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Abstract 
Terrestrial invasive plant species continue to wreak havoc on a global eco-
nomic and ecological scale. With the advent of climate change and pending 
future catastrophes, the spread of resilient invasive plants will only increase 
exponentially. Here, the search continues for a better understanding of the 
below-ground microbially driven mechanisms involved in plant invasion 
where other above-ground mechanisms have been exhausted. Microbes go-
vern the world around us and interact with every living and non-living facet 
of the world. To reinforce the important underpinnings of the role of micro-
organisms in plant invasion, a systematic review of recently published articles 
was undertaken. Using the ScienceDirect database, five (5) search queries 
were used to generate 1221 research articles. After a two-step reduction was 
made based on relevance of the articles, a final total of 59 articles were re-
trieved. An additional 18 relevant articles were also assessed through the 
PubMed database for analysis to account for other invasive plants. Thirty-seven 
(37) invasive species were investigated where soil physiochemical and micro-
bial community structure changes were most prevalent (32% & 39% respec-
tively) while enhanced mutualism, allelopathy and pathogen accumulation 
were reported less (16%, 10% & 3% respectively). In all invasive species as-
sessed, the impact on plant invasion and inability of the native plants to 
compete was due to specific microbial associations of the invasive plant or 
disruption of the soil microbial community. This microbial community shift 
coincided with changes in physiochemical properties of the soil and the sub-
sequent negative soil feedback for native plants. There is still an expanding 
potential for the use of biocontrol agents to aid restoration once the under-
pinnings of biotic resistance and enemy release are understood in a microbial 
and physiochemical context. The active and functional microbial community 
structure of the invasive plant rhizosphere and adjacent soil in its native and 
non-native region can offer a better inference of how they can be controlled 
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using novel-below ground biocontrol methods. 
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1. Introduction 

The number of invasive plant species across the globe is astronomical. North 
America and Oceania have the highest prevalence of terrestrial invasive plant 
species (341) (Figure 1) with 1662 total invasive plants spread out across the 
major continents [1]. The high prevalence of invasive plants in higher income 
countries is mainly due to a constant up-tick in trade and transportation of goods 
as development progresses [2]. It is well known that exotic invasive plants con-
tribute to disruption of economies, ecological structure and function of non-native 
regions in which they encroach [3]. Invasive plants have caused up to 40% of 
agricultural crop yield losses globally while displacing other native plant species 
[4]. Exotic invasive plants employ numerous classical mechanisms such as ene-
my-release, enhanced mutualism, novel weapons, allelopathy, pathogen accu-
mulation to name a few [5] [6] [7] [8]. Most if not all these below-ground me-
chanisms of plant invasion have an effect on the soil microbial community, soil 
physiochemical and biogeochemical properties in the non-native invaded com-
munity [9] [10] [11] [12] [13]. All plants will indeed cause a disruption of the 
soil microbial community adjacent to its rhizosphere through plant exudate pro-
duction influencing active recruitment and reduction of beneficial and antago-
nistic/pathogenic microorganisms respectively. Plants require essential nutrients 
from the soil such as P, N, Ca, Mg, Fe which may not be readily assimilated but 
available through recruitment of different microorganisms for which C exudates 
are produced by the plants in return. Many microorganisms in soil such as 
AMF/EMF, saprophytic and pathogenic fungi, N-cycling bacteria, sulfate reduc-
ers [14] [15] [16] [17] and others with yet to be discerned mechanisms influence 
the soil nutrient, physiochemical and biogeochemical profile. If these changes 
are of benefit to the plant, a positive-soil feedback effect will result, enabling the 
proliferation of that plant or in the opposite scenario, development of a more 
negative-soil feedback reducing plant success. Invasive plants tend to be more 
resilient to abiotic and biotic changes than native plants. Due to the genetic dif-
ferences between plants, the chemical make-up of their exudates would be unique 
to each plant creating their own novel rhizosphere microbial communities. The 
microbial component of native and non-native soils plays an important role in 
plant success and inevitably plant invasion [11] [18]. 

Many, if not all invasive plants, are not considered as a nuisance in their na-
tive habitat but once introduced to a new non-native environment, and conse-
quently overcoming the establishment stage, they spread almost uncontrollably, 

https://doi.org/10.4236/ajps.2022.132013


K. Dawkins et al. 
 

 

DOI: 10.4236/ajps.2022.132013 207 American Journal of Plant Sciences 
 

damaging these naïve ecosystems. The ease at which invasive plants overcome 
introduction and establishment is determined by abiotic and biotic factors in the 
non-native habitat [19]. This important determining factor of plant invasion is 
biotic resistance which is the reduction in invasive success by the native com-
munity through competition [19]. This factor is quite ubiquitous in North 
America and tropical/subtropical regions where environmental conditions are 
more favorable. Above-ground effects of biotic resistance are well seeded in lite-
rature [19] where high diversity of native plant species has mostly been effective 
in reducing establishment of invasive species. Poorly understood however, are 
the below-ground biotic factors [18]. It does however seem highly plausible that 
disruption of mycorrhizal and bacterial networks during disturbance, prolific 
exudate production by invasive plants, the lack of plant pathogens, herbivores 
and other insects in the non-native habitat contributes to lowered biotic resistance. 
The differences in soil microbial dynamics between the native and non-native ha-
bitat are also poorly understood when trying to understand invasion. To fully 
understand the role of microorganisms, this systematic review will focus on re-
search articles where the prospective mechanism of plant invasion is delineated 
and the possible link between the mechanisms and members of the rhizos-
phere/adjacent soil under invasive plants which contribute to invasion are known. 
Studies employing next generation sequencing methods will be assessed in more 
detail since other older methods such as phospholipid fatty acid analysis (PFLA) 
give only a broad assessment of microbial community structure. This review will 
also investigate new strategies to assist with restoration of native populations 
and reduction of invasion. 

2. Main Objectives 

This systematic review article aims to assess globally, through the synthesis of 
59+ research articles, the potential roles played by soil microorganisms during 
plant invasion. It also seeks to find the linkages between specific microbial asso-
ciations in invasive plants or the shifts in microbial community structure and the 
inferred invasive mechanism. Lastly, it will identify potential solutions on the 
horizon for restoration of invaded sites through land management and soil mi-
crobiome engineering. We then determined the below specific objectives: 

1) What is/are the most prevalent mechanism of plant invasion in tree and 
weedy species? 

2) What roles do soil microorganisms play in relation to these different plant 
invasion mechanisms? 

3) What land management and microbe engineering methods have been em-
ployed to reduce plant invasion or improve the success of native plants? 

3. Methods 
3.1. Study Area 

In this review, terrestrial invasive plant species across six (6) continents were se-
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lected based on GISD descriptions and included: North America, South & Cen-
tral America, Oceania (Australia), Africa, Europe and Asia (Figure 1). Most Ca-
ribbean islands, Russia, Middle East and other temperate regions were excluded 
as there were minimal research articles on invasive plants that fulfilled the crite-
ria for selection. 

3.2. Search Query 

To search for relevant journal articles, ScienceDirect database was used with 5 
search queries seen below and selecting research articles only, dated from 
2006-2021. 

1) “Invasive plant” AND “microbiome” AND “rhizosphere”; 
2) “Exotic plant” AND “mycorrhiza” AND “invasive” AND “native”; 
3) “Invasive plant” AND “restoration” AND “soil” AND “bacteria” AND 

“fungi”; 
4) “Invasive weed” AND “rhizosphere” AND “sequencing”; 
5) “Invasive shrub” AND “microbe” AND “soil”. 
A total of 1221 review articles were found from using the search queries, 

which was further narrowed down to 139 after reading the title and deciding if 
the topic was relevant to the specific objectives. Another round of reductions 
was made after reviewing the abstract and conclusions and removal of dupli-
cated articles to produce 59 research articles (Figure 2). In addition to the search 
query which missed a few important invasive plants, additional search queries 
were used on the NCBI PubMed database for more articles that fulfilled the ob-
jectives. These additional search queries shown below as examples provided an  

 

 
Figure 1. Current GISD (Global Invasive Species Distribution) of terrestrial invasive plant species 
across the different continents where North America and Australia exhibit the highest prevalence of 
plant invasion (341) and Central and South America having the lowest prevalence (184). 
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Figure 2. Gradual reduction of research articles relevant to the objectives of the syste-
matic review from the above mentioned 5 search queries in the ScienceDirect database. 

 
additional 18 articles used to also obtain background information on invasive 
plant mechanisms and a more recent update on the global status quo of invasive 
plants control. 

“Schinus terebinthifolius” “invasion” “soil microbes” 
“Casuarina equisitifolia” “invasion” “soil microbes” 
“Alliaria petiolata” “invasion” “allelopathy” 
“invasive plant” “restoration strategies” “microbes” 

4. Results 
4.1. Synthesis of Research Articles Based on Invasive Plant  

Mechanisms and Microbial Interactions 

A total of 37 terrestial invasive plants were used in this review and includes some 
of the most invasive plant species across the globe, including Alliaria petiolata 
(garlic mustard), Chromolaena odorata (siam weed), Solidago canadensis (Can-
ada goldenrod), Ageratina adenophora (Crofton weed), Berberis thunbergii 
(Japanese barberry) and Schinus terebinthifolius (Brazilian pepper tree). Out of 
these 37 species, 21 had known microbial associations in the rhizosphere while 
for 16 others the rhizosphere microbial community structure or key taxonomic 
groups have not been fully deciphered. The effect of these 16 species which 
lacked known plant-microbial associations were still important as the authors 
showed the effect of the plants on the adjacent or bulk soil environment. From 
these 37 species of invasive plants, the projected invasive mechanisms were 
grouped into 4 categories (Figure 3). Some invasive plant species had multiple 
projected invasive mechanisms (Table 1). Competition was not added as a 
possible mechanism as it is certain that all invasive plant species through these 
different mechanisms improve their competitive advantage against native plant 
species through a positive soil feedback effect. 

4.2. Allelopathy & Allelochemical Production 

A total of 7 of the 37 invasive plant species had reports of allelochemical produc-
tion and/or allelopathic effects (3%)—Figure 3. The mostly studied invasive 
plant exhibiting this mechanism include Alliaria petiolata, Impatiens glandulife-
ra, Quercus rubra, Rosa rugrosa, Acacia dealbata, Schinus terebinthifolius and  
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Table 1. List of select invasive plants across the world indicating their known/unknown microbial associations, invasive mechan-
isms along with their native and non-native regions. 

Invasive plant Microbe association Possible Mechanism Native Region Non-Native  
region 

Reference 

Acacia dealbata (silver 
wattle) 

Unknown allelochemical production—soil 
bacteria community more affected 

Australia Portugal [20] 

Ageratina adenophora 
(crofton weed) 

Clostridium + 
Enterobacter spp., B. 
cereus 

Enhanced mutualism, increased 
Nitrogen metabolism, increased litter 
decomposition? 

Mexico China [21] [22] 
[23] 

Alliaria petiolata (garlic 
mustard) 

Unknown allelopathy, higher pH, higher N rates— 
affects resource availability, microbial 
community shift, plant fungal 
mutualism disruption (novel weapons) 

Europe North 
America 

[9] [10] 
[24] [25]  

Amaranthus retroflexus 
(red-root amaranth) 

N-fixing bacteria increases richness of N fixing bacteria 
to further success 

South America China [26] 

Amaranthus spinosus 
(spiny amaranth) 

N-fixing bacteria changes soil nitrogen fixing bacteria 
community structure 

South America China [27] 

Ambrosia artemisiifolia 
L. (annual ragweed) 

sulfate reducing 
bacteria, 
Actinomycetes 

Disruption of abiotic and biotic soil 
community, <pH, > soil organic 
C, >NPK 

Central 
America 

China [28] 

Berberis thunbergii DC. 
(japanese barberry) 

Alphaproteobacteria 
Nitrospirales & 
Pseudomonadaceae 

increase in N cycling Japan USA [29] 

Brassica nigra (black 
mustard) 

Unknown disrupts soil fungal mutualisms North Africa USA [30] 

Bromus tectorum 
(cheatgrass) 

Bacteriodetes disruption of soil microbial community Europe USA [3] [31]  

Carpobrotus edulis 
(sour fig) 

Verrucomicrobia, 
Acidobacteria, 
Sphingomonadaceae 

soil physiochemical and microbial 
community flux 

South Africa Spain [32] 

Casuarina equisitifolia 
(Australian pine) 

Frankia spp. soil nutrient flux, leaves have 
allelopathic properties 

Australia USA [33] 

Centaurea solstitialis 
(yellow starthistle) 

Proteobacteria, 
Firmicutes, sulfate 
reducing bacteria 

reduction in pathogen 
accumulation/diversity 

Mediterranean 
basin 

USA [11] [34]  

Chromolaena odorata 
(L.) (Siam weed) 

Fusarium 
semitectum 

decrease in microbial biomass in 
invaded soil, increase in organic C, N 
and P, soil pathogen accumulation 

North & South 
America 

West Africa [6] [35]  

Conyza canadensis 
(horseweed) 

Actinobacteria, 
Sphingomonadaceae 
Glomeromycota, 

self-promoting soil nutrient flux, 
microbial community structure 
shift—decreased fungal diversity 

North & South 
America 

China [36] 

Falcataria moluccana 
(Moluccan albizia) 

Unknown shift in microbial and biogeochemical 
community structure—decreased P, 
increased C and N 

South Asia USA [37] 
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Continued 

Flaveria bidentis 
(coastal plain yellowtop) 

Rhizophagus 
intraradices 

Enhanced competition/mutualism 
through AMF colonization 

South America China [38] 

Heracleum 
mantegazzianum (giant 
hogweed) 

Unknown Changes in soil chemical and biological 
characteristics 

Central Asia Czech 
Republic 

[39] 

Impatiens glandulifera 
(Himalayan balsam) 

Unknown allelochemical production 
(naphthoquinone)—disrupts ECM & AMF 
interactions with native plants, disrupts 
hyphal associations—increase in 
saprophytic fungi 

Himalayas Switzerland [40] [41] 

Kalanchoe 
daigremontiana 
(alligator plant) 

Unknown increases C and N mineralization Madagascar Venezuela [42] 

Lantana camara (West 
Indian lantana) 

Unknown increased nutrient cycling—C, N & P North & South 
America 

India [43] 

Melinis minutiflora 
(molasses grass) 

Nitrifying bacteria increase in N cycling Africa Brazil [44] 

Mikania micrantha 
(bitter vine) 

P solubilizing 
bacteria—Burkholde
ria spp. 

increased P in plant—enhanced 
mutualism, increased C accumulation and 
release to soil microbes 

Central & 
South America 

China [45] [46] 

Phragmites australis 
(common reed) 

Unknown increased nutrient availability in 
rhizosphere—positive plant feedback 

Eastern 
Australia 

Australia [12] 

Polygonum cuspidatum 
(Japanese knotweed) 

Unknown increased SOC, N deposition enhanced 
SOC accumulation 

East Asia USA [47] 

Pseudotsuga menziesii 
(douglas fir) 

AMF Association Enhanced mutualism effect, alters 
mycorrhizal community structure 

North 
America 

Argentina [48] [49] 

Quercus rubra (native 
red oak) 

Unknown allelochemical production (phenols) 
elicits microbial community structure 
shift, shift in soil physiochemical 
properties 

North 
America 

Poland [13] [50]  

Reynoutria japonica 
(Japanese knotweed) 

Unknown reduces AMF species richness and 
abundance 

East Asia Poland [51] 

Robinia pseudoacacia 
(black locust) 

Unknown shift in microbial community 
structure—increased nitrification and 
acidification, reduced biodiversity 

USA Italy [52] 

Rosa rugosa (beach 
rose) 

AMF association soil nutrient flux, >total N, C & P, 
decrease in Microbial biomass, high 
phenolic content (allelochemical) 

Asia Poland [53] 

Schinus terebinthifolius 
(brazilian pepper tree) 

Glomus spp., 
Verrucomicrobia, 
Acidobacteria 

shift in soil microbial community— 
decreased prevalence of soil fungal 
pathogens, allelopathy, competition 

South America USA [16] [54] 
[55] [56] 

Solidago canadensis 
(Canada goldenrod) 

Nitrogen fixing 
bacteria, Glomus 
geosporum 

increase soil N availability (enhanced 
mutualism hypothesis), reduction of G. 
mosseae prevalence required by natives 

North 
America 

China [15] [57] 
[58]  
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Continued 

Solidago gigantea (giant 
goldenrod) 

Phosphate 
solubilizing bacteria 

increased phosphorus mineralization North 
America 

China [14] 

Sorghum halepense 
(johnson grass) 

Nitrogen fixing 
bacteria, 
Pseudomonas sp., 
Caulobacter sp., 
Sphingobium sp., 
Agrobacterium 
tumefaciens 

alteration of biogeochemical cycles—N, 
C, P, Fe, IAA production 

Asia/Northern 
Africa 

USA [17] 

Spartina alterniflora 
(smooth cordgrass) 

Unknown microbial metabolism flux driven by pH 
and salinity, AMF colonization disruption 

North 
America 

China [59] [60] 

Thymus vulgaris L. 
(common thyme) 

Unknown shifts in soil physiochemical 
properties—decreased soil P, moisture 

Southern 
Europe 

New 
Zealand 

[61] 

Wedelia trilobata 
(trailing daisy) 

Unknown shift in soil biogeochemical properties, 
nitrogen cycling—pH, Ca, increase 
richness of fungal community 

Central 
America 

China [62] 

 

 
Figure 3. Distribution of plant invasion mechanism across the 37 species of invasive plants 
undertaken in this study. 

 
Casuarina equisitifolia. The most widely studied model invasive plant for allelo-
pathy is Alliaria petiolata where specific glucosinolates were isolated and found 
to be directly inhibitory to adjacent native plant species [10] [24]. Since this 
chemical is very unique, a novel weapons mechanism is also mentioned where 
the non-native habitat environment has no evolutionary history with this chem-
ical. Impatiens glandulifera also produces a known allelochemical naphthoqui-
none which caused a disruption in fungal interactions with native plants [40] 
[41]. Schinus and Casuarina also exhibited similar effects but more so showing 
direct allelopathy of plant extract and leaf litter in inhibiting germination and 
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succession of native plants [33] [56]. For all these plants, allelopathy/allele- 
chemical production did not operate solely on its own but occurred in combina-
tion with other invasive mechanisms where there was a direct correlation be-
tween production and changes in the soil microbiome community and physio-
chemical characteristics of the soil. 

4.3. Enhanced Mutualism 

Enhanced mutualism of invasive plants was reported in 12 of the 37 species 
(16%). This mechanism could only be confirmed fully for plants where an inves-
tigation of specific taxa and their functional properties were assessed under the 
rhizosphere of the invasive plant. The most widely studied examples include 
Ageratina adenophora which was enriched with Clostridium, Enterobacter and 
Bacillus cereus which directly impacted its growth and competition against sur-
rounding native plants [21] [22] [23]. Berberis thunbergii showed an increase in 
nitrifying bacteria and associated functional properties which shifted the micro-
bial community structure adjacent to the plant [29]. Quite a few plants that ex-
hibited enhanced mutualisms accomplished this by forming strong associations 
with arbuscular mycorrhizal fungi, Frankia spp. and phosphate solubilizing bac-
teria as seen for invasive plants such as S. terebinthifolius, Conyza canadensis, 
Flaveria bidentis and Mikania micrantha [16] [36] [38] [45] [46] 

4.4. Pathogen Accumulation 

Only two invasive species reported a significant impact of pathogen accumula-
tion in the adjacent soil of the plants during invasion. These two species were 
Chromoloena odorata and to a lesser extent Impatiens glandulifera. C. odorata 
with its association with known fungal pathogen Fusarium semitectum increased 
over 2-fold the concentration of fungal spores in adjacent soil during invasion 
[6]. This led to a decrease in overall microbial mass and increases in soil nutrient 
level [35]. The rhizosphere microbial associations of Impatiens glandulifera are 
mostly unknown but it was shown to increase the prevalence of saprophytic and 
potentially pathogenic fungi during invasion [41]. 

4.5. Changes in Physiochemical Properties of Soil 

This mechanism was the most widely reported, exhibited by 28 invasive plants 
(39%). Soil physiochemical changes go in tandem with microbial community 
structure shifts, allelochemical production and pathogen accumulation in over 
70% of plants. It was seen mainly with plants such as Casuarina, Berberis, Ama-
ranthus sp. and Quercus that harbored nitrogen fixing bacteria or had allelo-
chemical production as an additional mechanism. 

4.6. Soil Microbial Community Structure Shift 

This was the second most prevalent mechanism (32%) exhibited by the invasive 
plant species. The impacts of soil microbial community shifts coincided with 
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shifts in physiochemical properties of the soil, which was reported in plants such 
as Sorghum halepense, Solidago canadensis, Rosa rugosa and Quercus rubra. Both 
allelochemical/allelopathy and pathogen accumulation mechanisms described 
above involved microbial community structure shifts. Notably, it was shown that 
a shift in microbial community structure after increased invasion of horseweed 
which accumulated Actinobacteria, Sphingomonadaceae and mycorrhiza in its 
rhizosphere caused a soil nutrient flux [36]. These associations affected negative 
soil feedback for native plants while having positive-soil feedback for the inva-
sive. In a similar pattern, Rodríguez-Caballero et al., 2020 [32] showed that the 
invasive plant Carpobrotus edulis affects microbial community structure and 
soil physiochemical properties leading to negative soil feedback for native and 
positive soil feedback for the invasive. 

4.7. Restoration Strategies Employed to Reduce Plant Invasions 

Land managers continue to employ mainly above-ground methods of prescribed 
burning and herbicide treatments to control the spread of invasive plants. With 
the known significance and importance of the soil microbial community to in-
vasion what has been shown in the literature to be effective based on the geo-
graphical and invasive plant context? Prescribed burning for one, even though it 
mainly affects the above ground biota, also can affect the below ground microbi-
al community in a significant way. Burning creates a somewhat “sterile” envi-
ronment with reduced activity of mycorrhiza, bacteria and lowered nutrient le-
vels. It was shown that one native plant was able to out-compete an invasive 
plant in the burnt (sterilized) soil [63]. In another indirect way, the use of a pa-
rasitic climbing plant Cuscata australis shifted the rhizosphere microbial com-
munity under the invasive plant Alternanthera philoxeroides improving the 
success of nearby native plants [64]. This novel method is one of the first em-
ploying the use of natural enemy parasitic plants in controlling invasive plants. 

Invasive plants through the disruption of the soil microbial community which 
in turn affects the biogeochemical and physiochemical properties of the soil can 
have long term effects, even after their removal. This legacy effect [55] can be 
restored by the use of microbial inoculants [65]. This microbial inoculant which 
includes beneficial bacteria, mycorrhiza and other fungi was shown to improve 
native seedling performance in the presence of invasive plants. Another unique 
study employed the use of weed-suppressive bacteria (Pseudomonas fluorescens) 
to reduce the invasive effect of downy brome (Bromus tectorum L.), jointed 
goatgrass (Aegilops cylindrica L.) and medusa head (Taeniatherum caput-medusae 
L.) [66]. One of the most compelling findings involved the transfer of pathogens 
from the native plant region to the non-native region where the same plant is 
now invasive. This was reported for Euphorbia spp. (leafy spurge) where the 
most virulent pathogens associated with the native plant (Fusarium + Rhizocto-
nia sp.) where isolated and used as biocontrol agents to stem invasion in the 
non-native range [67]. 
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There is some caution however to the use of microbial inoculants, as due to 
the specificity of interactions some of these microorganisms with plants, they 
may not have the same effect in different geographical locations and soil with 
varied nutrient levels and physiochemical properties. In one study, it was shown 
that inoculation of plant growth promoting bacteria influenced the proliferation 
of invasive A. adenophora over other native plants [68]. [69] Dai et al., 2016 also 
reported that addition of PGP endophytic bacteria such as Bacillus sp. improved 
the growth of the invasive plant Wedelia trilobata over the native congener. 

5. Discussion 

Biotic resistance of soil is the key element in the determination of a plant be-
coming invasive [19]. If there is a significant difference in the soil biota and abi-
otic factors in the native vs non-native region this will more than likely cause a 
reduction in biotic resistance and consequently establishment and spread of the 
newly invasive plant. These reports [21] [67] gave some credence to the impor-
tance of the enemy release hypothesis for invasive plants. Enemy release and 
biotic resistance in a soil microbial community context have the greatest poten-
tial for understanding why plants native in one geographic location become in-
vasive in another location. [67] showed that the soil pathogens which have been 
evolutionarily adapted to the plant in the native region are missing or of low 
prevalence in the non-native region where the plant becomes invasive. But by 
transferring the native soil pathogens to the non-native region, there was a re-
duction in the succession of the invasive plant. Similarly, the use of pathogens 
and other non-mycorrhizal microorganisms from native congeners which have 
the ability to reduce plant invasion or increase biotic resistance in the non-native 
range was shown for invasive plants M. micrantha and E. catarium [21]. The 
lack of a highly diverse soil pathogen community negatively affects the ability of 
the non-native ecosystem to reduce the establishment of the invasive plant, 
which is tied into a low biotic resistance effect. Both these mechanisms are in-
fluenced by the soil microbial community. 

The impact of the soil microbial community during plant invasion is normally 
at the center of all the different invasive mechanisms. It is still difficult however 
to determine if the changes in microbial communities are driven by direct plant 
microbial interactions or as a result of plant-driven changes in soil properties 
[70]. This is compounded by the fact that the pathogen accumulation effect for 
C. odorata was eliminated by sterile soil treatments and application of activated 
carbon removing the microbial and possible physiochemical effects of its inva-
sion [6] [10]. Two research authors [10] [71] showed that soil biota might be 
involved in the deactivation of allelochemicals released by the invasive A. peti-
olata and Eupatorium adenophorum respectively. Another factor indirectly in-
fluencing allelochemicals fate in soil can be related to the quality and quantity of 
soil organic matter which usually increases during invasion. 

In two studies supporting the importance of soil microbes, Flaveria bidentis 
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and Pseudotsuga menziesii invasion through enhanced mutualism with AMF 
species led to a subsequent shift in the soil microbial community structure and 
negative soil feedback for adjacent native plants [38] [48]. A similar effect was 
observed for the invasive plant R. rugosa, which formed specific AMF associa-
tions while producing allelochemicals in the soil, constructed its own niche en-
vironment to improve its positive soil feedback at the detriment of native plants 
[53]. The effect of invasive plants on important native mycorrhiza community 
structure was evident in reports involving S. terebinthifolius and S. canadensis 
[15] [16]. More so for S. canadensis there was a direct link between the increase 
in composition of one Glomus species and depletion of another that lead to pos-
itive feedback for the invasive plant and a more negative feedback for the native 
plant. These microbial associations with invasive plants either directly or indi-
rectly promote positive soil feedback loops and increased competition and do-
minance in relation to native plant species. 

Two studies, however, had limited support for the role of microorganisms in 
plant invasion. One reported no significant change in microbial and eukaryotic 
communities in the invaded and native range for Solidago spp. [72]. Their tax-
onomic analyses were limited as they didn’t fully tease apart the different tax-
onomic levels and reported mainly at the phylum and class level where signifi-
cant changes may not be seen. For the invasive Acacia spp. soil fungal communi-
ties were similar in the invaded and native range and showed no effect on the 
success or failure of the invasive plant [73]. Again, a thorough analysis of the 
rhizosphere of the plants in both regions was not undertaken and the authors 
reported a major limitation in the type of primer used which may have detected 
a low diversity of species. 

Invasive plants invest more resources in biomass allocation than defensive al-
location in the non-native range, making them more competitive than native 
species. In their native habitat, there is a balancing act in allocating resources for 
defense from pathogens and recruitment of beneficial microbes. This balancing 
act causes a negative to neutral and possibly slightly positive soil feedback of 
plants in native habitat. There is also a longer evolutionary history of the native 
plants and soil pathogens where there is a constant ecological pressure that res-
ists their proliferation and spread from becoming invasive. In controlling inva-
sive plants, it is essential that a thorough analysis of the microbial community 
structure of the invaded and native region is undertaken using next generation 
sequencing methods, not only to know which taxa are present but those who 
play an active and functional role. If the microbial elements involved in enemy 
release and biotic resistance are fully understood, new biocontrol agents can be 
employed as an adjacent strategy for the eradication of invasive plants and res-
toration of invaded areas. 
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