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Abstract 
Faba bean (Vicia faba L) seeds are an important source of plant protein for 
humans and animals. A total of 15,697 Differentially Expressed Genes 
(DEGs) with pathway annotation were discovered in RNA-Seq of the faba 
bean seeds. A total of 75 significant KEGG pathways abundance were discov-
ered and 9 pathways were conserved within all genotypes. 41 significant 
pathways were found to be partially conserved within comparisons of 2 to 6 
pairs of genotypes and 25 significant pathways were unique to single pairs of 
genotypes. There were 8 specific significant pathways discovered related to 
the faba bean seed Hydration Capacity trait and 9 specific significant path-
ways discovered related to the PSbMV seeds staining trait. The DEGs dem-
onstrated the genetic distance between these varieties was confirmed by the 
breeding pedigree selection information and a PCA graph clearly illustrated 
the genetic distance within these genotypes. 
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1. Introduction 

Faba bean (Vicia faba L) is one of the most important food and feed legume 
crops which provide a source of high protein for humans and animals, and it 
contributes to increased soil fertility through biological nitrogen fixation. It is an 
ancient crop and is cultivated by small holder Bronze age farms in the Mediter-
ranean region [1]. Currently it is widely grown and the annual world production 
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of faba bean was 4.8 million tonnes in 2017 (FAOSTAT 2018) [2]. It is a diploid 
species (2n = 12), with an exceptionally large genome of about 13.4 Gb [3], the 
largest genome in the grain legume family. RNA-Seq technology has been used 
to generate genome-wide transcriptome profiles across a wide range of plants 
including rice [4], maize [5] [6], chickpea [7] [8], field pea [9] [10], Raphanus 
sativus [11], faba bean [12] [13] [14] [15] [16] and pigeonpea [17]. These studies 
have described genome-wide gene expression levels in root, leaf, stem, T-cell and 
seed profiles. There have been reports of extensive pathway analyses in different 
plant species associated with different traits for six model plants: Arabidopsis 
thaliana, Oryza sativa, Zea mays, Solanum lycopersicum, Glycine max and 
Medicago. Expath database pathways of three plants: Arabidopsis thaliana, 
Oryza sativa, and Zea mays [18], AraPath database as molecular pathways of 
Arabidopsis [19], A. thaliana nutrient acquisition and general stress response 
pathways [20], modular expression pattern and new signaling pathways from 
motifs of Arabidopsis [21], responding to silver ions, cold, salt, drought and heat 
of Arabidopsis [22]; methylerythritol phosphate pathway associated genes with 
ceh1 mutuant of Arabidopsis [23], cadmium stress signaling controls in drought 
stress of rice [24], abiotic stress pathways and proteome analyses of maize [25], 
roots and leaves pathways associated with salt stress of cotton [26], phytohor-
mone biosynthesis and signal transduction pathways of hazelnut ovules [27], 
pathway of secondary metabolism, transcription factors and transporters in re-
sponse to methyl jasmonate of Lycoris aurea [28]. However, there is no quanti-
tative pathways analysis reported for faba bean seeds or RNA-seq with associated 
related seed traits. Hence, we applied RNA-Seq (Quantification) technology to 
further study Differentially Expressed Genes (DEGs) to discover the KEGG 
pathway enrichment information within faba bean seeds, both pathways within 
all seeds in common and the pathways enrichment related to the typical seed 
traits of Hydration Capacity and Pea seed-borne mosaic virus (PSbMV). 

2. Materials and Methods 
2.1. Materials 

The seeds of five faba bean varieties (Farah, Nura, PBA Rana, PBA Warda, and 
PBA Zahra) and one breeding line (AF06125) were used for the RNA-Seq 
(Quantification) technology analysis, with three biological samples per genotype. 
Seed was obtained from a field trial and was stored at room temperature until 
RNA was extracted 4 months after harvest. These varieties represent the diver-
sity among Australian faba bean varieties and include diverse germplasm within 
their pedigrees [29]. 

The pedigrees and a brief description of the major traits of these varieties are 
bellowed: 

Farah, Ascochyta blight resistant selection from Fiesta, medium size seed, 
early-mid flowering. Nura, selected from Icarus/Ascot, resistant to Ascochyta 
blight, small-medium size seed, mid flowering. 
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Rana, selected from Manafest//611/Manafest, medium-large seed, mid flo-
wering, low level of seed staining due to PSbMV. 

PBA Warda, selected from IX038/IX004, resistant to rust, medium size seed, 
early flowering. 

PBA Zahra, selected from 920/Farah, moderately resistant to Ascochyta blight, 
medium size seed. 

AF06125, selected from 286/970//S95005/3/Icarus/Ascot//Farah, resistant to 
Ascochyta blight, low level of seed staining due to PSbMV, small-medium size 
seed, mid-season flowering, and high hydration capacity. 

2.2. Methods 

RNA-Seq (Quantification) and Bioinformatics analysis 
RNA-Seq (Quantification) is used to analyze gene expression of certain bio-

logical objects under specific conditions [30] [31]. 

2.2.1. Total RNA Extraction 
RNA extraction using RNeasy kit (Qiagen, Australia) according to the manufac-
turer’s instructions. The RNA-Seq experimental process shows the steps for the 
experimental pipeline. During the QC step, Agilent 2100 Bioanaylzer was used to 
qualify and quantify the sample library. The library products were ready for se-
quencing on the Ion Proton platform performed by the Beijing Genomics Insti-
tute (BGI-Shenzhen). 

2.2.2. RNA Solutions Preparation and Sequencing 
The total RNA samples were first treated with DNase I to degrade any possible 
DNA contamination. Then the mRNA was enriched by using the oligo (dT) 
magnetic beads. Mixed with the fragmentation buffer, the mRNA was frag-
mented into short fragments (about 200 bp). Then the first strand of cDNA was 
synthesized by using random hexamer-primed reverse transcription. Buffer, 
dNTPs, RNase H and DNA polymerase I were added to synthesize the second 
strand. The double strand cDNA was purified with magnetic beads. End repara-
tion was then performed. After the previous step, adaptors were ligated to the 
end of these fragments. Next, ligation products were selected by size and purified 
on TAE-agarose gel. Finally, the fragments were enriched by PCR amplification, 
then purified by magnetic beads and dissolved in the appropriate amount of 
Epstein-Barr solution. During the QC step, Agilent 2100 Bioanaylzer was used to 
qualify and quantify the sample library. The library products were then ready for 
sequencing via Ion Proton platform. 

2.3. Bioinformatics Analysis Pipeline 

Primary sequencing data that produced by Ion Proton, called as raw reads, were 
subjected to quality control that determined if a resequencing step was needed. 
After quality control, raw reads were filtered into clean reads which were trans-
formed to fq format, and aligned to the reference sequences at the same time. 
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QC of alignment was performed to determine if resequencing was needed. The 
alignment data was utilized to calculate distribution of reads on reference genes 
and mapping ratio. If alignment result passed QC, we proceeded with down-
stream analysis including gene expression and deep analysis based on gene ex-
pression such as PCA/correlation/screening differentially expressed genes, and 
further perform deep analysis based on DEGs, including cluster analysis, Gene 
Ontology analysis and Pathway enrichment analysis. 

2.3.1. Sequencing Data Assess 
The original image data was transferred into sequence data via base calling, 
which is defined as raw data or raw reads and saved as BAM file. As the raw 
reads may contain low quality reads or adaptor sequences, preprocessing was 
necessary before starting further analysis. 

2.3.2. Raw Data Statistics 
As there are some adaptor sequences and/or low quality reads present in the raw 
reads data filtering was carried out to obtain high quality reads as the clean reads 
(clean data). Filtering steps were as follows: 

1) Remove reads where length was less than threshold; 
2) Trim reads adapter, if length of trimmed reads was less than threshold, 

then remove it; 
3) Calculate the average quality of 15 bases from 3’ end until the average qual-

ity was larger than 10, then trim the bases that have been counted. 
After filtering, the remaining reads are called “clean reads” and used for down-

stream bioinformatics analysis. 

2.3.3. Base Composition, Quality and Length of Clean Data 
We performed quality control on clean data through drawing base composition, 
quality and length distribution charts. ATGC base content refers to the propor-
tion of the total bases of the four types of bases. Through detecting the content 
of ATGC each base to measure the stability of library and sequencing eligibility. 
The nucleotide distributions at each position were stable under the normal cir-
cumstances, non-AT or GC separation. Bases quality reflects the accuracy which 
can be affected by RNA-Sequencing, reagents or sample quality. If the percen-
tage of the bases with low quality is low, then it indicated the sequencing quality 
is good. 

2.3.4. Alignment Assessment 
After data quality statistics, clean reads were mapped to gene reference and/or 
genome reference set. 

2.3.5. Alignment Statistics 
We used TMAP to map clean reads to gene reference and/or genome reference. 
In general, the higher ratio of alignment, indicated the closer the genetic rela-
tionship between the samples and the reference faba bean species. 
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2.3.6. Sequencing Saturation Analysis 
Sequence saturation analysis was used to measure the sequencing data of the 
sample. The number of detected genes increased with an increase in the number 
of reads. However, when the number of reads reaches a certain amount, the 
growth curve of detected genes flattens, which indicates that the number of de-
tected genes tends to saturation. 

2.3.7. Reads Distribution on Gene 
If the randomness is good, the reads in every position would be evenly distri-
buted. If the randomness is poor, reads preference to specific gene region will 
directly affect subsequent bioinformatics analysis. We used the distribution of 
reads on the reference genes to evaluate the randomness. A distribution of reads 
position on genes shows that the randomness of RNA fragmentation is better 
than cDNA fragmentation [32]. Therefore, we used the mRNA fragments to 
construct the library in the experiment. 

2.3.8. Visualization of Genome Alignment 
We provide genome alignment data in BAM format and recommend using IGV 
(Integrative Genomics Viewer) tool to visualize BAM file in different scales. IGV 
supports loading of multiple samples to do comparison in the same scale, and 
can view distribution of reads on the Exon, Intron, UTR, and Intragenic regions, 
which makes it very convenient and intuitional. 

2.3.9. Gene Expression 
Expression levels of individual Unigenes were quantified using the software 
package Sailfish [33]. Sailfish quantifies genes expression by k-mer, first, built 
index files use reference and length of k-mer, then computes maximum likelih-
ood abundance estimates using the Expectation-Maximization (EM) algorithm 
for its statistical model to determine which transcripts are isoforms of the same 
gene. Expression level was measured in reads per kilobase per million mapped 
reads (RPKM) according to Equation (1): 

6

3

10RPKM
10
C

NL
=                        (1) 

where C is the number of reads that are uniquely aligned to a specified gene (A), 
N is the total number of reads uniquely aligned to all genes and L is the length of 
the specified gene (A) in bases. The RPKM values can be directly used for com-
paring the difference of gene expression among samples. If there was more than 
one transcript for a gene, the longest one was used to calculate its expression 
level and coverage. Linear correlation of RPKM values was used to assess the 
robustness of experimental comparisons made between genotypes. 

2.3.10. Deep Analysis of Gene Expression 
For multiple samples, we can do more deep analysis based on gene expression to 
do a comprehensive assess on the whole project. 
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2.3.11. Correlation between Genotypes 
We calculated the correlation value between each two genotypes based on 
RPKM results. According to the standard that Encode plan recommends, the 
square of the correlation value should be ≥0.92 (under ideal experiment envi-
ronment and with reasonable samples). 

2.3.12. Cluster Tree of All Samples 
The distances of expressed genes in samples were calculated by Euclidean me-
thod. Meanwhile, the algorithm of Sum of Squares of Deviations was used to 
calculate the distance between samples so that a cluster tree could be built. 

2.3.13. Cluster Analysis of Gene Expression 
Genes with similar expression patterns usually have same the functional correla-
tion. We performed cluster analysis of gene expression patterns with cluster [34] 
[35] and java Treeview software [36]. 

2.3.14. PCA Analysis 
Principal component analysis (PCA) can reduce the complexity of the data, and 
dig deep into the relation between sample size and variation. The basic principle 
is that diverse samples have different measurements; PCA identifies the main 
factors of observed value differences, considering all the factors are combined 
and sorted according to importance. In PCA graph it can see the distance of the 
relationship between each sample, including visual effect of clusters groups. The 
PCA analysis is presented as a figure where each dot represents the genotype on 
the principal component value. 

2.3.15. Screening of Differentially Expressed Genes (DEGs) 
Screening for DEGs was based on the Poisson distribution method described by 
Audic & Claverie [37] and corrected P-values using the Bonferroni method [38]. 
Since DEGs analysis generates a large multiplicity of problems in which thou-
sands of hypotheses (is gene x differentially expressed between the two groups) 
are tested simultaneously, correction for false positive (type I errors) and false 
negative (type II) errors was performed using the False Discovery Rate (FDR) 
method [39]. We used FDR ≤ 0.001 and the absolute value of Log2Ratio ≥ 1 as 
the threshold to judge the significance of gene expression difference. 

DEGs screening is aimed to find differentially expressed genes between 
(within) samples and perform further function analysis on them. We provide 
three optional methods for screening analysis of differentially expressed genes, 
respectively: Based on the analysis method of the Poisson distribution; Based on 
Noiseq package method; Based on EBSeq package method. 

According to the analysis method of the Poisson distribution which screening 
DEGs between two genotypes. Referring to the significance of digital gene ex-
pression profiles, we have developed a strict algorithm to identify differentially 
expressed genes between two samples. Denote the number of unambiguous 
clean tags (which means reads in RNA-Seq) from gene A as x, given every gene’s 
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expression occupies only a small part of the library, x yields to the Poisson dis-
tribution with Equation (2): 

( ) e
!

x

p x
x

λλ−

=  ( λ  is the real transcripts of the gene)      (2) 

The total clean tag number of sample 1 is N1, and total clean tag number of 
sample 2 is N2; gene A holds x tags in sample 1 and y tags in sample 2. The 
probability of gene A being expressed equally between two samples can be cal-
culated with Equation (3): 
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We do correction on P-value corresponds to differential gene expression test 
using Bonferroni method. Since DEG analysis generates a large multiplicity 
problems in which thousands of hypotheses (is gene x differentially expressed 
between the two groups) are tested simultaneously, correction for false positive 
(type I errors) and false negative (type II) errors are performed using FDR 
method. Assume that we have picked out R differentially expressed genes in 
which S genes really show differential expression and the other V genes are false 
positive. If we decide that the error ratio “Q = V/R” must stay below a cutoff 
(e.g. 5%), we should preset the FDR to a number no larger than 0.05. We use 
“FDR ≤ 0.001 [40] and the absolute value of Log2Ratio ≥ 1” as the threshold to 
judge the significance of gene expression difference. More stringent criteria with 
smaller FDR and bigger fold-change value can be used to identify DEGs. 

Based on Noiseq package method (screening DEGs among two groups which 
contain biological replicates) Noiseq method [41] can screen differentially ex-
pressed genes between two groups, showing a good performance when compar-
ing it to other differential expression methods, like Fisher’s Exact Test (FET), 
edgeR, DESeq and baySeq. Noiseq maintains good True Positive and False Posi-
tive rates when increasing sequencing depth, while most other methods show 
poor performance. In addition, Noiseq models the noise distribution from the 
actual data, so it can better adapt to the size of the data set, and is more effective 
in controlling the rate of false discoveries. 

First, Noiseq uses the sample’s gene expression in each group to calculate log2 
(foldchange) M and absolute different value D of all pair conditions to build 
noise distribution model with Equation (4): 

1
2 1 121log and

i
i i i i

i

xM D x x
x

 
= = − 

 
                (4) 
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Second, for gene A, Noiseq computes its average expression “Control-avg” in 
control group and average expression “Treat-avg” in treatment group. Then the 
foldchange (MA = log2((Controlavg)/(Treat-avg))) and absolute different value 
D(DA = |Control-avg-Treat-avg|) will be derived. If MA and DA diverge from 
noise distribution model markedly, gene A will be defined as a DEG. There is a 
probability value to assess how MA and DA both diverge from noise distribution 
model with Equation (5): 

{ } { }( )& &A A AP P M M D D≥= ≥                  (5) 

Finally, we screen differentially expressed genes according to the following 
criteria: Fold change ≥ 2 and diverge probability ≥ 0.8. 

2.3.16. Deep Analysis of DEGs 
Cluster analyses of DEGs with similar expression patterns usually have the same 
functional correlation. We perform cluster analysis of DEGs with cluster and ja-
va Treeview software [36]. Expression differences are shown in different colors. 
Red means up regulation and green means down regulation. 

2.3.17. Pathway Enrichment Analysis of DEGs 
Genes usually interact with each other to play roles in certain biological func-
tions. Pathway-based analysis helps to further understand genes biological func-
tions. KEGG (Kyoto Encyclopedia of Genes and Genomes) [38] pathways, the 
major public pathway-related database, is used to perform pathway enrichment 
analysis of DEGs. This analysis identifies significantly enriched metabolic path-
ways or signal transduction pathways in DEGs comparing with the whole ge-
nome background. The calculating formula as where N is the number of all 
genes with KEGG annotation, n is the number of DEGs in N, M is the number of 
all genes annotated to specific pathways, and m is the number of DEGs in M. 
The calculated p-value goes through Bonferroni Correction [40] method, taking 
corrected p-value < 0.05 as a threshold. Discovered the most significant path-
ways of faba bean seed RNA-Seq, allows us to see their detailed pathway infor-
mation in the KEGG database. The pathways showed with their up-regulated 
genes which are marked with red borders and down-regulated genes with green 
borders, Non-change genes are marked with black borders. A scatter plot for 
KEGG enrichment results was generated to display the top 20 enriched pathways 
(See Figure 1 and Supplementary Figures S1-S14). Rich Factor is the ratio of 
DEGs numbers annotated in this pathway to all gene numbers. Greater Rich 
Factor means greater intensiveness. Q-value is corrected p-value ranging from 
0~1, and a lower value means greater intensiveness. 

2.4. Validation of Hydration Capacity and PSbMV Index 

1) Hydration Capacity testing was undertaken on these 6 genotypes from 
samples obtained from field trials conducted at Charlick Experimental farm, 
Strathalbyn and at Turretfield or Freeling, South Australia, from 2007 to 2017,  
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Figure 1. The top 20 pathways enriched in faba bean seed, including gene number and Q 
value, for the comparison of Farah versus Nura. 

 
with three replicated per genotype/experiment. The standard Hydration Capac-
ity test consists of soaking 50 seeds in 150 ml RO water at 22˚C for 16 hours and 
determining the % change in weight due to uptake of water. 

2) 20 samples of each faba bean genotype were sown in a growth room in 2018 
and inoculated with PSbMV virus (mechanical inoculation with macerated in-
fected field pea leaves mixed with carborundum powder and rubbed on the faba 
bean leaves) when they were at the two leaf growth stage. Faba bean leaves were 
collected 6 weeks after inoculation to validate infection by PSbMV using both 
ELISA assay and RT-PCR sequence. Seeds were harvested at maturity and as-
sessed for staining due to PSbMV. Seeds were assigned to one of 6 categories 
rated as 0 for no staining to 5 for very severe staining and an index Fx of overall 
staining for the individual sample was calculated by the following Equation (6):  

0 1 2 3 4 50 1 2 3 4 5
100

5
n n n n n n

Fx
N

∗ + ∗ + ∗ + ∗ + ∗ + ∗
= ∗

∗
         (6) 

where n = the number of seeds within a category, N = the total number of seeds. 

3. Results and Discussion 

Genes interact with each other to play roles in certain biological functions. 
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Pathway-based analysis helps to further understand the genes biological func-
tions. KEGG (Kyoto Encyclopedia of Genes and Genomes) is the major public 
pathway-related database (http://www.kegg.jp/kegg/kegg1.html), which is used 
to perform pathway enrichment analysis of DEGs. This analysis identifies the 
most significant enriched pathway in DEGs as compared with the whole ge-
nome. Detecting the most significantly enriched pathway of DEGs, allowed us to 
see detailed pathway information in the KEGG database, no matter if the genes 
are up-regulated or down-regulated. We generated a scatter plot for KEGG 
enrichment results. Rich Factor is the ratio of number of differentially expressed 
genes in this pathway to the number of all genes annotated in there. The greater 
the Rich Factor means the greater the degree of pathway enrichment. The Q 
value is the corrected p value with the range 0 - 1, where a lower value means 
greater intensiveness. The top 20 pathways enriched in comparisons between in-
dividual genotypes and between phenotype groupings are presented in each 
comparison (See Figure 1 for Farah vs Nura and Supplementary files Figures 
S1-S14). These results indicate that most significant enriched pathway is Meta-
bolic pathways (ko01100) followed by the Biosynthesis of secondary metabolites 
(ko01110); Plant hormone signal transduction (ko04075); Plant – pathogen inte-
raction (ko04626); ABC transporters (ko02010); Zeatin biosynthesis (ko00908); 
Stilbenoid, diarylheptanoid and gingerol biosynthesis (ko00945); Phenylpropa-
noid biosynthesis (ko00940); Phenylalanine, tyrosine and tryptophan biosynthesis 
(ko00400); Pentose and glucuronate interconversions (ko00040); N-Glycan bio-
synthesis (ko00510); mismatch repair (ko03430); Limonene and pinene degrada-
tion (ko00903); Isoflavonoid biosynthesis (ko00943); Glycine, serine and threo-
nine metabolism (ko00260); Glycerolipid metabolism (ko00561); Flavonoid bio-
synthesis (ko00941); Fatty acid biosynthesis (ko00061); Caffeine metabolism 
(ko00232) and Base excision repair (ko03410). 

3.1. Common KEGG Pathways Abundance Discovered  
within Faba Bean Seeds RNA-Seq 

A total of 47,621 expressed genes were identified in faba bean seeds RNA-Seq 
[16]. There were 15,697 significant Differentially Expressed Genes (DEGs) with 
pathway annotation. A total of 266 significant or highly significant enriched 
pathways were discovered in faba bean seeds by single variety pair comparisons. 
This was reduced to 75 unique abundance pathways after removal of redundan-
cies (See Table 1 and Table 2). 

In the comparison of individual pairs of genotypes, the most common path-
ways were Metabolic pathways (ko01100) and Biosynthesis of secondary me-
tabolites (ko01110) where commonality of the pathways was significant to 
highly significant for 14 out of a total of 15 (93.3%) of all pairwise comparisons. 
Only one pair comparison (PBAZahra versus AF06125) was not significant 
within these two pathways. The second most common pathway was Zeatin 
biosynthesis (ko00908) which was significant for 13 out of 15 (86.7%) pair com-
parisons. Four pathways were significant for 9 out of 15 (60%) pair comparisons:  
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Table 1. KEGG Pathway DEGs numbers within faba bean seeds RNA-Seq. 

Pathway 
No 

KEGG Pathway 

All DEGs with pathway  
annotation (15697) Pathway  

ID 
No of pairs  
in common 

Significance 

DEGs No Percentage (%) 

1 Metabolic pathways 3127 19.92 ko01100 14 *(1), **(7), ***(6) 

2 Biosynthesis of secondary metabolites 1592 10.14 ko01110 14 *(2), **(6), ***(6) 

3 Zeatin biosynthesis 121 0.77 ko00908 13 *(5), **(4), ***(4) 

4 alpha-Linolenic acid metabolism 79 0.50 ko00592 9 *(5), **(2), ***(2) 

5 Limonene and pinene degradation 91 0.58 ko00903 9 *(5), **(3), ***(1) 

6 Phenylpropanoid biosynthesis 144 0.92 ko00940 9 *(2), **(4), ***(3) 

7 Terpenoid backbone biosynthesis 148 0.94 ko00900 9 *(4), **(3), ***(2) 

8 Plant hormone signal transduction 589 3.75 ko04075 8 *(4), **(3), ***(1) 

9 Stilbenoid, diarylheptanoid and gingerol biosynthesis 86 0.55 ko00945 8 *(3), **(2), ***(3) 

10 Flavone and flavonol biosynthesis 51 0.32 ko00944 6 *(2), **(2), ***(2) 

11 Phenylalanine metabolism 74 0.47 ko00360 6 *(5), ***(1) 

12 Plant-pathogen interaction 543 3.46 ko04626 6 *(3), **(1), ***(2) 

13 Caffeine metabolism 7 0.04 ko00232 5 *(3), **(2) 

14 Flavonoid biosynthesis 87 0.55 ko00941 5 *(4), **(1) 

15 Fructose and mannose metabolism 107 0.68 ko00051 5 * 

16 Linoleic acid metabolism 36 0.23 ko00591 5 *(4), ***(1) 

17 Mismatch repair 128 0.82 ko03430 5 * 

18 N-Glycan biosynthesis 106 0.68 ko00510 5 *(3), **(2) 

19 Pentose and glucuronate interconversions 92 0.59 ko00040 5 *(2), **(3) 

20 Sesquiterpenoid and triterpenoid biosynthesis 22 0.14 ko00909 5 *(4), **(1) 

21 ABC transporters 152 0.97 ko02010 4 *(2), **(1), ***(1) 

22 Diterpenoid biosynthesis 30 0.19 ko00904 4 * 

23 Ether lipid metabolism 62 0.39 ko00565 4 * 

24 Fatty acid biosynthesis 50 0.32 ko00061 4 *(2), **(2) 

25 Fatty acid elongation 35 0.22 ko00062 4 *(3), **(1) 

26 Galactose metabolism 134 0.85 ko00052 4 * 

27 Glycosphingolipid biosynthesis - ganglio series 31 0.20 ko00604 4 *(2), **(2) 

28 Photosynthesis - antenna proteins 16 0.10 ko00196 4 * 

29 Base excision repair 113 0.72 ko03410 3 * 

30 Biosynthesis of unsaturated fatty acids 45 0.29 ko01040 3 *(2), **(1) 

31 DNA replication 130 0.83 ko03030 3 *(1), **(2) 

32 Fatty acid metabolism 106 0.68 ko00071 3 * 

33 Glucosinolate biosynthesis 14 0.09 ko00966 3 *(1), **(2) 

34 Glutathione metabolism 109 0.69 ko00480 3 *(2), **(1) 

35 Glycerolipid metabolism 126 0.80 ko00561 3 * 

36 Glycerophospholipid metabolism 182 1.16 ko00564 3 * 

37 Glycine, serine and threonine metabolism 104 0.66 ko00260 3 *(2), **(1) 
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Continued 

38 Isoflavonoid biosynthesis 21 0.13 ko00943 3 *(1), **(2) 

39 Oxidative phosphorylation 212 1.35 ko00190 3 **(1), ***(2) 

40 Pentose phosphate pathway 93 0.59 ko00030 3 *(2), **(1) 

41 Starch and sucrose metabolism 317 2.02 ko00500 3 *(2), **(1) 

42 Ubiquinone and other terpenoid-quinone biosynthesis 61 0.39 ko00130 3 * 

43 Amino sugar and nucleotide sugar metabolism 241 1.54 ko00520 2 * 

44 Benzoxazinoid biosynthesis 16 0.10 ko00402 2 *(1), **(1) 

45 Cutin, suberine and wax biosynthesis 29 0.18 ko00073 2 *(1), **(1) 

46 Cyanoamino acid metabolism 51 0.32 ko00460 2 * 

47 Cysteine and methionine metabolism 97 0.62 ko00270 2 *(1), **(1) 

48 Riboflavin metabolism 22 0.14 ko00740 2 *(1), **(1) 

49 RNA degradation 423 2.69 ko03018 2 * 

50 Sphingolipid metabolism 80 0.51 ko00600 2 * 

51 Phenylalanine, tyrosine and tryptophan biosynthesis 69 0.44 ko00400 1 * 

52 Ascorbate and aldarate metabolism 75 0.48 ko00053 1 * 

53 Indole alkaloid biosynthesis 8 0.05 ko00901 1 * 

54 Porphyrin and chlorophyll metabolism 83 0.53 ko00860 1 * 

55 Endocytosis 256 1.63 ko04144 1 * 

56 Selenocompound metabolism 38 0.24 ko00450 1 * 

57 Aminoacyl-tRNA biosynthesis 158 1.01 ko00970 1 * 

58 Arachidonic acid metabolism 23 0.15 ko00590 1 * 

59 Pantothenate and CoA biosynthesis 55 0.35 ko00770 1 * 

60 RNA polymerase 126 0.80 ko03020 1 * 

61 Folate biosynthesis 37 0.24 ko00790 1 * 

62 Monoterpenoid biosynthesis 10 0.06 ko00902 1 * 

63 Other glycan degradation 55 0.35 ko00511 1 * 

64 Nucleotide excision repair 200 1.27 ko03420 1 * 

65 Photosynthesis 33 0.21 ko00195 1 * 

66 Purine metabolism 350 2.23 ko00230 1 * 

67 Tropane, piperidine and pyridine alkaloid biosynthesis 27 0.17 ko00960 1 ** 

68 Glycolysis/Gluconeogenesis 210 1.34 ko00010 1 * 

69 Glyoxylate and dicarboxylate metabolism 80 0.51 ko00630 1 * 

70 Synthesis and degradation of ketone bodies 23 0.15 ko00072 1 * 

71 Valine, leucine and isoleucine degradation 97 0.62 ko00280 1 ** 

72 Alanine, aspartate and glutamate metabolism 85 0.54 ko00250 1 * 

73 Circadian rhythm - plant 124 0.79 ko04712 1 * 

74 Glycosphingolipid biosynthesis - globo series 14 0.09 ko00603 1 ** 

75 Pyruvate metabolism 150 0.96 ko00620 1 * 

Note: *means 0.01 ≤ P ≤ 0.05, **means 0.001 ≤ P ≤ 0.01, ***means P < 0.001. () If the significance level is different in the same KEGG pathway within dif-
ferent pairs, the number in the bracket represents the number of pairs at the same level of significance of faba bean seeds in common in total of 15 pairs 
analyzed. 
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Table 2. Significant Pathways number in different pairs and related traits within faba 
bean seeds RNA-Seq. 

Pair comparison 
Number of Significant pathways Sub 

Total ***P < 0.001 **0.001 ≤ P ≤ 0.01 *0.01 ≤ P ≤ 0.05 

1. AF06125-VS-Farah 2 8 9 19 

2. AF06125-VS-Nura 1 9 7 17 

3. AF06125-VS-PBARana 2 9 10 21 

4. AF06125-VS-PBAWarda 3 5 9 17 

5. Farah-VS-Nura 5 7 11 23 

6. Farah-VS-PBARana 3 6 11 20 

7. Farah-VS-PBAWarda 3 5 13 21 

8. Nura-VS-PBARana 3 8 11 22 

9. Nura-VS-PBAWarda 2 6 17 25 

10. PBARana-VS-PBAWarda 3 5 10 18 

11. PBAZahra-VS-AF06125 1 1 4 6 

12. PBAZahra-VS-Farah 2 4 6 12 

13. PBAZahra-VS-Nura 3 4 7 14 

14. PBAZahra-VS-PBARana 3 4 8 15 

15. PBAZahra-VS-PBAWarda 4 5 7 16 

Total 40 86 140 266 

Trait comparison 
    

Lowest Hydration Capacity-VS 1 4 4 9 

Highest Hydration Capacity 
    

Intermediate Hydration 
Capacity-VS-  

1 2 3 

Highest Hydration Capacity 
    

PSbMV Low seed staining-VS- 1 3 7 11 

High seed staining 
    

Note: *means 0.01 ≤ P ≤ 0.05, **means 0.001 ≤ P ≤ 0.01, ***means P < 0.001. 
 

alpha-Linolenic acid metabolism (ko00592), Limonene and pinene degradation 
(ko00903), Phenylpropanoid biosynthesis (ko00940) and Terpenoid backbone 
biosynthesis (ko00900). Plant hormone signal transduction (ko04075) and Stil-
benoid, diarylheptanoid and gingerol biosynthesis (ko00945) were significant for 
8 out of 15 (53.3%) pairs comparison. Flavone and flavonol biosynthesis 
(ko00944); Phenylalanine metabolism (ko00360) and Plant-pathogen interaction 
(ko04626) were significant for the comparison of 6 out of 15 (40%) pairs. 

Many pathways displayed a lower level of commonality among pairs of geno-
types (Table 1), with eight pathways being significant for 5 out of 15 (33.3%) 
comparisons, and an additional 8 pathways significant for 4 (26.7%) compari-
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son. Fourteen pathways were significant for 3 (20%), and eight pathways signifi-
cant for 2 (13.3%) of comparisons. There were 25 pathways that were significant 
for only a single pair of genotypes. 

3.2. Trait Related KEGG Specific Pathways Abundance Discovered 
within Faba Bean Seed 

The comparison of genotypes grouped on the basis of particular seed traits was 
much more specific than the comparison of individual genotype pairs. Regard-
ing the seed trait Hydration Capacity the comparison between the Lowest and 
the Highest groups identified 5 pathways where abundance was highly significant: 
Zeatin biosynthesis (ko00908), Ribosome biogenesis in eukaryotes (ko03008), 
RNA degradation (ko03018), Terpenoid backbone biosynthesis (ko00900), and 
Homologous recombination (ko003440), while three pathways were significant: 
Biosynthesis of secondary metabolites (ko01110), Porphyrin and chlorophyll 
metabolism (ko00860), and Stilbenoid, diarylheptanoid and gingerol biosynthe-
sis (ko00945) (See Figure 1). For the comparison between Intermediate Hydra-
tion Capacity and Highest Hydration Capacity, there was only one pathway that 
was highly significant: Base excision (ko03410), and there were two significant 
pathways: Cutin, suberine and wax biosynthesis (ko00073) and Zeatin biosyn-
thesis (ko00908) (See Figure 2(a) and Figure 2(b)). 

Regarding the trait of Pea seed-borne mosaic virus ( PSbMV) and comparison 
of Low seed staining versus High seed staining genotypes, there were four highly 
significant pathways: Zeatin biosynthesis (ko00908), Valine, leucine and isoleucine 
degradation (ko00280), Base excision repair (ko03410) and Phenylpropanoid bio-
synthesis (ko00940) and seven significant pathways: Biosynthesis of secondary 

 

 
Figure 2. Significant pathways in faba bean seeds for comparisons of (a) varieties with 
Low versus High Hydration Capacity and (b) varieties with Medium versus High Hydration 
Capacity. Note: *means 0.01 ≤ P ≤ 0.05, **means 0.001 ≤ P ≤ 0.01, ***means P < 0.001. 
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metabolites(ko01110), Ubiquinone and other terpenoid-quinone biosynthe-
sis(ko00130), Phenylalanine metabolism (ko00360), Homologous recombination 
(ko03440), Pentose and glucuronate interconversions (ko00040), Glucosinolate 
biosynthesis (ko00966) and Benzoxazinoid biosynthesis (ko00402) (See Figure 3). 

3.3. PCA Analysis Result 

Principal component analysis (PCA) display the distance of the relationship be-
tween each sample, including visual effect of clusters groups. The PCA 3D Fig-
ure (See Figure 4) shows the genetic distance relationship between these geno-
types generated by the DEGs. The closest genetic distance of these samples is 
between Farah and PBA Zahra and the second closest variety to Farah is 
AF06125. PBA Zahra and AF06125 are close in the same vertical line. The third 
closest variety to Farah is Nura, and then PBA Rana, and the most distant variety 
to Farah is PBA Warda. These results are perfectly matching the breeding 
selection pedigree information. Farah is PBA Zahra’s paternal parent (50%) and 
Farah is also in the pedigree of AF06125 (12.5%). This figure also explains the 
much lower number of significant common pathways between PBA Zahra and 
AF06125; about one third of average pathways number compare to all other 
pairs comparison in Table 2. 

3.4. Validation Outcome 

Hydration Capacity The hydration capacity of AF06125 was highest with an 
average of 95.4% and PBA Zahra was lowest with 74.3%. The data were for sam-
ples harvested from two sites growing in South Australia from 2007 to 2017. The 
other four samples were intermediate. (See Table 3) These results supported the 
pathway abundance of Hydration Capacity index samples information. 

 

 
Figure 3. Significant pathways in faba bean seeds for the comparison of varieties with 
Low versus High seed staining due to infection of plants by PSbMV. Note: *means 0.01 ≤ 
P ≤ 0.05, **means 0.001 ≤ P ≤ 0.01, ***means P < 0.001. 
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Figure 4. Three dimensional Principal Component (PCA) Analysis graph showing the 
relationship of genetic distance for six Australian faba bean varieties based on DEGs. 

 
Table 3. Faba bean seeds Hydration Capacity from 2007 to 2017. 

Year AF06125 Farah Nura PBA Rana PBA Warda PBA Zahra 

2017 94.37 81.53 82.59 88.79 85.17 71.5 

2016 93.56 81.6 79.42 75.88 84.58 72.11 

2015 100.5 85.1 93.6 99.8 97.8 81.1 

2014 90.6 77.7 81.5 79.9 86.3 73.8 

2013 90.9 73.4 78.8 71 77.7 55.6 

2012 96.2 79.6 87.6 88.4 90.1 71.6 

2007-2011 97.3 86.7 85.4 89 95 75.5 

Average 94.8 80.8 84.1 84.7 88.1 71.6 

Data source: The data were tested samples which harvested from two sites: Freeling and Charlick in South 
Australia from 2007 to 2017. 

 
PSbMV Index The PSbMV Index of AF06125 was lowest on 33% and PBA 

Zahra was highest on 73%, where the others were intermediate (See Table 4). 
The ELISA test and RT-PCR test were both positive for PSbMV virus indicating 
that all varieties are susceptible to PSbMV (See Table 5). These results confirmed 
the information of pathway abundance of PSbMV index samples information. 

There are reports of pathway studies on faba bean at the seedling and flower-
ing stages, however there are no prior reports of pathway studies on mature faba  
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Table 4. Faba bean seeds PSbMV Index and its t test result. 

t test AF06125 Warda Farah Nura Rana Zahra 

AF06125 
      

Warda 0.0017 
     

Farah 0.0001 0.7786 
    

Nura 0.0000 0.1048 0.1230 
   

Rana 0.0000 0.0285 0.0267 0.6566 
  

Zahra 0.0000 0.0283 0.0302 0.3919 0.5622 
 

PSbMV Index(Average) 33 55 57 67 69 73 

St dev 23.2 29.4 22.0 23.9 18.8 29.5 

 
Table 5. Result of testing virus inoculated and healthy controls of faba bean plants for 
PSbMV by PCR and ELISA. 

Sample ID PSbMV Status 
PCR VT02/ 
03 primers 

PSbMVQWF/ 
R primers 

ELISA  
result 

Nura-1 inoculated pos pos pos 

Nura-2 inoculated pos pos pos 

Nura-3 inoculated pos pos pos 

Nura-4 inoculated pos pos pos 

Nura-5 inoculated pos pos pos 

Nura-8, 9, 10, 11, 12 pooled healthy control neg neg neg 

Farah-1 inoculated pos pos pos 

Farah-2 inoculated neg weak pos neg 

Farah-3 inoculated pos pos pos 

Farah-4 inoculated pos pos pos 

Farah-5 inoculated pos pos pos 

Farah-8, 9, 10, 11, 12 pooled healthy control neg neg neg 

PBAZahra-1 inoculated pos pos pos 

PBAZahra-2 inoculated pos pos pos 

PBAZahra-3 inoculated pos pos pos 

PBAZahra-4 inoculated pos pos pos 

PBAZahra-5 inoculated pos pos pos 

PBAZahra-8, 9, 10, 11, 12 pooled healthy control neg neg neg 

PBARana-1 inoculated pos pos pos 

PBARana-2 inoculated pos pos pos 

PBARana-3 inoculated pos pos pos 

PBARana-4 inoculated pos pos pos 

PBARana-5 inoculated pos pos pos 

PBARana-8, 9, 10, 11, 12 pooled healthy control neg neg neg 
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Continued 

PBAWarda-1 inoculated pos pos pos 

PBAWarda-2 inoculated pos pos pos 

PBAWarda-3 inoculated pos pos pos 

PBAWarda-4 inoculated pos pos pos 

PBAWarda-5 inoculated pos pos pos 

PBAWarda-8, 9, 10, 11, 12 pooled healthy control neg neg neg 

AF06125-1 inoculated pos pos pos 

AF06125-2 inoculated pos pos pos 

AF06125-3 inoculated pos pos pos 

AF06125-4 inoculated pos pos pos 

AF06125-5 inoculated neg weak pos neg 

AF06125-8, 9, 10, 11, 12 pooled healthy control neg neg neg 

PSbMV-VT03F GTG TTG GAG GAA TCA CAC CAG AAG AAT GTG 

PSbMV-VT02R GCA GTT GCT ACA TCC ATC ATT GTT GGC CAT) 

Amplicon size 1100 bp 
 

PSbMVQW-F GTGTTGGAGGAATCACACGA 

PSbMVQW-R GGTGTTGTTTCCCATGTCTGT 

Amplicon size 272 bp 
 

 
bean seeds. Hence the pathways information reported here is the first deep 
pathway analysis of faba bean seeds RNA-Seq. It can be a source of knowledge 
for future studies on faba bean seeds. These results reveal the genetic distance 
within these varieties and genomic information for faba bean seeds, and fill the 
knowledge gaps of faba bean seed pathways. 

The KEGG pathways information will help understanding the faba bean seed 
genes functional activities. The genetic distance of these varieties are confirmed 
both by DEGs generated from RNA-Seq and breeding pedigree information. 
There are pathway analysis studies on other plants and crops such as rice, maize, 
and chickpeas. 

Due to the limited number of faba bean genotypes using for sequencing in this 
report, it may not fully identify all the pathways information in the faba bean 
seeds. Hence, investigating more genotypes in future sequencing for analysis 
would be recommended. 

RNA-Seq (Quantification) is a cost-effective quantification method that pro-
duces high reproducibility, high accuracy and wide dynamic range. It can be ap-
plied in drug response, biomarker detection, basic medical research, and drug 
R&D. And also applied in gene expression analysis, differential gene expression 
analysis, expression profile analysis of DEGs, and Gene ontology classification 
and pathway enrichment analysis. 

https://doi.org/10.4236/ajps.2019.1012161


S. Y. Yang et al. 
 

 

DOI: 10.4236/ajps.2019.1012161 2323 American Journal of Plant Sciences 
 

4. Conclusion 

In summary, there are a total of 75 significant or highly significant KEGG path-
ways discovered within these faba beans seeds RNA-Seq. There are a total of 9 
significant pathways (over 53.3% pairs) that are conserved in abundance within 
all the seeds, 41 significant pathways found within 2 to 6 pair comparisons and 
25 significant pathways were unique to single pair comparisons. There were 8 
specific significant pathways associated with the faba bean seed Hydration Ca-
pacity trait and 9 different specific significant pathways associated with the 
PSbMV seeds staining trait. The seeds hydration level has been validated by 10 
years of standard hydration capacity testing. The seeds staining level of these 
samples has been validated by the field observation in South Australia and a 
growth room inoculation test in Adelaide. ELISA and RT-PCR experiment con-
firmed that inoculated plants were positive for PSbMV. The genetic distance 
between these varieties in the PCA 3D graph confirmed breeding pedigree selec-
tion information. 
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