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Abstract 
Cannabis sativa L. is used as fiber, food, and medicine in several countries. 
Though it is illegal for recreational use in most of the world, there are some 
countries that have legalized production and sale. There is a lot of research on 
production of cannabis, but less so on storage technologies. Cannabis con-
tains several high value compounds, such as cannabinoids and terpenoids, 
that are susceptible to degradation via light, temperature, and oxygen. Several 
studies have explored temperature and light, and industry has adjusted ac-
cordingly. However, less is known about oxygen-induced degradation. Bio-
chemical studies have demonstrated oxidative degradation of high value 
compounds, and many producers use some form of modified atmospheric 
packaging (MAP) for storage. However, the efficacy of MAP is unclear. The 
objective of this paper is to review our current understanding of MAP in 
postharvest cannabis storage and identify avenues where additional research 
is needed. 
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1. Introduction 

Cannabis sativa L. is an herbaceous annual plant that has been used as a source 
of fibers, food, and medicine in various countries for centuries [1]. Paleobotani-
cal evidence suggests that C. sativa originated in central Asia over 10,000 years 
ago and spread to Europe and then the remainder of the world largely due to 
human cultivation [2]. C. sativa is a complex plant with over 400 biochemical 
entities, including cannabinoids, terpenoids, flavonoids, and alkaloids [3]. Can-
nabinoids, a class of terpene phenolic compounds, are the most active biochem-
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ical compounds [4]. Delta-9-tetrahydrocannabinol (THC) is likely the most stu-
died cannabinoid since it is the main compound associated with the psychoac-
tive effects of C. sativa [5]. It is this psychoactive effect that had C. sativa as the 
most widely used illicit drug in the world [6], though use of C. sativa is now legal 
in several countries, Uruguay was the first country to regulate cannabis at the 
national level in 2013 [7]. Since regulation by Uruguay, several other countries 
have legalized cannabis for medicinal or recreational use. As of early 2023, Can-
ada and 21 states in the United States of America have legalized cannabis for re-
creational use [8]. 

Cannabinoids and terpenoids are both high value compounds occurring in 
cannabis. Volatile organic compounds are an important component of cannabis’ 
organoleptic properties [9] [10], while cannabinoids contribute to cannabis’ 
psychoactive properties [11] [12]. Yet volatile terpenes decrease by 10 to 50% 
within 1 month of postharvest storage [13]. Cannabinoids are also susceptible to 
degradation during storage, generally through decarboxylation [14] [15] [16]. 

Retention of these high value compounds of dried cannabis inflorescence 
during storage has seen industry adoption of N2 modified atmosphere packaging 
(MAP) technologies. Literature demonstrating the efficacy of MAP for the pre-
servation of quality, aroma, and flavour, spans numerous agricultural products 
such as coffee (Coffea arabica), where aroma is important for customer satisfac-
tion [17]. High N2 conditions improve preservation of several volatile aromatic 
compounds over storage with atmospheric air [18]. Similar research has also dem-
onstrated the efficacy of MAP for retention of aromatics, finding high N2 storage 
of the aromatic plant lemon verbena (Aloysia citrodora) results in increased ex-
tractable essential oils content compared to atmospheric conditions [19]. Potato 
chip seasoning stored under high N2 MAP has even been found to retain higher 
levels of volatile disulphides and terpenes compared toatmospheric control [20]. 
Use of MAP technologies for the storage of milk powder, a confectionary ingre-
dient prone to oxidation and development of off-flavors, sees increased custom-
er acceptance of downstream chocolate products [21].  

Industry interest in the retention of these high-value compounds under sto-
rage has seen the adoption of MAP technologies within the Canadian market 
space. However, MAP infrastructure represents a significant cost to producers 
and limited research on its efficacy currently exists. This review discusses cur-
rent research of cannabis stored under MAP, addressing limitations of previous 
work, and identifying gaps in our knowledge. 

2. Modified Atmospheric Packaging (MAP) 
2.1. History and Application 

MAP alters the gaseous composition of atmospheric air surrounding perishable 
items to extend shelf life and preserve product quality [22]. Early research inves-
tigating modifying gaseous composition of apple storage environments for ex-
tended shelf life during the 1920s later saw the technology utilized for the trans-
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port of hanging beef in the 1930s [23]. Industrialization and commercialization 
of MAP infrastructure eventually led to its adoption in the packaging of retail 
meats to prevent the development of aerobic bacteria and improve color reten-
tion in red meat via decreased oxidation [24]. Implementation by the seafood 
industry for inhibition of spoilage reportedly doubled or tripled shelf life in 
some circumstances [25]. However, widespread employment of MAP has been 
somewhat limited due to concerns around the potential development of anerobic 
microorganisms, such as Listeria monocytogenes in red meats and Clostridium 
botulinum in seafood products [24] [25]. The microbial pros and cons of using 
MAP for plant products are presented in other reviews [26]. 

The historical applications of MAP for products like baked goods, chips, cof-
fee, and tea, offers examples seemingly aimed more towards the preservation of 
product quality and flavour, rather than prevention of microbial spoilage [23]. 
Improved organoleptic qualities like aroma and flavour under MAP in various 
food products has been reported in consumer panels [27] and studies exploring 
postharvest changes in the physical and chemical properties of plant products 
under MAP continue to emerge. The link between oxidation, degradation of li-
pids, and reduction in flavour is well documented, and presented in several re-
views [28]. MAP technologies have demonstratable efficacy in delaying oxida-
tion of lipids to improve the stability and shelf life of various food products in-
cluding potato chips, red meats, and fish [24] [29] [30]. Molecules of oxygen 
present in atmospheric air react with unsaturated fatty acids, producing free 
radicals in the form of unstable hyperoxides which undergo a cascade of further 
reactions [31].  

2.2. Challenges 

MAP technologies are immensely popular and have a global value of more than 
$6 billion USD [32]. MAP slows deteriorative processes and limits microbial 
growth and therefore greatly extends product shelf life [32]. However, consumer 
preferences have shifted in recent years in favor of product quality as opposed to 
freshness [33]. The effect of MAP on many aspects of cannabis quality is not yet 
known. 

The primary objective of MAP is to decrease the concentration of O2 in sto-
rage packaging [32]. This can be done through a variety of methods, but one 
popular method is to add an inert gas, such as N2, to the storage atmosphere to 
displace O2 [32]. But the exact amount of O2 displacement is critical and can 
pose a challenge. If O2 is too low, anaerobic respiration can occur and postharv-
est quality rapidly decreases [32]. Taking MAP beyond tolerable limits has al-
tered postharvest texture and aroma in other products, to the extent that con-
sumers start to question freshness as well [34] [35]. 

MAP represents an additional cost for industry. Gases may be added directly 
from compressed gas cylinders or gas emitters may be added [36]. In the case of 
N2 MAP, there is also the possibility of using a nitrogen generator or displace-
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ment with liquid nitrogen [36]. Each application method has a fixed infrastruc-
ture cost that can range from tens to hundreds of thousands of dollars. There is 
also a residual cost, that would vary regionally with compressed gas or liquid N 
prices. As an example, in Nova Scotia it can cost up to $0.90 CAN per can to 
modifier the storage atmosphere using liquid N [37]. The challenge of the MAP 
additional cost is magnified considering there is a lack of knowledge in effec-
tiveness of MAP in preserving postharvest quality of cannabis, including high 
value compound. 

3. High Value Compounds and Preservation Targets 
3.1. Identification 

Cannabinoids and terpenoids account for most of cannabis’ therapeutic effects, 
either individually and synergistically [38] [39] [40]. Cannabinoids and terpe-
noids are secreted from specialized disc cells and are then subsequently stored 
within trichomes on the surface of female inflorescence [41] [42] [43]. Many of 
these biosynthesized compounds, like cannabinoids and terpenoids, are lipidic 
in their nature and remain stored as oil-in-water emulsions contained within 
hydrophilic apoplast [44]. Cannabinoids are typically associated with cannabis, 
but are also found in some liverworts, rhododendron, and fungi [45]. Terpeno-
ids are widespread throughout the plant kingdom [14]. 

3.2. Cannabinoids 

The term cannabinoid refers to meroterpenoids, which comprise of a resorcinyl 
center with attached isoprenyl, alkyl, or aralkyl side chains [46]. Cannabis typi-
cally produces alkyl type cannabinoids with a 10-carbon monoterpene isoprenyl 
moiety and pentyl side chain [46]. The most abundant cannabinoids in C. sativa 
are THC, cannabidiols (CBDs), Cannabichromenes (CBCs), and cannabigerols 
(CBGs) and their respective acidic forms [47]. Natural biosynthesis usually 
forms acidic cannabinoids that contain a carboxyl group (COOH), but chemical 
processes such as oxidation, decarboxylation, or cyclization result in non-acidic 
forms [48] [49]. Such chemical processes are caused or accelerated by exposure 
to light, oxygen, or heat [14] [50].  

Degradation of cannabinoids can result in loss of bioavailability, such as THC 
to cannabinol (CBN) [51]. However, cannabinoid oxidation to lesser understood 
compounds with unknown psychotropic and biological activity, or cannabinoids 
for which analytical testing does not exist presents some experimental design 
challenge. Oxidation to underappreciated and understudied cannabinoids that 
may even be beneficial under prolonged storage is also possible. Efforts to iden-
tify psychoactive forms of cannabinoids are still under way with recent research 
even seeing the application of machine learning [52]. “It is crucial to understand 
how cannabinoids are related with each other when studying cannabis, consi-
dering that degradation (including decarboxylation, isomerization, irradiation, 
and oxidation) can affect the chemical components through improper opera-
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tions or during long-term storage with unsuitable conditions” [53]. Yet as re-
viewed by Rupasinghe et al. [54] the complex pharmacology and interactions of 
even the most well studied cannabinoids THC, and CBD, are still being unra-
veled. 

3.3. Terpenoids 

Terpenes and terpenoids are characterized by their strong aroma. These mole-
cules are volatile hydrocarbons [14]. Terpenes are classified by the number of 
5-carbon building blocks they contain. For example, sesqui-terpenes contain 15 
carbons [55]. Terpenoids are modified terpenes that have incorporated various 
oxygen arrangements. Typically, terpenoids is an umbrella term including both 
terpenes and terpenoids [40]. 

Biosynthesis of terpenoids within the cannabis plant starts with isoprene di-
phosphate precursors that feed into the plastidial methylerythritol or cytosolic 
mevalonate pathway [9]. Cannabis essential oils are composed almost entirely of 
mono- and sesquiterpenes, accounting for 98% of constituents [56]. Characteri-
zation of both mono- and sesqui-terpenes classes across three different chemo-
vars has identified a nearly even mixture of 46.5% monoterpenes and 53.5% 
sesquiterpenes [57]. The eventual fate of terpenes is dynamic, potentially ending 
up as cannabinoids via the addition of a phenol group or remaining stored as 
one of the many known endogenous terpenes present in the plant [58]. Natural 
degradation can also occur through chemical processes like isomerization, oxi-
dation, dehydrogenation, polymerization, and thermal rearrangement [59]. The 
ultimate fate of any particular terpenes can be difficult to determine due to the 
number of products and functional groups that are formed. In cannabis alone, 
terpenes can be oxidized into alcohols, ketones, and aldehydes [60]. 

The roles and functions of plant terpenes are extremely diverse. As reviewed 
by Pichersky and Raguso [61], they act as antimicrobial, antifungal, signaling 
molecules, and contribute to interactions with their other organisms, such as 
pollinator attraction and deterring herbivory. Terpenes typically account for 3% 
- 5% of dried cannabis inflorescence biomass [62]. Potential medical benefits of 
terpenes, particularly those in cannabis, represent an area of great research in-
terest. Consumption of plants rich in terpenes has a rich human history, and 
in-depth medical benefits of plant terpenes have been presented in other reviews 
[62] [63]. 

4. Location of High Value Compounds in Cannabis 
4.1 Trichromes Structural and Functional Chemistry 

Classified as multi-cellular appendages, the glandular trichomes of cannabis se-
crete and accumulate many economically important compounds, including 
cannabinoids, monoterpenes, and sesquiterpenes [41] [42] [43]. The metabolite 
storage cavities of C. sativa trichomes are subcuticular in nature and form via 
delamination of the primary wall [64] [65]. An anatomical arrangement that sees 
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two biological layers theoretically inhibit oxidation, and aid retention of 
high-value compounds under prolonged storage. The cell wall itself is rich in 
weakly bonded polysaccharides, and its composition has only recently been de-
duced via glycomic profiling and monosaccharide analysis by researchers inves-
tigating cell wall remodeling for prevention of metabolite leakage during tri-
chome maturation [44]. However, the cuticle still represents the outermost layer 
of the modified epidermal cell, acting as a protective layer against water loss and 
oxidation, while serving as the interface for potential interactions with gaseous 
atmospheric environment. 

From a structural perspective the glandular trichomes of cannabis are encap-
sulated by the cuticle, which is composed of varying lipidic layers [42] [66]. 
Structure of the cuticle varies amongst land plants, and working models of ar-
chitecture vary, but the recent review from [67] defines the cuticle as three dis-
tinct layers: the cuticular layer, cuticle proper, and epicuticular waxes. With a 
composition of cellulose, polysaccharides, cutin, and waxes, the cuticular layer is 
constructed first and its assembly is adherent directly to the primary wall, or 
outermost layer of the polysaccharide rich epidermal cell wall [67]. The cuticle 
proper follows and is constituted mainly of cutin, intracuticular waxes, and, is 
typically considered void of polysaccharides, while a layer of epicuticular wax 
serves as the interface for potential interactions between the organ and the at-
mospheric environment [67]. The cuticle also contains additional embedded 
non-lipid polysaccharides and polyester linked phenolic compounds with their 
architectural and structural functionality under review [68]. 

4.2. Cuticle Degradation: A Potential Mechanism for Accelerated 
Degradation 

The major macromolecular component of the cuticle is cutin, a polyester of co-
valently bound C16 and C18 hydroxylated fatty acids [69]. Reactions of the cu-
ticle with oxygen species present in atmospheric air and generation of additional 
reactive oxygen species (ROS), offers a potential mechanism for the oxidation of 
the cuticular layer and subsequent oxidation of the primary cell wall (Figure 1). 
Accelerating degradation of the trichomes high value contents, however, map-
ping all potential interactions presents a challenge as the molecular assembly and 
mechanisms of linkage within the cuticle’s constituents are complex [70] [71]. 

5. Cannabis Literature Conundrum 

Most literature regarding postharvest degradation of high value compounds in 
cannabis have focused on other storage conditions, such as temperature and 
light. As one example, THC decreased by 63% when stored in light at 20°C for 
98 weeks [72]. THC decreased by only 25% when stored in darkness instead, 
which was further reduced to 10% if storage temperature decreased to 5°C [72]. 
More recent studies have reported similar results [73] [74]. Most recently, it was 
shown that freezing samples in darkness could completely alleviate degradation 
of cannabinoids during storage even over several years [16]. 

https://doi.org/10.4236/ajps.2024.153016


L. L. MacLaughlin, M. T. MacDonald 
 

 

DOI: 10.4236/ajps.2024.153016 228 American Journal of Plant Sciences 
 

 

Figure 1. Graphical illustration for potential mechanism accelerated loss of high value 
compounds via oxidation of the cuticle and primary wall, resulting in escape of metabo-
lites from the apoplastic storage cavity and their subsequent oxidation. Figure created 
with BioRender.com. 
 

The presence of oxygen during storage is another factor that contributes to 
postharvest degradation of high value compounds. The addition of hydrogen 
peroxide, a strong oxidizing agent, greatly increased postharvest degradation of 
THC [75]. Conversely, storage with terpenes with established antioxidant prop-
erties effectively decreased degradation of THC [76]. Though terpene MAP was 
effective, it is more common for industry to use alternative MAP, such as N2. 
The strategy with N2 MAP is to greatly decrease the partial pressure of O2 during 
storage, which should decrease the opportunity for oxidation. Industry currently 
does not typically include antioxidants with storage. 

Despite commercial use, little is known on the effectiveness of N2 MAP on 
preservation of high value targets in cannabis. One study investigated post-harvest 
changes in dried cannabis inflorescence terpene content under MAP using com-
parably unreactive argon but found no improvement versus storage in atmos-
pheric conditions [13]. Storage at 2 weeks, and 4 weeks, saw terpene losses of 
39.2% and 50.2% respectively under argon MAP, while losses of 40.5% and 
51.6% were observed at the same time points for the control [13]. However, the 
flower sample used in this study had a very low terpene content of 0.170% w/w, 
due to its age at the time of sampling. With such a significant loss of volatile 
compounds having already occurred the potential for further loss would likely 
have been greatly reduced. A second study offered little experimental detail but 
reported storage in the absence of light to be more important for cannabinoid 
stability over storage with N2, with major cannabinoids THC, CBD, and CBN 
measured [77]. 

N2 MAP infrastructure represents a significant cost for industry. Further, liq-
uid or gaseous N2 dosage represents another incurred operational cost, yet little 
evidence for its efficacy over atmospheric storage exists. Other better-known 
factors can be addressed through cooling and storage in opaque containers. 
However, MAP requires more work to determine whether N2 is effective. Even if 
N2 MAP is effective, the exact effectiveness needs to be quantified and other po-
tential strategies explored. 
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6. Conclusion 

Though MAP has been used for almost 100 years commercially, it has only been 
used within the last few decades for legalized commercial production of canna-
bis. There is sufficient evidence that N2 MAP or similar technologies are effective 
as increasing the shelf life of postharvest cannabis. However, there is less infor-
mation available on effectiveness of N2 MAP on the preservation of high value 
compounds, such as cannabinoids and terpenoids, in cannabis. The little infor-
mation that’s available academically supports the idea that N2 MAP does not 
preserve those high value compounds. The lack of information available un-
derscores a major gap in our knowledge that would be of value to the cannabis 
industry. 
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