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Abstract 
The main purpose of this paper is to generalize the effect of two-phased demand 
and variable deterioration within the EOQ (Economic Order Quantity) frame-
work. The rate of deterioration is a linear function of time. The two-phased de-
mand function states the constant function for a certain period and the qua-
dratic function of time for the rest part of the cycle time. No shortages as well 
as partial backlogging are allowed to occur. The mathematical expressions are 
derived for determining the optimal cycle time, order quantity and total cost 
function. An easy-to-use working procedure is provided to calculate the above 
quantities. A couple of numerical examples are cited to explain the theoretical 
results and sensitivity analysis of some selected examples is carried out. 
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1. Introduction 

In recent decades, there has been a spate of interest in analyzing and formulating 
inventory models for deteriorating items from the point of view of practical ap-
plications. The classical EOQ (Economic Order Quantity) models of Harris [1] 
and Wilson [2] consider the exhaustion of inventory only due to the effect of 
unchanging demand. But, it has been observed that the depletion of the inven-
tory is due to some demand patterns and some natural phenomena like decay, 
dryness, evaporation and spoilage. These natural phenomena are directly or in-
directly called the process of “deterioration”. Firstly, Ghare and Schrader [3] de-
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rived the mathematical expression of the EOQ inventory model with several 
factors such as inventory level during the cycle time, demand function and in-
stantaneous deterioration rate. They represented these factors with the help of a 
differential equation  

( ) ( ) ( ) ( )d
0, 0

d
I t

Z t I t D t t T
t

+ + = ≤ ≤ , 

where ( )I t , ( )D t , ( )Z t  and T refer to the inventory level, the demand and 
the deterioration and time period, respectively. Donaldson [4] examined a com-
plicated analytic solution procedure for the classical no-shortage inventory 
model for deteriorating items with linear trend in demand over a finite horizon 
cycle time. An order level no-shortage inventory system with constant demand 
as well as a constant rate of deterioration was developed by Aggarwal [5]. An in-
ventory model for deteriorating items with linear trends demand, constant dete-
rioration and no-shortages was studied by Dave and Patel [6]. Later, Sachan [7] 
extended Dave and Patel’s [6] model considering a new factor as shortages. 
Singh and Pattnayak [8] studied an inventory model for a deteriorating item 
with varying time-dependent constant demand and Weibull distribution deteri-
oration under permissible delay in payment. Some of the minimization prob-
lems on inventory models for deteriorating items under various conditions have 
been solved by [9]. Reviews of advances in deteriorating inventory policies were 
presented by Raafat [10], Goyal and Giri [11], Li et al. [12] and Janssen et al. 
[13].  

In the detailed survey of review literature on inventory policies, it was ob-
served that the assumption of a constant demand rate is not always suitable for 
many inventory items (cosmetics, fashion apparel, consumable items and elec-
tronics goods) because they experience fluctuations in demand during time of 
consideration. Thereafter, researches were developed on mainly two types of 
demand rates such as linear and exponential. The linear and exponential 
time-varying demands indicate a uniform change and rapid change in demand 
rates of the item per unit time, respectively those which seldom occur in the real 
market situation. The optimal replenishment policies for deteriorating items 
with linear trended demand shortages in all cycles were presented by Goswami 
and Chaudhuri [14] and Chakrabarti and Chaudhuri [15]. Chung and Ting [16] 
established an EOQ inventory model for deteriorating items with linear demand, 
no-shortages and time-proportional deterioration rate. Wee [17] presented an 
optimal replenishment policy with the assumptions of varying demand patterns 
and shortages in the declining situation of the market. Hollier and Mak [18] and 
Ouyang et al. [19] studied the optimal models for deteriorating items with con-
stant deterioration rates and exponential demand rates. Srivastava and Gupta 
[20] formulated a no-shortage EOQ model for deteriorating items with a con-
stant deterioration rate and both the constant and linearly increasing demand 
rate. Singh and Pattnayak [21] formulated an optimal two-warehouse inventory 
model with the incorporation of linear trended demand, constant deterioration 
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and delay in payment conditions. Because of uniform and rapid changes in de-
mand rate, some researchers have not considered the linear and exponential 
demand patterns for the development of their models. They included a time- 
dependent quadratic demand pattern in their models as it experiences either ac-
celerated growth or retard growth in demand. The general form of the quadratic 
demand rate is ( ) 2D t a bt ct= + + . Here, 0c =  and 0b c= =  refer to the li-
near and constant demand patterns, respectively. An order level inventory mod-
el with no-shortages, time-dependent quadratic demand and constant deteriora-
tion was presented by Khanra and Chaudhuri [22]. Ghosh and Chaudhuri [23] 
established an optimal inventory model by incorporating the two-parameter 
Weibull distribution deterioration, time-dependent quadratic demand pattern 
and shortages. Khanra et al. [24] discussed an order-level inventory model for a 
deteriorating item with time-dependent quadratic demand rate and constant de-
terioration rate. Singh et al. (2017) formulated an ordering policy for deteriorat-
ing items focusing on the time-proportional deterioration rate and both constant 
and time-dependent linear demand rates and no-shortages.  

Generally, items start deteriorating after a certain period of time on inclusion 
into the stock. Therefore, the constant deterioration rate is not always suitable 
for the consideration for formulation of the inventory model. This type of lack-
ing is filled by Weibull distribution deterioration rates because it varies with the 
passage of time. In this context, Covert and Philip [25] modified Ghare and 
Schrader’s [3] model by replacing the constant deterioration rate with the two- 
parameter Weibull distribution deterioration rate. Singh et al. [26] studied an op-
timal policy for deteriorating items with variable deterioration rates and constant 
and time-dependent demand rates. Singh et al. [27] presented a three-cased 
EOQ optimal policy for deteriorating items with the help of trapezoidal type 
demand, three-parameter Weibull distribution deterioration and shortages. A 
note on an inventory model for a deteriorating item with varying cubic demand 
and variable deterioration under permissible delay in payment was studied by 
Mohanty and Singh [28]. 

In practice, the assumptions of the constant deterioration rate and the con-
stant demand pattern are debatable. A common practical situation is when the 
demand is constant for a certain period and then it varies with time for the rest 
part of the inventory cycle time. Recently, Srivastava and Gupta [20] studied a 
no-shortages inventory model for deteriorating items with a constant deteriora-
tion rate and both the constant and linear demand patterns. In this work, an op-
timal EOQ inventory policy is developed with the inclusion of a two-phased de-
mand pattern, variable deterioration and no shortages. The two-phase demand 
describes the constant demand for the first part and time-dependent quadric 
demand for the rest part of the inventory cycle time. This pattern of demand rate 
shows the demand for items such as newly launched mobiles, automobiles, fa-
shion apparels, cosmetics etc. as they experience constant demand in the first 
part and time-dependent quadric quadratic in the rest part of the cycle time. In 
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addition, the deterioration rate is considered as a linear function of time for the 
second part of the inventory cycle. We think such type of two-phase demand 
pattern and time-proportional deterioration is quite realistic for developing 
no-shortage inventory model for deteriorating items. The objective of the pro-
posed work is to optimize the average total cost and ordered quantity with re-
spect to the cycle time. Finally, the model is illustrated with a couple of numeri-
cal examples and a sensitivity analysis of a selected example is presented.  

The rest portion of the paper is arranged as follows: In Section 2, the notations 
and the fundamental assumptions involved in this problem are described. The 
mathematical formulation of the model and its working procedure are given in 
Section 3. Section 4 addresses a couple of numerical examples followed by sensi-
tivity analysis of all system parameters in Section 5. Finally, a summary and 
some suggestions for future work are provided in Section 6. 

2. Notations and Assumptions 

The mathematical analysis of the EOQ inventory model is based on the follow-
ing notations and assumptions: 

2.1. Notations 

The notations used in this paper are given below: 
( )tθ : The linear deterioration function, i.e., ( )t tθ θ= , where 0 1θ<   

and 0t > . For 1t = , the variable deterioration rate reduces to a constant dete-
rioration rate.  

( )D t : The demand rate, i.e., ( )
( ) ( )2

, 0

,

a t
D t

a b t c t t T

η

η η η

≤ ≤= 
+ − + − ≤ ≤

. 

During the first interval [ ]0,η , the demand is constant at the rate of a units 
per unit time, i.e., it does not vary with time and during the second interval 
[ ],Tη , the demand rate is a quadratic function of time. 

( )I t : The inventory level at any time t. 
T: The length of the cycle. 

sI : The number of items received at the starting of the inventory system. 

oc : The ordering cost per order. 

ch : The inventory holding cost per unit per unit of time. 

cd : The unit cost of the item per unit per unit of time. 
η : The time point at which the demand increases with time as well as the de-

terioration starts. 
( )TC T : The average total cost per unit per unit time. 

*T : The optimal value of time T. 
*
sI : The optimal value of sI . 

( )*TC T : The optimal average total cost per unit per unit time. 

2.2. Assumptions 

The following assumptions are considered in this paper: 

https://doi.org/10.4236/ajor.2024.141003


S. Mohanty et al. 
 

 

DOI: 10.4236/ajor.2024.141003 63 American Journal of Operations Research 
 

1) The inventory system involves only one type of item. 
2) There is no deterioration for the first part and the varying deterioration 

rate in the rest part of the cycle. 
3) The demand is of two-phase pattern, i.e., it is constant for the first part and 

quadratic function of time in the rest part of the cycle. 
4) No shortages and backlogging are allowed to occur. 
5) The occurrence of replenishment is instantaneous and the delivery lead 

time is zero. 
6) Only a typical planning schedule of the length of the planning horizon is 

considered and all the remaining cycles are identical. 
7) Deteriorated units are not replaced or repaired during the prescribed cycle 

period.  
8) All types of costs such as ordering cost, holding cost and unit cost remain 

fixed over time. 

3. Mathematical Formulation of the Model and Its Solution  
Procedure 

The following model as well as its solution procedure is started below: 

3.1. Model Development 

Initially, the order quantity brings the level of the system up to sI  units. Be-
cause of the constant demand, the level of the inventory declines, say, a units per 
unit time in the interval [ ]0,η . Due to time-dependent quadratic demand and 
time-varying deterioration, the inventory level gradually depletes over time 
t T= . The nature of the inventory system is shown in Figure 1.  
 

 
Figure 1. The behavior of inventory level with time. 
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The objective of the proposed problem is to optimize the cycle length T so 
that the present value of the average total cost ( )TC T  is minimized.  

Initially, during the interval [ ]0,η , the system demand rate (SDR) per unit 
time and the total demand (TDR) are given by  

SDR a= ,                            (3.1) 

and  

TDR aη= ,                           (3.2) 

respectively. 
Therefore, the inventory level is decreased by the portion aη  and thus, the 

remaining portion of the inventory (SRI) during the interval [ ],Tη  is given by  

sSRI I aη= − .                         (3.3) 

In order to make the calculation easier, the interval [ ],Tη  can be taken as 

1t T η= − .                          (3.4) 

Consequently, the instantaneous inventory level ( )I t  at any time t during 
the time interval 10 t t≤ ≤  satisfies the following differential equation: 

( ) ( ) ( ) ( ) ( )2
1

d
, 0

d
I t

t I t a b t c t t t
t

θ η η + = − + − + − ≤ ≤        (3.5) 

where ( ) ( ), 0 1t tθ θ θ= <   and ( )0 sI I aη= − .  
Here the integrating factor (IF) and the solution of the differential equation 

are 
2

2e
t

IF
θ

= ,                          (3.6)  

and  

( ) ( ) ( )
2 2

22 2e e d
t t

I t a b t c t t k
θ θ

η η ⋅ = − + − + − ⋅ + ∫ ,         (3.7) 

where k is a constant of integration, respectively. 
Solving the differential Equation (3.5), we have 

( )

2

3 3 4
2

2 4 5
2 2 3 2

1

2
6 6 8

2 e , 0
6 4 10

s

t

t t tI t I a a t b t

t tc t t t t t
θ

θ ηθ ηη η

θη ηθ θη η
−

    
= − − + − − + − +    

   
  +

− − + − + ⋅ ≤ ≤  
  

 (3.8)  

by ignoring the terms containing the powers like 2 3 4, , ,θ θ θ   0 1θ<  . 
The Equation (3.8) at ( )1 0I t =  is given by 

3 2 3 4
1 1 1 1

1 1

2 4 5
2 2 3 1 1

1 1 1

6 2 6 8

2
6 4 10

s
t t t tI a a t b t

t tc t t t

θ ηθ ηη η

θη ηθ θη η

   
= + + + − + − +   

   
  +

+ − + − +  
  

          (3.9) 

Using the relation 1t T η= − , Equation (3.9) is equivalent to 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3 2 3 4

4 52
2 32

6 2 6 8

2
6 4 10

s
T T T T

I a T b T

T T
c T T T

θ η η ηθ η η η
η η

ηθ η θ ηθηη η η η η

   − − − −
= + + − − + − +   

      
 − − +

+ − − − + − − +  
   

(3.10) 

In order to obtain the optimum total average cost, following cost components 
are needed:  

1) Ordering cost (SSC): 

oSSC c= .                          (3.11)  

2) Holding cost (SCC) during the period [ ]0,T  is the sum of the holding cost 
during the period [ ]0,η  and the holding cost during the period [ ],Tη , i.e., 

[ ]

( )( ) ( )

( )

1

2
1

area of trapezium PQSO area of triangle QRS

1 1
2 2

2 2

c

c s s s

c s

SCC h

h I I a t I a

a th I a

η η η

η η η

= × +

 = ⋅ + − ⋅ + ⋅ ⋅ −  
  = + − +  

  

     (3.12) 

3) The deterioration cost (SDC) during the period [ ]0,T  is 

( ) ( )

( ) ( ) ( )

1
2

0

2 3 2 3
1 1

1

d

2 3 2 3

t

c s

c s

SDC d I a a b t c t t

b t c t b cd I a t

η η η

η η η ηη

  = − − + − + −   
 − −

= − + − − − + 
  

∫
   (3.13) 

Hence, using the previous results, the average total cost per unit time ( ( )TC T ) 
of the system during the period [ ]0,T : 

( ) [ ]

( )

( ) ( ) ( )

2
1

2 3 2 3
1 1

1

1

1
2 2

2 3 2 3

o c s

c s

TC T SSC SCC SDC
T

a tc h I a
T

b t c t b cd I a t

η η η

η η η ηη

= + +

   = + + − +   
  

 − −
+ − + − − − + 
  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 32 2 3

2 2 3

3 42
22

2 2
2 2 3 2 3

1
6 2 6 8

2
6 4 10

2

o c c

c c

b T c Tc h a d b ca T
T T T

T T TT Ta b
T

T T
c T T

Th d

η ηη η ηη

θ η ηθ η θ ηη ηη

ηθ η θ ηθηη η η η

η

 − −
= + − − + + + − 

  
    − − −− −
+ + + − + − +   
       

 − − +
+ − − + − − +     

+  ⋅ +    

(3.14) 

by using the Equations (3.2) and (3.7).  
In order to determine the optimum value of ( ( )TC T ), the necessary condi-
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tion is 

( )( )d
0

d
TC T

T
= ,                      (3.15) 

provided it satisfies the sufficient condition 

( )( )2

2

d
0

d
TC T

T
= .                     (3.16) 

From the Equation (3.15), we have 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[ ] ( ) ( ) ( )

( ) ( ) ( )

2 2 3

3 42
22

2

22

d 1 1
d 6 2 6 8

2
6 4 10

31
3 2 3 2

3 22
3 4

c c

TC T T T TTa b
T T

T T
c T T

a T T TTh T d b
T

T T
c T

θ η ηθ η θ ηηη

ηθ η θ ηθηη η η η

θ η ηθ η θ ηη

ηθ η θ ηθηη η

    − − −−
= + + − + − +   
       

 − − +
+ − − + − − +     

  − − −−
⋅ + + + − + 

   

− − +
+ − + − − + 

 

( ) ( ) ( )

3

2

5

2 2
2

0

c
c c

TC TdTh d a b T c T
T T

η η η

 
 

  
+    ⋅ + − + − + − −      

=

(3.17) 

provided the sufficient condition 
( )( )2

2

d
0

d
TC T

T
>  (see Appendix). 

Special cases: 1) Putting 0c =  in the demand pattern  

( )
( ) ( )2

, 0

,

a t
D t

a b t c t t T

η

η η η

≤ ≤= 
+ − + − ≤ ≤

, the model reduces to that of Srivas-

tava and Gupta [20].  
2) Putting 1t =  in the deterioration rate ( )t tθ θ= , the model also reduces 

to that of Srivastava and Gupta [20].  
A step by step solution procedure for above problem is given below. 

3.2. Solution Procedure: Algorithms 

To obtain the values of ( ( )TC T ) and sI , the following steps are required.  
Step I. Input the appropriate value of the parameters.  
Step II. Obtain the value of T from the Equation (3.15) by Numerical method.  
Step III. Compare T with η .  
1) If T η> , then T is a feasible solution, say *T . Go to Step IV.  
2) If T η< , then T is infeasible.  
Step IV. Substitute *T  in the Equations (3.14) and (3.10) to get ( ( )*TC T ) 

and *
sI , respectively. 

4. Numerical Examples 

To illustrate the results obtained from the inventory problem with two-phased 
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demand and time-proportional deterioration, the following numerical examples 
are cited.  

Example 1: Let us take the parametric values of the inventory model of deteri-
orating items in their units as follows: 20 unitsa = , 0.2b = , 100c = , 0.02θ = , 

0.4 daysη = , $80oc = , $0.5 unit daych =  and $18 unitcd = . 
Solving the Equation (3.15), the optimal cycle time is * 1.75651T =  days which  

satisfies the sufficient condition, i.e., 
( )( )2

2

d
157.701 0

d
TC T

T
= > . Substituting the  

value of * 1.75651T =  in the Equations (3.14) and (3.10), the optimal value of 
the average total cost and the optimal order quantity are ( )* 113.074TC T =  
and * 67.0517sI =  units, respectively.  

Example 2: Let us take the parametric values of the inventory model of deteri-
orating items in their units as follows: 20 unitsa = , 0.2b = , 160c = , 0.02θ = , 

0.4 daysη = , $80oc = , $0.5 unit daych =  and $18 unitcd = . 
Solving the Equation (3.15), the optimal cycle time is * 1.71125T =  days which  

satisfies the sufficient condition, i.e., 
( )( )2

2

d
229.733 0

d
TC T

T
= > . Substituting  

the value of * 1.71125T =  in the equations (3.14) and (3.10), the optimal value 
of the average total cost and the optimal order quantity are ( )* 174.205TC T =  
and * 78.6997sI =  units, respectively. 

5. Sensitivity Analysis 

The effect of changes in the values of various parameters a, b, c, θ , η , oc , ch  
and cd  for the optimum cost and optimum order quantity is studied with the 
help of sensitivity analysis. It works by changing the each of the parameters by 
+50%, +20%, +10%, −10%, −20% and −50% at a time and keeping remaining 
parameters unchanged. The analysis is developed on the basis of Example-2 and 
the results are displayed in Table 1. The following points are noted.  

1) *T  decreases while ( )*TC T and *
sI  increase with the increase in the 

value of the parameter a. Here *T , ( )*TC T  and *
sI  are insensitive to changes 

in a.  
2) *T , ( )*TC T  and *

sI  decrease with the increase in the value of the pa-
rameter b. Here *T , ( )*TC T  and *

sI  are insensitive to changes in b.  
3) *T  decreases while ( )*TC T  and *

sI  increase with the increase in the 
value of the parameter c. Here *T , ( )*TC T  and *

sI  are moderately sensitive 
to changes in c.  

4) *T  and *
sI  decrease while ( )*TC T  increases with the increase in the 

value of the parameter θ  and ch . Here *T , ( )*TC T  and *
sI  are moderately 

sensitive to changes in θ  and ch . 
5) *T , ( )*TC T  and *

sI  increase with the increase in the value of the para-
meter η . Here *T  , ( )*TC T  and *

sI  are highly sensitive to changes in η .  
6) *T , ( )*TC T  and *

sI  increase with the increase in the value of the para-
meter oc  and cd . Here *T , ( )*TC T  and *

sI  are moderately sensitive to 
changes in oc  and cd .  
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Table 1. Sensitivity analysis. 

Parameter 
% change in 
parameter 

*T  % change in *T  ( )*TC T  % change in ( )*TC T  *
sI  % change in *

sI  

a 

+50 
+20 
+10 
−10 
−20 
−50 

1.69458 
1.70457 
1.70791 
1.71459 
1.71794 
1.72799 

−0.97414 
−0.39035 
−0.19517 
+0.19517 
+0.39094 
+0.97823 

152.264 
149.236 
148.222 
146.185 
145.163 
142.080 

+3.43670 
+1.37971 
+0.69087 
−0.69291 
−1.38718 
−2.48154 

93.1643 
84.5144 
81.6121 
75.7770 
72.8456 
63.9901 

+18.3795 
+7.38847 
+3.70065 
−3.71374 
−7.43853 
−18.6908 

b 

+50 
+20 
+10 
−10 
−20 
−50 

1.71065 
1.71101 
1.71113 
1.71137 
1.71149 
1.71184 

−0.03506 
−0.01402 
−0.00701 
+0.00701 
+0.01402 
+0.03447 

147.052 
147.144 
147.174 
147.236 
147.266 
147.358 

−0.10393 
−0.04143 
−0.02105 
+0.02105 
+0.04143 
+0.10393 

78.6402 
78.6759 
78.6878 
78.7116 
78.7235 
78.7576 

−0.07560 
−0.03024 
−0.01512 
+0.01512 
+0.03024 
+0.07357 

c 

+50 
+20 
+10 
−10 
−20 
−50 

1.68215 
1.69711 
1.70363 
1.72025 
1.73108 
1.78280 

−1.70051 
−0.82629 
−0.44528 
+0.52593 
+1.15880 
+4.18115 

192.354 
165.293 
156.255 
138.138 
129.051 
101.571 

+30.6708 
+12.2876 
+6.14789 
−6.15944 
−12.3325 
−31.0003 

94.5202 
85.0034 
81.8457 
75.5645 
72.4471 
63.2716 

+20.1024 
+8.00981 
+3.99747 
−3.98375 
−7.94488 
−19.6038 

θ  

+50 
+20 
+10 
−10 
−20 
−50 

1.66492 
1.69131 
1.70101 
1.72208 
1.73357 
1.77295 

−2.70738 
−1.16523 
−0.59839 
+0.63287 
+1.30431 
+3.60555 

150.376 
148.538 
147.883 
146.501 
145.768 
143.372 

+2.15414 
+0.90554 
+0.45990 
−0.47824 
−0.97619 
−2.60385 

72.0672 
75.7724 
77.1824 
80.3366 
82.1101 
88.4816 

−8.42751 
−3.71958 
−1.92796 
+2.07993 
+4.33343 
+12.4294 

η  

+50 
+20 
+10 
−10 
−20 
−50 

2.24873 
1.92160 
1.81516 
1.61093 
1.51549 
1.27237 

+31.4086 
+12.7012 
+6.07217 
−5.86238 
−11.4396 
−25.6467 

266.410 
186.730 
165.599 
131.567 
118.703 
96.6536 

+80.9789 
+26.8503 
+12.4357 
−10.6233 
−19.3621 
−34.5446 

119.598 
92.7249 
85.2893 
73.0312 
68.3794 
61.7054 

+51.9675 
+17.8212 
+8.37309 
−7.20270 
−13.1135 
−21.5939 

oc  

+50 
+20 
+10 
−10 
−20 
−50 

1.76569 
1.73397 
1.72278 
1.69935 
1.68705 
1.64746 

+3.18130 
+1.32768 
+0.67377 
−0.69539 
−1.41417 
−3.74522 

170.207 
156.493 
151.864 
142.514 
137.789 
123.396 

+15.6258 
+6.30957 
+3.16497 
−3.18671 
−6.39651 
−16.1740 

87.6296 
82.3149 
80.5147 
76.8684 
75.0197 
69.3665 

+11.3468 
+4.59366 
+2.30623 
−2.32695 
−4.67600 
−11.8593 

ch  

+50 
+20 
+10 
−10 
−20 
−50 

1.62771 
1.67479 
1.69244 
1.73135 
1.75290 
1.82823 

−4.88181 
−2.13061 
−1.09920 
+1.17458 
+2.43389 
+6.83594 

157.400 
151.495 
149.390 
144.932 
142.561 
134.731 

+6.92572 
+2.91430 
+1.48432 
−1.54411 
−3.15478 
−8.47390 

66.7111 
73.2210 
75.8243 
81.8900 
85.4486 
99.0608 

−15.2333 
−6.96153 
−3.65364 
+4.05376 
+8.57551 
+25.8719 

cd  

+50 
+20 
+10 
−10 
−20 
−50 

1.74198 
1.72525 
1.71859 
1.70311 
1.69405 
1.65948 

+1.79576 
+0.81811 
+0.42892 
−0.47563 
−1.00511 
−3.02527 

186.157 
162.816 
155.016 
139.379 
131.538 
107.882 

+26.4611 
+10.6049 
+5.30621 
−5.31640 
−10.6430 
−26.7131 

83.6274 
80.9088 
79.9073 
77.4424 
76.0663 
71.0356 

+6.26140 
+2.80700 
+1.53444 
−1.59759 
−3.34614 
−9.73841 
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Table 2. Effect of η  on the optimal solution. 

η  Change (%) in η  *T  
Comparison between 

η  and *T  ( )*TC T  *
sI  

0.500 +25.0000 1.97551 (+1544.25) *Tη <  198.317 (+34.7216) 96.7430 (+22.9268) 

1.000 +150.000 3.33619 (+94.9563) *Tη <  708.653 (+381.406) 253.465 (+222.066) 

2.000 +400.000 5.86408 (+242.678) *Tη <  3075.06 (+1988.96) 935.278 (+1088.41) 

5.000 +1150.00 12.6870 (+641.388) *Tη <  22916.5 (+15467.7) 22916.5 (+15467.7) 

6.000 +1400.00 14.8515 (+767.874) *Tη <  34479.0 (+23322.4) 14334.9 (+18114.7) 

6.100 +1425.00 15.0663 (+780.427) *Tη <  35787.8 (+24211.5) 15017.4 (+18981.9) 

6.200 +1450.00 15.2808 (+792.961) *Tη <  37125.3 (+25120.1) 15722.6 (+19878.0) 

6.300 +1475.00 15.4950 (+805.478) *Tη <  38491.7 (+26048.4) 16450.8 (+20803.3) 

6.400 +1500.00 15.7089 (+817.978) *Tη <  39887.4 (+26996.5) 17202.4 (+21758.3) 

6.500 +1525.00 15.9226 (+830.466) *Tη <  41312.4 (+27964.5) 17978.2 (+22744.1) 

6.510 +1527.50 15.9439 (+831.711) *Tη <  41456.5 (+28062.4) 41456.5 (+28062.4) 

6.550 +1537.50 16.0293 (+836.701) *Tη <  42036.0 (+28456.1) 16596.0 (+20987.8) 

6.560 +1540.00 16.0507 (+837.952) *Tη <  42181.6 (+28555.0) 18455.4 (+23350.4) 

6.570 +1542.50 16.0720 (+839.1960) *Tη <  42327.5 (+28654.1) 18535.7 (+23452.4) 

6.571 +1542.75 16.0740 (839.31300) *Tη <  42342.2 (+28664.1) 18543.3 (+23462.1) 

6.572 +1543.00 16.0763 (+839.4480) *Tη <  42356.8 (+28674.0) 18551.8 (+23472.9) 

6.573 +1543.25 16.0784 (+839.5700) *Tη <  42371.4 (+28683.9) 18559.8 (+23483.1) 

6.574 +1543.50 16.0806 (+839.6990) *Tη <  42386.0 (+28693.9) 18568.0 (+23493.5) 

6.575 +1543.75 0.843227 (−50.7245) *Tη >  … … 

6.576 +1544.00 0.845722 (−50.5758) *Tη >  … … 

7.000 +1650.00 1.67175 (−2.308250) *Tη >  … … 

 
The effects of η  on the basis of Example-2 are also discussed in Table 2. 
Here “...” denotes the infeasible solution.  
It reveals that if the parameter η  is increased by 1543.5%, then the value of 

the optimal cycle time is increased by 839.699%, the optimal average total cost is 
increased by 28693.9% and the optimal order quantity is increased by 23493.5%. 
Further, if the parameter η  is increased by 1543.75%, then the value of the op-
timal cycle time is decreased by −50.7245%.  

The notable point is that the increase in the value of the parameter η  after 
6.574 gives an infeasible solution as *Tη > . 

6. Conclusions 

This study develops an EOQ inventory model for deteriorating items with a va-
riable deterioration rate and a two-phased demand rate. The two-phased de-
mand rate experiences constant and quadratic demand functions in its first and 
second phases, respectively. The deterioration rate is a linear function of time. 
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The reason for assuming two-phased demand is due to the newly launched items 
like mobiles, automobiles, cosmetics, fashion apparels, etc. The demand for such 
items remains constant for some period of time and then varies with the qua-
dratic function of time. Any types of shortages like partially backlogged and 
complete backlogged are not allowed to occur. The article concludes with a 
couple of numerical examples and a sensitivity analysis of various parameters to 
support the theoretical results. The objective of the proposed model is to gene-
ralize the demand rate involved in the model of Srivastava and Gupta (2007). 
The general form of the quadratic demand is considered as ( ) 2D t a bt ct= + +  
where 0a > , 0b ≠  and 0c ≠ . Here 0c =  and 0b c= =  refer the time- 
dependent linear demand pattern and constant demand, respectively. The varia-
ble deterioration of the system is of the form ( ) ( ), 0 1t tθ θ θ= <  . If 1t = , 
then the variable deterioration rate becomes a constant deterioration rate. To be 
more precise, the proposed model has been studied for the computation of the cycle 
time, order quantity and total average cost under the factors of time-dependent 
two-phased demand and variable deterioration.  

A future study will further include the proposed model into several realistic 
approaches like stochastic demand, generalized demand pattern, stock and price 
dependent demand. We could extend the work to several variable deteriorations 
like the two-parameter Weibull distribution deterioration and Gamma distribu-
tion deterioration. Finally, this work can be extended by incorporating the con-
cept of shortages or partial backlogging.  
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