
effects its functions via a W-box or WRKY transcription factor, TTGACY, me-
diated by cAMP. 
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1. Introduction 

In nature, plants are attacked by various pathogenic microorganisms that in-
clude bacteria, fungi and nematodes [1]. However, unlike animals that utilize 
their specialized circulatory macrophage system to protect themselves, plants in-
stead use a multi-layered complex system termed plant innate immunity, that 
recognizes pathogens and transducing downstream defense responses [1]. Ideal-
ly, this plant innate immune system is divided into two; the first-line or basal 
immunity and the second-line immunity [1] [2]. 

First-line or basal immunity comes into action when pathogen/microbial- 
associated molecular patterns (PAMPs/MAMPs) such as the bacterial flagellin, 
fungal lipopolysaccharide or oomycetic cellulose binding elicitor proteins are 
recognized extracellularly by plant transmembrane receptors, termed pattern 
recognition receptors (PRRs) [2] [3]. Once triggered, the PRRs catalyze the pro-
duction of cyclic nucleotide monophosphates (cNMP) i.e., 3’,5’-cyclic adenosine 
monophosphate (cAMP) and 3’,5’-cyclic guanosine monophosphate (cGMP) at 
their cytosolic end, which then facilitate entry of Ca2+ ions through the cyclic 
nucleotide gated ion channels (CNGCs) [4]. The increase in cytosolic Ca2+ ion 
concentration is an important primary event in pathogen signalling, that triggers 
downstream innate immune responses [5]. As the free cytosolic Ca2+ increases, 
the amount of Ca2+ bound to calmodulin (CaM) or calmodulin-like (CML) pro-
tein also increases, which then triggers the synthesis of downstream signalling 
components such as nitric oxide (NO) and hydrogen peroxide (H2O2), essential 
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for the initiation and development of the hypersensitive response (HR) [5]. 
HR is essentially a collection of plant defense responses against pathogen in-
fection that leads to rapid programmed cell death (PCD) of cells surrounding 
the pathogen-infected area, to prevent the spread of a disease [5]. The first- 
line or basal immunity is also known as the PAMPs-triggered immunity (PTI) 
[2] [3]. 

Second line immunity comes into action when the first-line immunity has 
been evaded, and it involves some highly specific cognate disease resistance (R) 
proteins that either directly or indirectly recognize pathogen effector proteins 
[6]. This type of immunity is also known as the effector-triggered immunity 
(ETI). Most R genes encode proteins that contain a nucleotide binding site 
(NBS) and leucine rich repeats (LRRs) or simply NBS-LRR proteins [2]. Patho-
gen effector molecules e.g., the AvrPto molecules of Pseudomonas syringae, typ-
ically alter the structure of NBS-LRR proteins through a direct binding or mod-
ification of other host plant proteins and allowing an exchange of ADP for ATP. 
The binding of ATP to the NBS domain then results in the activation of a signal 
transduction system through creation of binding sites for downstream signalling 
molecules and formation of central base binding (CBB) protein multimers. The 
dissociation of the pathogen effector proteins and modified effector targets from 
the NBS domain then results in the hydrolysis of ATP and a return of the 
NBS-LRR protein to its original inactive state [2] [7]. 

To this day, only a single NBS-LRR protein, AtLRR encoded by the At3g14460 
gene in Arabidopsis thaliana, has been experimentally established to be an ade-
nylyl cyclase (AC) [8] [9] with a role in defense response against the biotrophic 
fungus, Golovinomyces orontii and the hemi-biotrophic bacteria, Pseudomonas 
syringae [8]. With respect to AC activity, AtLRR was shown to display a mul-
ti-domain in vitro activity that is Mn2+-dependent and stimulated by Ca2+ while 
at the same time, the protein could rescue AC-deficiency in a mutant (cyaA) 
Escherichia coli or SP850 strain [8] [9]. With regard to disease resistance, 
knock-out mutants of AtLRR were found to have compromised immune res-
ponses to G. orontii and P. syringae but not against Botrytis cinerea, which is a 
necrotrophic fungus [8]. Therefore, in this reported study, we focused on using 
web-based tools or bioinformatics to elaborate further on the functional roles of 
this protein molecule both as an AC and NBS-LRR. Ideally, bioinformatics is 
simply defined as the science of data management systems in the genomics and 
proteomics of life forms, whereby biology, computer science and information 
technology merge into a single discipline. 

Our work therefore, was motivated by the fact that since in nature proteins do 
work as a team or network to achieve common biological functions, as a result, 
bioinformatics can then be used as a tool with the power to both unravel and 
predict important information such as structure, solubility, interactions and 
functions of unknown and/or uncharacterized. In this study therefore, a combi-
nation of structural analysis, anatomical expression analysis, developmental ex-
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pression analysis, co-expression analysis, functional enrichment analysis, stimu-
lus-specific expression analysis and promoter analysis of the AtLRR protein was 
undertaken in selected mutant and wild type lines to circumscribe and further 
elaborate its function. 

2. Materials and Methods 
2.1. Determination of the Structural Features of AtLRR 

The PSIPRED protein structure prediction server  
(http://bioinf.cs.ucl.ac.uk/psipred/) was used to predict the transmembrane to-
pology of AtLRR [10]. The Phyre2 server  
(http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index) was used to pre-
dict the three-dimensional (3-D) structure of AtLRR based on the c2a5Yb 
protein as template at 100% confidence and across 30% coverage [11]. AtLRR 
sequence was retrieved from The Arabidopsis Information Resource (TAIR) 
(https://www.arabidopsis.org/) and verified for presence of various functional 
domains using the PROSITE database located within the Expert Protein Analysis 
System (ExPASy) proteomics server (https://www.expasy.org/) [12] [13] [14]. 

2.2. Analysis of the Anatomical Expression Profile of AtLRR 

In order to reveal the expression patterns of At3g14460 in various tissues of the 
Arabidopsis plant, the microarray database and expression-data analysis tool, 
GENEVESTIGATOR Version V3 (https://genevestigator.com/gv/start/start.jsp) 
[15] [16], was used. The tool was used because it provides the transcriptome in-
formation from the Affymetrix Arabidopsis ATH1 Genome Array platform us-
ing the 260011_At probe and At3g14460 as the query term. As a result, the arbi-
trary values of the expression intensity of At3g14460 in 111 Arabidopsis tissues 
were retrieved followed by calculation and revealing of average signals for each 
type of the plant tissues. 

2.3. Analysis of the Developmental Expression Profile of AtLRR 

The AtGenExpress Visualisation Tool (AVT)  
(http://allie.dbcls.jp/pair/AVT;AtGenExpress+Visualization+Tool.html) [17]  
was used to determine the developmental expression profile of At3g14460 in 
Arabidopsis thaliana. The analysis was made to be from the point of seedling 
development till the shedding off of mature seeds from siliques. 

2.4. Analysis of the Co-Expressional Profile of AtLRR 

In order to establish the co-expressional profile of At3g14460 with the other re-
lated Arabidopsis genes, the Arabidopsis co-expression tool (ACT)  
(http://www.arabidopsis.leeds.ac.uk/ACT/) [18] [19] was used. The tool analysis 
was performed across all experiments available on the A. thaliana microarray 
data set obtained from the Nottingham Arabidopsis Stock Centre (NASC), using 
At3g14460 as the driver or reference gene and leaving the gene list limit blank to 
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obtain a full correlation list. This tool utilizes hybridization signal intensities 
from microarray experiments to calculate a Pearson correlation co-efficient 
(r-value), which is a scale-invariant measure of expression similarity that ex-
presses the strength and direction of the linear relationship between the driver or 
reference gene (At3g14460 in this case) and all other Arabidopsis genes 
represented on the selected chip. The tool calculates and returns both negative 
and positive correlations (ranging from −1 to +1), associated probability (p), and 
expectation (e) values, which are a measure of the statistical significance [20]. 
From the obtained correlation list, 50 topmost co-expressed genes (or the ex-
pression co-related gene group (ECGG50)) were considered. 

2.5. Analysis of the Functional Enrichment Expression Profile of  
AtLRR and Its Related Proteins 

After establishing the co-expression group of At3g14460 (i.e., ECGG50), the 
‘‘Fatigoplus’’ (version 4.3) compare tool in the Babelomics suite  
(http://babelomics.bioinfo.cipf.es) [21] was used to identify any significant 
enrichments in functional terms associated with the At3g14460 gene and its 
highly co-expressed set of 50 genes (ECGG50) in the Arabidopsis plant. Using 
this stimulus tool, the expression profiles of At3g14460 and its ECGG50 were 
screened over the ATH1:22K array Affymetrix public microarray data in the 
GENEVESTIGATOR V3 version (https://www.genevestigator.com/) [15] [16]. 
The normalized microarray data were downloaded from the GEO (NCBI)  
(https://www.ncbi.nlm.nih.gov/geo/), the NASC Arrays  
(https://arabidopsis.info/affy/link_to_iplant.html) and the TAIR GenExpress  
(https://www.arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp) 
and subsequently analyzed for experiments that were found to induce a differen-
tial expression of the genes. All available Arabidopsis databases were selected 
using default options, which included the gene ontology (GO) predictions; bio-
logical process (BP), molecular function (MF) and cellular component (CC), and 
annotation levels 3 - 9, KEGG pathways and Swissprot keywords. For each expe-
riment found to induce differential expression, the fold-change (log2) values 
were then calculated. Subsequently, expression values were generated using the 
Multiple Array Viewer program from the Multi-Experiment Viewer (MeV) 
software package (Version 4.2.01) (The Institute for Genomic Research (TIGR), 
wherein enrichment significances were determined using PANTHER that ad-
justs p-values to correct for multiple hypothesis testing [22]. 

2.6. Analysis of the Stimulus-Specific Expression Profile of AtLRR  
and Its Related Partners 

The expression profiles of At3g14460 and its ECGG50 were initially screened 
over all of the available ATH1:22K array Affymetrix public microarray data in 
the Genevestigator V3 version (https://www.genevestigator.com) using the sti-
mulus/perturbations tool [15]. In order to obtain greater resolution of gene ex-
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pression profiles, the normalized microarray data were subsequently down-
loaded and analyzed for experiments (of over 3000 microarrays) that were found 
to induce differential expression of the genes. The data were downloaded from the 
following repository sites: GEO (NCBI) (http://www.ncbi.nlm.nih.gov/geo/) [23], 
NASCArrays (https://arabidopsis.info/affy/link_to_iplant.html) [24] and TAIR- 
ATGenExpress 
(https://www.arabidopsis.org/servlets/Search?action=new_search&type=expression). 
The downloaded array data were then analyzed, and fold-change (log2) values 
calculated for each experiment. An expression heat map was then generated us-
ing the Multiple Array Viewer program from the Multi-Experiment Viewer 
(MeV) software package (version 4.2.01) created by The Institute for Genomic 
Research (TIGR) [25]. 

2.7. Analysis of the Promoter Expression Profile of AtLRR and Its  
Related Partners 

The promoter regions of At3g14460 and its ECGG50 were analyzed for any 
enrichment in potential transcription factor binding sites (TFBSs) using the 
web-based Athena (http://www.bioinformatics2.wsu.edu/cgi-bin/Athena) [26] 
and POBO (http://ekhidna.biocenter.helsinki.ft/poxo/pobo) [27] applications. 
The visualization tool in Athena performs an analysis of Arabidopsis promoter 
sequences and reports enrichment of known plant TFBSs. The analysis of the 
At3g14460 and its ECGG50 was performed using settings of 1000 bp upstream 
of the transcription start sites (TSSs) and not cutting off at adjacent genes. The 
Athena results were subsequently confirmed in POBO by uploading promoter se-
quences 1 kb upstream of the coding regions of the At3g14460 and its ECGG50. 
The analysis was run against an Arabidopsis background (clean), searching for 
the WRKY core motif (TTGACY) using default settings. A two-tailed p-value 
was then calculated in the linked online GraphPad website using the generated 
t-value and degrees of freedom to determine the statistical differences between 
the input sequences and background. 

2.8. Statistical Analysis  

Data was subjected to a two-tailed Student’s t-test for comparisons, where a 
p-value of less or equal to 0.0001 was used to denote significance. Where the t-test 
revealed significant differences between treatments, means were then separated by 
post hoc Student-Newman-Keuls (SNK) multiple range test (p ≤ 0.0001). 

3. Results 
3.1. Structural Features of AtLRR 

AtLRR is a very large protein (~1424 amino acids) with a calculated molecular 
weight (mw) of 158905.2 Daltons and an isoelectric point of 5.54 [28]. Structu-
rally, AtLRR is a trans-membrane, multi-domain and multi-functional protein 
(Figure 1). 
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Figure 1. Structural features of AtLRR. (a) Transmembrane topology, showing its C-terminal end located at the extracellular re-
gion and the N-terminal end in the cytoplasmic region. The two ends are linked by a 15 amino acid trans-membrane re-
gion/pore-lining found between amino acid residues 61 and 76 [10]. (b) 3-dimensional ribbon model, showing the C-terminal end 
in blue, the trans-membrane region in green and the N-terminal end in orange [11]. (c) Amino acid sequence, showing the mul-
ti-domain multi-functional nature of the protein, where AC motifs capable of generating cAMP are marked in green, a domain 
commonly found in LLR receptor kinases with GC activity marked in yellow, the NB-ARC domain responsible for disease resis-
tance marked in blue and scattered R residues that make AtLRR an R protein marked in purple. 
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3.2. Anatomical Expression Pattern of AtLRR 

Our analysis of the anatomical expression profile of AtLRR, showed that besides 
being moderately expressed in most other tissues, the protein is explicitly ex-
pressed in pollen grains and senescing leaves (Figure 2). Incidentally, the noted 
high expression of AtLRR in pollen grains closely relates to findings of other 
previously undertaken studies, which showed that ACs are essential for the 
growth and re-orientation of pollen tubes in Lilium longiflorum [29], Agapan-
thus umbellatus [30], Zea mays [31] and A. thaliana [32], wherein cAMP is key 
as a signalling molecule [29] [30] [31]. Apparently, pollen tube growth and reo-
rientation are a prerequisite for fertilization and seed formation [31]—two key 
processes of reproduction. This thus shows the involvement of AtLRR in this 
process (reproduction) in A. thaliana. 

3.3. Developmental Expression Pattern of AtLRR 

Expressional analysis of the At3g14460 gene showed that the AtLRR protein is  
 

 
Figure 2. Expression levels of the AtLRR protein in various tissues of the Arabidopsis plant, showing moderate expression in most 
tissues except for the pollen grain and senescing leaf, where the intensity is so high. Additionally, expression is also at different 
stages of development for the various tissues (t-test: p ≤ 0.0001). 
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generally expressed across all stages of growth in the Arabidopsis plant but most 
significantly during the flowering and seed dispersion stages (Figure 3). This 
thus indicates that AtLRR is not only involved in plant reproduction but plant 
development. 

3.4. Co-Expression Pattern of AtLRR 

When the At3g14460 gene was analyzed for co-expression in the Arabidopsis 
genome, we noted that 50 of its most correlated genes, have high r values of be-
tween 0.82 and 0.90 (Table 1). These expression-correlated genes (ECGG50) are 
also significantly enriched for the “biological process (BP)” gene ontology (GO) 
categories “response to biotic stimulus’, “defense response”, and “innate im-
mune response” and “molecular function (MF)” GO categories “reproduction” 
and “development”. Response to biotic stimulus processes includes response to 
bacteria, response to nematodes and response to fungi while defense response 
includes defense response to fungi, and innate immune response includes the 
PAMPS triggered immunity and SA-mediated signalling pathways. In addition,  
 

 
Figure 3. Expression levels of the AtLRR protein during the development of Arabidopsis 
plant, showing moderate expression across all stages except for the flowering and seed 
dispersion stages, where the levels are high (t-test: p ≤ 0.0001). 
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Table 1. List of the top 50 genes co-expressed with At3g14460. 

Rank Locus GO Terms r-value Annotation and Description 

- At3g14460  1.00 
Disease resistance protein (TIR-NBS-LRR)/Adenylyl cyclase 
(AC) 

1 At4g19520 DR, CRH 0.90 Disease resistance protein (TIR-NBS-LRR) 

2 At3g14470  0.89 Putative disease resistance RPP 13-like 

3 At4g14610  0.89 Probable disease resistance protein 

4 At5g46470  0.89 Disease resistance protein RPS6 

5 At5g42830  0.88 HXXXD type acyl transferase family protein 

6 At1g59590  0.88 ZCF 35 

7 At3g61390 PU 0.88 U-box domain-containing protein 36 

8 At5g35580 PP 0.87 Serine/threonine protein kinase PBLB 

9 At2g45920 PU 0.87 U-box domain-containing protein 37 

10 At5g11210 RLS, IT, GCRSP 0.86 Glutamate receptor 2.5 

11 At2g29065 T 0.86 Scarecrow-like protein 34 

12 At5g45000 DR, ST 0.86 Disease resistance protein (TIR-NBS-LRR) 

13 At1g61550 PP, IIR 0.86 G-type lectin S-receptor -like 

14 At1g26420 REDOX 0.86 Berberine bridge enzyme like 7 

15 At1g33880 RB 0.86 Immune associated nucleotide binding protein 2 

16 At3g17700 RN 0.86 Probable cyclic nucleotide gate ion channels 

17 At2g19130 RP, PP 0.85 Serine/threonine kinase 

18 At2g18680  0.85 Transmembrane protein 

19 At1g03660  0.85 Ankyrin repeat containing protein 

20 At3g09020  0.85 Alpha 1,4-glycosyl transferase family protein 

21 At5g49680 PTG, RHG 0.85 Kinky pollen protein 

22 At2g19710  0.85 Regulator of VPS4 activity in the MVB pathway protein 

23 At1g53620 CRH 0.84 Unknown protein 

24 At5g05190 DR, RF, SA RE 0.84 Protein enhanced disease resistance 4 

25 At2g35736  0.84 Unknown protein 

26 At1g77890 SCA 0.84 Unknown protein 

27 At3g12040 R, NCMP, RS 0.84 DNA-3-methyladenine glycosylase 

28 At5g01490 CIT, RA, RD 0.84 Vacuolar cation exchanger 4 

29 At2g31990  0.84 Probable xyloglucan galactosyltransferase GT15 

30 At3g07600  0.84 Heavy metal-associated isoprenylated plant protein 16 

31 At1g70170 RSS, RC, F, RPP, LS 0.84 Matrix metalloproteinase 

32 At3g05930 RRD, RS 0.84 Germini like protein subfamily members 

33 At5g25940  0.84 Early nodulin like protein 

34 At5g01550 PP, DR, ABSA, SG 0.83 Lectin domain containing receptor kinase 
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Continued 

35 At1g24140  0.83 Metalloendo proteinase 3-MMP 

36 At3g51180 DB, MB 0.83 Zinc finger COOH domain containing protein 45 

37 At5g01550 PP, DR, ABSA, SG 0.83 L-type lectin domain contain receptor kinase VII 

38 At4g25070  0.83 Caldemon like protein 

39 At4g12120 PT, PS, VDE 0.83 Protein transport SEC 16 

40 At1g61560 DRF, RBS, CD 0.83 MLO-like protein 6 

41 At3g26910  0.83 Hydroxyproline -rich-glycoprotein family protein 

42 At1g51920  0.83 Transmembrane protein 

43 At3g09010  0.83 Alpha 1,4-glycosyl transferase family protein 

44 At5g11290  0.83 Unknown protein 

45 At5g44990  0.83 Glutathione S transferase family protein 

46 At5g66070 DR, RC 0.83 NEP 1-interacting protein like 1 

47 At2g23770 RC, PTI, IIR 0.82 LYSM domain receptor like kinase 4 

48 At1g72950 ST, DR 0.82 Disease resistance protein TIR-NBS class 

49 At5g61010 PT, EX, PREEA 0.82 Exocyst subunit exo70 family protein E2 

50 At5g67350  0.82 Unknown protein 

DR = defence responses; CRH = cellular response to hypoxia; PU = protein ubiquitination; PP = protein phosphorylation; RLS = 
response to light stimulus; IT = ion transport; GCRSP = G-protein coupled receptor signalling pathway; T = transcription; ST = 
signal transduction; IIR = innate immune response; REDOX = oxidation-reduction reactions; RB = response to bacteria; RN = 
response to nematodes; RP = recognition of pollen; PTG = pollen tube growth; RHG = root hair cell tip growth; RF = response to 
fungus; SA = SA-mediated signalling pathway; RE = regulation of exocytosis; SCA = SNARE complex assemble; R = DNA repair; 
NCMP = nitrogen compound metabolic process; RS = response to stress; CIT = calcium ion transport; RA = response to auxin; 
RD = root development; RSS = response to salt stress; F = flowering; RPP = regulation of photoperiodism; LS = leaf senescence; 
RRD = regulation of root development; ABSA = abscisic acid activated pathway; SG = seed germination; PT = protein transport; 
PS = protein secretion; VDE = vesicle docking involved in exocytosis; DRF = defence response to fungi; RBS = response to biotic 
stimulus; CD = cell death; RC = response to chitin; PTI = PAMPS triggered immunity; EX = exocytosis; PREEA = protein regula-
tion of extracellular exosome assembly; DB = DNA binding; MB = metal ion binding (t-test: p ≤ 0.0001). 
 

reproduction includes pollen tube growth and flowering while development in-
cludes root hair cell tip growth and root development. Notably, all these processes 
are consistent with our findings in Figure 2 and Figure 3, and also in line with 
the role of AtLRR as an AC and disease resistance protein. 

3.5. Differential Expression Pattern of AtLRR and Its  
Related Proteins  

When we extended the analysis to identify conditions that induce At3g14460 
and its ECGG50 partners (Table 1), we noted strong induction by various fac-
tors, which include the hemi-biotrophic pathogens, Pseudomonas syringae [33] 
and Phytophthora parasitica [34] [35], and their associated effector molecule, 
flagellin 22 [36] or its synthetic analogues, DFPM  
([5-(3,4-dichlorophenyl)-2-furanyl]-1-piperidinyl-methanethione) and CPM 
(chlorphenamine) [37] (Figure 4). This further supported the role of AtLRR in  
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Figure 4. Heatmap constructed to illustrate the fold change (log2) in expression of At3g14460 and 25 selected expres-
sion-correlated genes (ECGG50) in response to selected microarray experiments. The experiments presented include; NaCI treat-
ment of root stele protoplast-FACS (3, 48, 1, 8, & 32 hat: n = 3); temperature shift of leaf samples of the 35S:RPS4-HS plants from 
28˚C to 19˚C (12 hat: n = 3); Flg22 treated leaf discs of Ler and Col wt and penta mt samples (12, 1 & 2 hat: n = 3); response of the 
transgenic mutants 35S:RPS4-HS eds1-2 vs the 35S:RPS4-HS to the virulent P. syringae pv. tomato strain DC3000 (12 hat: n = 3); 
seed desiccation of Col wt and penta mt samples (12, 24 & 48 hat: n = 3); oxidative treatment of Col wt samples (12 hat: n = 3); 
osmotic shock of Col wt samples (12 hat: n = 3); Fe deficiency of penta mt samples (12 hat: n = 3); DFPM treatment of Col wt 
samples (12 hat: n = 3); P. parasitica treatment of the tomato strain DC310 (30 hat: n = 2); CMP treatment of Col wt samples (15 
& 30 hat: n = 3). Abbreviations: hat = hours after treatment, Flg22 = flagellin 22, Ler = Landsberg, Col = Colombia, wt = 
wild-type, mt = mutant-type, P. syringae = Pseudomonas syringae, P. parasitica = Phytophthora parasitica, DFPM = 
[5-(3,4-dichlorophenyl)-2-furanyl]-1-piperidinyl-methanethione, and CMP = 4-chloro-6-methyl-2-phenylpyrimidine (t-test: p ≤ 
0.0001). 
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cAMP-mediated disease resistance processes. 

3.6. Promoter Enrichment Pattern of AtLRR and Its Related  
Partners 

Generally, when genes are co-expressed and co-regulated, they are likely to share 
a common cis element in their promoter regions [38]. In our concerted Athena 
analysis of At3g14460 and its ECGG50 partners (Table 1), we identified a hex-
amer W-box cis-element, TTGACY, as the enriched TF site (p ≤ 10−5) between 
At3g14460 and its ECGG50 partners (Figure 5). In plants, W-box is a DNA cis 
regulatory element sequence that is recognized by a family of WRKY transcrip-
tion factors (TFs) [39] [40]. Thus, this then implies that the WRKY TF plays a 
significant role in the regulation of these co-expressed genes (At3g14460 and its 
ECGG50). WRKY TFs are key regulators of many processes in plants that in-
clude responses to biotic and abiotic stress factors, senescence, seed dormancy 
and seed germination, and some developmental processes [39] [41]. In A. tha-
liana, the WRKY TF superfamily consists of 74 members that are known to play 
significant roles in the transcriptional reprogramming associated with plant 
responses to pathogens and SA-signalling [40]. 
 

 
Figure 5. Frequency occurrence of the TTGACY WRKY core motif in promoters of At3g14460 and its ECGG50 
partners. The motif is significantly enriched in the cluster (blue), being present in 96% of their promoters at an 
average of 4.8 copies per promoter compared to 88% of the whole Arabidopsis genome promoters (brown) that 
has an average of 3.78 copies per promoter (t-test: p ≤ 0.0001). 
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4. Discussion 

In plants, basal or first line immunity against pathogens provides a pre-infection 
resistance layer, that involves recognition of conserved structural components of 
pathogen such as flagellin or chitin, also referred to as pathogen-associated mo-
lecular patterns (PAMPs), ultimately leading to PAMP-triggered immunity 
(PTI) [42] [43]. A second layer of the plant defense system involves intracellular 
receptors that are products of the resistance (R) genes. These receptors recognize 
products of pathogen avirulence (Avr) genes, leading to rapid activation of de-
fense responses such as the hypersensitive response (HR) at the infection sites. 
This layer of defense is often referred as effector-triggered immunity (ETI) [42] 
[43]. R genes encode proteins containing a nucleotide binding site (NBS) and 
leucine rich repeats (LRRs) or simply NBS-LRR proteins [2]. 

In Arabidopsis thaliana, there are approximately 150 NBS-LRR encoding 
genes, including At3g14460, that codes for an AtLRR protein [44]. This AtLRR 
protein was recently established to be an adenylyl cyclase (AC) [8] [9] with a role 
in resistance to infection by biotrophs and hemi-biotrophs [8]. ACs are enzymes 
capable of catalyzing the conversion of adenosine 5’-triphosphate (ATP) to the 
second messenger molecule, 3’,5’-cyclic adenosine monophosphate (cAMP) [45] 
[46] [47]. cAMP in turn, controls various downstream plant processes such as 
the cell cycle [48], growth of pollen tubes [29] [30] [31], and responses to biotic 
and abiotic stress [49] [50] [51]. On the other hand, biotrophs and he-
mi-biotrophs are obligate pathogens that establish a close and long-term nutri-
tional relationship with their host cells and continuously absorb nutrients with-
out causing damage to cells [42] [43]. These pathogens further trigger the onset 
of the salicylic acid (SA) dependent signalling system, which then stimulates and 
controls the establishment of systemic acquired resistance (SAR) in plants [52]. 

In this study, our analysis of the structural features of AtLRR, showed that the 
protein is a trans-membrane multi-domain molecule (Figure 1), capable of per-
forming multiple functions e.g., AC activity [8] [9] and disease resistance [8]. 
These observed structural features of AtLRR, make it an ideal candidate for the 
PTI and ETI, whereby it effects the recognition of the pathogen effector mole-
cules with its extracellular domain and then instigate downstream disease resis-
tance processes via its intracellular domain [2]. 

From the anatomical and developmental expression profiles of AtLRR, it was 
noted that the protein was mostly expressed in pollen grains and flowers, se-
nescing leaves as well as during the development of seeds, shoots, roots, seedl-
ings, leaves, flowers, and siliques (Figure 2 and Figure 3). This was worth not-
ing because it directly implicated AtLRR into plant reproduction, plant defense 
and plant development respectively—three key processes that are very important 
to plants. Apparently, the noted implication of AtLRR in plant reproduction, 
particularly as an AC, is literally not unusual because of three reasons. Firstly, 
cAMP has been shown to be directly involved in the growth and re-orientation 
of pollen tubes in Lilium longiflorum [29], Agapanthus umbellatus [30], Zea 
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mays [31] and A. thaliana [32]. Secondly, cAMP has been shown to regulate the 
development of male reproductive organs in Marchantia polymorpha [53]. 
Thirdly and lastly, cAMP has been shown to regulate flowering in Lemma gibba 
[54]. Once more, the noted implication of AtLRR in leaf senescence is also not 
unusual as it directly links AtLRR, both as an AC and disease resistance protein, 
to signal interactions that normally take place between pathogens and host 
plants during defense responses [55]. In this interaction, biotrophs often delay 
senescence to keep host cells alive, and resistance in this case is then achieved by 
senescence-like processes in the host while on the other hand, necrotrophs pro-
mote senescence in the host, and preventing early senescence would then be the 
resistance strategy for plants [55]. Hemi-biotrophs are involved in both patterns 
[55]. Lastly, the noted implication of AtLRR, again as an AC, in plant develop-
ment is also not unusual because cAMP was previously shown to control the cell 
cycle in tobacco [48]. 

Further analysis of the expression profile of AtLRR showed that its gene 
(At3g14460) is mostly co-expressed and co-regulated with several other genes 
linked to disease resistance and cAMP signalling (Table 1). Of interest are 
At4g19520, At3g14470, At4g14610, At5g46470, At5g45000, At5g05190 and 
At1g72950, which all code for disease resistance proteins and At5g49680 that 
encodes a kinky pollen protein responsible for pollen tube growth (reproduc-
tion) and root hair cell tip growth (development). Once again, this is in tandem 
with the recently confirmed activities of AtLRR as an AC and disease resistance 
protein [8] [9]. 

When we extended our analysis to identify conditions that induce the expres-
sion of At3g14460 and its correlated genes (ECGG50) (Table 1), we noted very 
strong induction by the hemi-biotrophic pathogens, Pseudomonas syringae [33] 
and Phytophthora parasitica [34] [35], and their associated effector molecule, 
flagellin 22 [36] or its synthetic analogues, DFPM  
([5-(3,4-dichlorophenyl)-2-furanyl]-1-piperidinyl-methanethione) and CPM 
(chlorphenamine) [37] (Figure 4). There was also strong induction in response 
to abscisic acid (ABA) (Figure 4)—a phytohormone that is chiefly involved in 
leaf senescence [55]. Induction by P. syringae and P. parasitica is consistent with 
the recently reported upregulation of the expression of AtLRR in response to the 
powdery mildew fungus Golovinomyces orontii, which is a biotroph and the 
Gram-negative bacterium P. syringae that is a hemi-biotroph [8]. In addition, 
ACs and cAMP have previously been directly implicated in disease resistance in 
various plants that include Nicotiana benthamiana [56], Hippeastrum hybridum 
[57], A. thaliana [50] and Brachypodium distachyon [58]. Thus, these findings 
are therefore, very consistent with the established role of AtLRR in plant cAMP- 
dependent signal transduction pathways against the biotrophic and hemi-bio- 
trophic pathogens [52]. 

In addition, when we further subjected At3g14460 and its correlated genes 
(ECGG50) (Table 1) to promoter enrichment analysis, we found out that this 
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gene together with its co-expressed partners, have a common transcription fac-
tor binding site (TFBS) in their promoters (Figure 5) that then allows them to be 
co-regulated and ultimately co-function [59]. The identified common TFBS is 
the W-box hexamer, TTGACY core element, known to bind WRKY transcrip-
tion factors (TFs) [39] [40]. In Arabidopsis, the WRKY TF superfamily consists 
of 74 members [40] that are known to play significant roles in the transcriptional 
reprogramming associated with plant responses to pathogens and SA-signalling 
[40]. 

5. Conclusion 

This study, therefore, has managed to explore around the functional roles of 
AtLRR both as an AC and disease resistance protein and elaborated such an ex-
ploration. The study has unequivocally managed to establish that, as an AC and 
disease resistance protein, AtLRR has key roles in plant disease resistance 
(against the biotrophic and hemi-biotrophic pathogens), plant reproduction 
(flowering, pollen tube growth and re-orientation, and development of male re-
productive organs) and plant development (the cell cycle, and tissue and organ 
development). The protein effects its functions via a W-box or WRKY transcrip-
tion factor, TTGACY, mediated by cAMP. 

6. Recommendations 

Considering the significance and importance of the processes in which AtLRR is 
involved, it is crucial that this novel protein candidate is studied further to un-
derstand its exact mechanisms of action and perhaps for the possible generation 
of some disease resistant crops/strong cultivars in the agricultural and horticul-
tural sectors. 
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