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Abstract 
I consider a system whose deterioration follows a discrete-time and discrete- 
state Markov chain with an absorbing state. When the system is put into prac-
tice, I may select operation (wait), imperfect repair, or replacement at each dis-
crete-time point. The true state of the system is not known when it is operat-
ed. Instead, the system is monitored after operation and some incomplete in-
formation concerned with the deterioration is obtained for decision making. 
Since there are multiple imperfect repairs, I can select one option from them 
when the imperfect repair is preferable to operation and replacement. To ex-
press this situation, I propose a POMDP model and theoretically investigate 
the structure of an optimal maintenance policy minimizing a total expected 
discounted cost for an unbounded horizon. Then two stochastic orders are 
used for the analysis of our problem. 
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1. Introduction 

With recent advances in science and technology, many systems have become 
more complex and more massive. Accordingly, the breakdown or deterioration 
of such systems could frequently result in economic and social damage in our 
communities. To address those problems mathematically, preventive mainten-
ance models for stochastically deteriorating systems have been widely investi-
gated in the literature. Osaki [1] summarized the mathematical approach for re-
liability and maintenance. And the papers by Cho and Parlar [2], Dekker [3], 
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and Wang [4] are excellent reviews of the subject. Since various techniques for 
detecting the deterioration level of systems have been developed and available 
without expensive cost, one can adopt condition-based maintenance (CBM) ra-
ther than time-based maintenance (TBM) in many cases. The above three reviews 
include studies on CBM as well as TBM. Jardine et al. [5] summarized and re-
viewed the recent research and developments in diagnostics and prognostics of 
mechanical systems implementing CBM with algorithms and technologies for 
data processing. Also, Olde Keizer et al. [6] and Alaswad and Xiang [7] reviewed 
stochastic models for addressing issues on CBM policies. 

For constructing a stochastic model for CBM, I need first express a deteriora-
tion of a system as some kind of stochastic process. If one can assume that the 
deterioration levels of a system correspond to finite non-negative integers, then 
the deterioration of the system could be described as a Markov chain with an 
absorbing state which expresses a failure of the system. This model is called Mar-
kovian deteriorating system and Markov decision processes (MDP) are used for 
addressing maintenance problems. Derman [8], Douer and Yechiali [9], Hopp 
[10], Kurt and Kharoufeh [11] [12], and Tamura [13] studied the discrete-time 
Markovian deteriorating system and derived the sufficient conditions that some 
monotone properties including the control-limit policy hold. Also, Lam and Yeh 
[14] [15] [16], and Yeh [17] [18] studied the continuous-time Markovian deteri-
orating system. These studies have some barriers from realistic viewpoints be-
cause it is too costly or too technically difficult to detect the true state of a system 
in practical situations. In these cases, a system is monitored and some incom-
plete information on the true state of the system is obtained to select an optimal 
action. When I observe alternative characteristics instead of a true deterioration 
level of a system at each inspection, the result has some kind of relationship with 
the true deterioration level although it does not express the true deterioration 
level. Then, partially observable Markov decision process (POMDP) models are 
available to express the behavior of such systems. POMDP models use a so-called 
state vector whose element means the probability of a true state. If an element of 
a state vector is always 1 in a POMDP model, it coincides with an MDP model. 
Ross [19] incorporated the concept of incomplete information into the Marko-
vian system with two states. However, it was a little different from the POMDP 
model. Afterwards, Ohnishi et al. [20], Grosfeld-Nir [21] [22], and Chen et al. 
[23] studied the POMDP model for the maintenance problem where only re-
placement can be selected as a maintenance action. Srinivasan and Parlikad [24] 
studied the extended POMDP model which is called a POSMDP (Partially Ob-
servable Semi-Markov Decision Process) for optimizing maintenance decisions. 
Oosterom [25] used the new stochastic order to analyze the POMDP model. 
And Kivanc et al. [26] applied the POMDP model to real problems. On the other 
hand, Ohnishi et al. [27] proposed the POMDP model with minimal repair as 
well as replacement and showed that the monotone properties hold under sever-
al assumptions. Pham [28] reviewed the studies on imperfect maintenance. Then, 
Ivy and Pollock [29] introduced the concept of repair, which is different from 
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minimal repair, in addition to replacement for the POMDP model and derived 
the marginal monotonicity for the two-state model. Tamura et al. [30] and Fan 
et al. [31] also studied the POMDP model with repair and replacement. Then, 
these models assumed one option for repair. In practical situations, however, I 
can choose some options for repair of which the effects are different. 

In this paper, I construct a POMDP model where one of H imperfect repairs 
can be selected as a maintenance action as well as replacement. For the model, I 
theoretically investigate the structure of an optimal maintenance policy mini-
mizing the total expected discounted cost for unbounded horizon via the theory 
of stochastic order relations. In particular, I derive sufficient conditions for mo-
notone properties of the optimal maintenance policy.  

2. Model Description 

Now I consider a system whose deterioration follows a discrete-state and dis-
crete-time Markov chain with an absorbing state. The system can be classified 
into one of 2N +  states, and then, state 0 represents the process before any de-
terioration takes place that is, it is an initial new state, whereas, 1N +  is a fail-
ure state of the system. The intermediates state 1 ∙∙∙ N are ordered to reflect the 
relative degree of deterioration in ascending order. Thus, I let ijp  denote the 
transition probability of the Markov chain and let P  denote the transition 
probability matrix. { }0,1, , 1N= +  expresses that state space of the Markov 
chain. And I let ix  denote the probability that the true state of the system is 
i∈ . Also, ie  means the 2N +  dimensional vector that the ith element is 1 
and other elements are all zero. The model supposes that an action is selected 
based on the state vector x  instead of the true state i. Thus, I introduce iθγ  
which means the probability that an outcome θ  is obtained through monitor 
given that the true state of the system is i, where ( ) ii θθ

γ=Γ  and  
{ }1, , Mθ ∈ =  . To express that the result of repair is uncertain as well as 

imperfect, I let ( )ijq h  denote the repair probability for the system when repair 
h is selected, where ( )( ) ( )ijij

h q h=Q  and { }1, ,h H∈ =  . That is,   is a 
set of options for imperfect repair. 

Under these settings, at each time epoch, I can select wait, repair h (1 h H≤ ≤ ), 
or replacement as follows: 

Wait: The system is operated for one period and it isn’t directly inspected af-
ter operation. Thus, the system in state i moves to state j with probability ijp  
after one period with operation. Instead of inspection, I monitor the system and 
obtain an outcome θ  with probability jθγ .  

Imperfect repair: I decided on an option among the H possible imperfect re-
pairs. If repair h is selected as an optimal option, then the true state of the system 
is identified through inspection before repair and the system in state i is repaired 
to state j with probability ( )ijq h .  

Imperfect repair: The system is replaced by a new and identical one. Thus, 
after replacement, the system in state i is certainly returned to state 0.  

In the next, I assume some costs and probabilities for the model. Hereafter, I 
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consider that increasing means non-decreasing and decreasing means non- 
increasing, respectively. And Τc  means a transpose of a vector c . Before ex-
planation, two stochastic order relations are defined below. 

Definition 1. For a non-negative matrix B  on M M× , 2TP∈B  means B  
has a property of totally positive of order 2, that is,  

ij kl kj ilb b b b≥  

holds for i k M< ≤  and j l M< ≤ . Similarly, SI∈B  means B  has a prop-
erty of usual stochastic order, that is, for any h,  

 
M M

ij kj
j h j h

b b
= =

≤∑ ∑  

holds when i k≤ . Furthermore, for non-negative vectors ( )1, , Ka a Τ=a   and 

( )1, , Kb b Τ=b  , if a matrix 2TP
Τ

Τ

 
∈ 

 

a
b

 then I write 
T

a b . And if  

 
K K

j j
j h j h

a b
= =

≤∑ ∑ , 

then I write 
st

a b .  

For the above stochastic order relations, I provide some important results as a 
lemma. 

Lemma 1.  

(i) If 
T

a b  then 
st

a b .  

(ii) For any increasing function ig  on i where ( )1, , Kg g Τ=g  , if 
st

a b  
then Τ Τ≤a g b g .  

(iii) If 2TP∈B  then SI∈B .  
The details of the stochastic order relations including 2TP  and SI are ex-

plained by Kijima [32] and Shaked and Shanthikumar [33]. Thus, I omit the 
proof of Lemma 1. 

I introduce the following assumptions for the probabilities P , ( )hQ , and 
Γ . 

Assumption 1. 2TP∈P  and 2TP∈Γ .  
Assumption 2. For any h∈ , ( ) 2h TP∈Q .  
In Assumption 1, the assumption on the transition probability matrix means 

that as the system deteriorates, it is more likely to move to worse states, and the 
assumption on Γ  means that the higher deterioration of the system gives 
higher outcomes from the monitor. These two assumptions in Assumption 1 
have been used in the concerned previous studies to derive the monotone prop-
erties. Assumption 2 means that as the system deteriorates, it is less likely to be 
returned to better states through repair. 

When each action is selected, a cost is incurred as follows:  

iu : operating cost for the system in state i∈ . 
( )ir h : repair cost for the system in state i∈  under repair h∈ . 
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ic : replacement cost for the system in state i∈ . 
And I define  

( ) ( ) ( ) ( )( )0 1 0 1, , , , , ,N Nu u h r h r h
ΤΤ

+ += =u r   

( ) ( ){ }1 1
0 1 1, , , | 1 1 ,N N

N i ic c f f i NΤ + +
+ −= = ∈ ≤ ≤ ≤ +c f    

where 1N+  means a set of 1N +  dimensional vectors whose elements are 
real numbers. For these costs, I introduce the following assumptions. 

Assumption 3. For any h∈ , 2N+∈u  , ( ) 2Nh +∈r  , and 2N+∈c  .  
Assumption 4. For any h∈ , ( ) 2Nh +− ∈u r  , ( ) 2Nh +− ∈r c  , and  

2N+− ∈u c  .  
Assumption 3 indicates that as the system deteriorates, it is more costly to op-

erate, repair, or replace the system. Also, the first relation of Assumption 4 
means that, as the system deteriorates, the merit of repair becomes bigger than 
that of operation. Similarly, in terms of the latter two relations, the merit of re-
placement becomes bigger than those of operation and repair with deterioration, 
respectively. The previous studies have also assumed these relations for the 
analysis of the POMDP models. 

3. Formulation  

This section provides the formulation of our problem as a partially observable 
Markov process model and derives a total expected discounted cost for an un-
bounded horizon. For the formulation, I define ( )0 1 1, , , Nx x x Τ

+=x   where x is 
the probability that the true state of the system is i as a state vector. And I let 

( ),jσ θx  denote the probability that the true state is j when the current state 
vector is x  and the outcome is obtained as θ  through monitor after operat-
ing the system. And β  is a discount factor. Then, by using Bayes’ formula, I 
have  

 ( ), ,i ij ji
j

i ij ji j

x p
x p

θ

θ

γ
σ θ

γ
= ∑
∑ ∑

x                        (1) 

and I define the jth element of ( ),θxσ  is ( ),jσ θx . Also, I let ( )|σ θ x  de-
note the probability that the outcome is θ  through monitor given that the cur-
rent state vector is x  and I have  

 ( )| .i ij j
i

x p θσ θ γ=∑x                          (2) 

Hence I let ( )W x , ( )hR x , and ( )Rt x  denote the optimal expected dis-
counted cost when wait, repair h, and replacement are selected at state vector x , 
respectively. When ( )W x  is expressed as  

 ( ) ( ) ( )( )| ,W V
θ

β σ θ θΤ

∈

= + ∑x u x x x


σ                (3) 

Also, I have  

 ( ) ( ) ( )( ) ( ) ,h jj
j

R h h VβΤ= + ∑x r x xQ e                (4) 
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 ( ) ( )0 ,Rt VβΤ= +x c x e                       (5) 

where  

 ( )( ) ( ).i ijj i
h x q hΤ =∑x Q  

Now I suppose that ( )V x  is the optimal expected discounted cost when an 
optimal action is selected at state vector x  and the optimal maintenance policy 
is adopted afterwards. Then I have  

 ( ) ( ) ( ) ( )
1

min , min , .hh H
V W R Rt

≤ ≤
 =  x x x x                (6) 

This problem can be treated as a Markov decision process with a state space X  
where  

 ( )
1

0
: 0, 1 .

N

i i
i

x x i
+

=

 = ≥ = ∈ 
 

∑X x   

Thus, by solving Equation (6), I can find the optimal maintenance policy which 
minimizes the total expected discounted cost for an unbounded horizon. He-
reafter, for simplicity, when a function ( )h x  satisfies ( ) ( )h h≤x x  for 

T
x x , 

I describe this relation as ( )h x  is increasing x  with respect to 2TP . 

4. Structure of the Optimal Maintenance Policy 

In this section, I provide some results on the structure of the optimal mainten-
ance policy. Before proceeding discussion, I summarize several results as the 
following lemm in preparation. 

Lemma 2.  

(i) If 
T

x x  then 
T

Τ Τx P x P  and ( ) ( )
T

h hΤ Τx Q x Q .  

(ii) If 
T

x x  then 
T

Τ Τx PG x PG .  

(iii) If 
T

x x  then ( ) ( ), ,
T

θ θx xσ σ .  

(iv) If θ θ<   then ( ) ( ), ,
T

θ θx x σ σ .  

(v) If a real valued function ( ),f θx  is increasing in θ  for any ∈x X  and 
is increasing in x  with respect to 2TP , then  

( ) ( ) ( ) ( )| , | , .f f
θ θ
σ θ θ σ θ θ≤∑ ∑x x x x  

The results (i)-(v) are proved by Ohinishi et al. [20]. 

4.1. Basic Results 

Next, some lemmas which are necessary to derive the main results of this study 
are developed. In previous studies, similar lemmas were presented and used to 
derive the monotone properties. 

Theorem 1. ( )V x  is an increasing function of x  in terms of 2TP  and is 
concave in x .  

Proof. First, I show that the characteristics of ( )W x , ( )hR x , and ( )Rt x , 
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respectively. ( )nV x  is assumed to be the expected cost when an optimal action 
is selected for the n-period version of our problem and I use the mathematical 
induction method, where ( )0 0V =x . Then, I have  

 ( ) ( ) ( ) ( )
1

min , min , ,n n n n
hh H

V W R Rt
≤ ≤

 =  x x x x  

 ( ) ( ) ( )( )1| , ,n nW V
θ

β σ θ θΤ −

∈

= + ∑x u x x x


σ  

 ( ) ( ) ( )( ) ( )1 ,n n
h jj

j
R h h VβΤ −= + ∑x r x xQ e  

 ( ) ( )1
0 .n nRt VβΤ −= +x c x e  

When 1n = , ( )1W x , ( )1
hR x , and ( )1Rt x  are increasing in x  from As-

sumption 3. Thus, ( )1V x  is also increasing in x . Thus, I suppose that 
( )nW x , ( )n

hR x , ( )nRt x  are increasing in x . The first terms of these three 
functions are increasing in x  from Assumption 3. Since the second term of 

( )W x  is increasing in x  from Lemma 2 (v) and the assumption on ( )nV x , 
( )1nW + x  is increasing in x . The second term of ( )n

hR x  is a linear function of 
x  and  

( )( ) ( ) ( )( ) ( )1 1n n
j jj j

j j
h V h V− −≤∑ ∑xQ e xQ e  

for 
T

x x  from 
T

i je e  for i j≤  and Lemma 1 (i)-(ii) and Lemma 2 (i). Thus,  

( )1n
hR + x  is increasing in x . And ( )1nRt + x  is increasing in x  since the second 

term is constant, that is, it does not depend upon x . 
Second, I consider ( )1nV + x  through the results on ( )1nW + x , ( )1n

hR + x , and 
( )1nRt + x . When I use the argument similar to those of Ohnishi et al. [20], the 

second term of ( )1nW + x  is increasing and concave in x . Since ( )1n
hR + x  and 

( )1nRt + x  are increasing and linear in x , ( )1nV + x  is increasing and concave 
in x . Hence the proof of this theorem completes.                □ 

In addition, I have a result on the difference of the costs as follows. 
Lemma 3. For any h, ( ) ( )hW R−x x  is concave in x . ( ) ( )W Rt−x x  and 
( ) ( )hR Rt−x x  are increasing in x  with respect to 2TP .  

Proof. Since  

 
( ) ( )

( )( ) ( ) ( )( ) ( )( ) ( )| , ,

h

jj
j

W R

h V h V
θ

β σ θ θ
∈

−

 
= − + − 

 
∑ ∑

x x

u r x x x xQ e


σ
   (7) 

the first and the third terms are linear, the second term is concave in x  from 
the proof of Theorem 1. As a result, the difference between the second and the 
third term is concave in x . Thus. Equation (7) is concave in x  for any h. And 
since  

 ( ) ( ) ( ) ( ) ( )( ) ( ){ }0| , ,W Rt V Vβ σ θ θ− = − + −x x u c x x x eσ       (8) 

the first term is increasing in x  from Assumption 4, the second term is also 
increasing in x  from the proof of Theorem 1, and the third term is constant 
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for x . Thus, Equation (8) is increasing in x . And finally, since  

 ( ) ( ) ( )( ) ( )( ) ( ) ( )0 ,h jj
j

R Rt h h V Vβ
 

− = − + − 
 
∑x x r c x xQ e e      (9) 

the first term is increasing in x  from Assumption 4, the second term is also 
increasing in x  from the proof of Theorem 1, and the third term is constant 
for x . Thus, Equation (9) is increasing in x  for any h. Hence, the proof of 
this lemma completes.                                              □ 

4.2. Monotone Properties 

Next, I provide some structural properties of the optimal maintenance policy. 
For the explanation, I let ( )D x  denote an optimal action selected at state vec-
tor x . And I define  

( )
1

arg min ,h
h H

h R∗

≤ ≤
 ≡  x  

( )
1
min .hh h H

R R∗
≤ ≤

 ≡  x  

Then, I have the optimal maintenance policy has the structure expressed by 
Theorem 2. 

Theorem 2. There exist real numbers α , α̂ , α  such that  

( )

( )
( )
( )
( )

0 ,
ˆ ,

ˆ ,
1 ,

h

T

W
R

D
W
R

α

α α
α α α

α α α
α α

∗

 ≤ <
 ≤ <= 

≤ <
 ≤ ≤

x





 

where ( )1α α α ′= − +x x x  for 
T

′x x  and ˆ0 1α α α≤ ≤ ≤ ≤ .  

Proof. I use Theorem 1 and Lemma 3 for the proof. Since ( ) ( )hW R−x x  is 
concave, ( )W x  and ( )hR x  intersect twice at most. Also, since ( ) ( )hR Rt−x x  
and ( ) ( )W Rt−x x  are increasing in x , as a result, each pair of ( )hR x  and 

( )Rt x  and ( )W x  and ( )Rt x  intersect once at most. Hence the proof of 
Theorem 2 completes.  

Theorem 2 means that the optimal maintenance policy may be classified into 
4 regions at most. In particular, since repair includes inspection proposed by 
Ohnishi et al. [20] if I suppose ( ) 1iiq h =  for any i∈  and any h∈ , the 
structure of the optimal maintenance policy is also similar to that of Ohnishi et 
al. [20]. Except for Ohnishi et al. [20], some studies have previously derived 
monotone properties by introducing several assumptions on costs and probabil-
ities. However, those do not consider that an optimal repair is selected from 
multiple imperfect repairs whose respective effects are different. 

Also, Theorem 2 gives us the following interpretation. In this section, hereaf-
ter, I use x  instead of αx . When a state vector is less than x  or between x̂  
and x  with respect to 2TP  order, I should operate the system, that is, main-
tenance actions are not necessary. Focused on maintenance actions, if a state 
vector stays between x  and x̂  then an optimal imperfect repair is selected 
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and finally, the system should be replaced whenever a state vector exceeds x . 
Theorem 2 is useful for numerically finding an optimal maintenance policy. 

However, if the sequence of optimal imperfect repairs has some characteristics 
when ( ) h

D R ∗=x , then it would be possible to solve the optimal maintenance 
problem further efficiently. Thus, by introducing some additional assumptions, I 
obtain structural properties focused on imperfect repair. 

Assumption 5. For any ,h h′  such that h h′< , I suppose that,  
(i) ( ) ( )h h′ − ∈r r  ,  
(ii) ( ) ( )h h SI′ − ∈Q Q ,  
(iii) ( ) ( )h h′− ∈r r  ,  
(iv) ( ) ( )h h SI′− ∈Q Q .  
Assumption 5-(i) and 5-(iii), and Assumptions 5-(ii) and 5-(iv) do not hold 

together, respectively. Then, Assumptions 5-(i) indicates that it is less costly to 
select repair h compared with repair h' and Assumption 5-(ii) indicates that the 
system is more likely to be returned to better states through repair h compared 
with repair h', as the system deteriorates. Thus, Assumptions 5-(i) and 5-(ii) 
mean that the merit of repair h becomes bigger than that of repair h’ with dete-
rioration of the system. Also, Assumptions 5-(iii) and 5-(iv) have the contrary 
interpretation. 

Under some of the assumptions given by Assumption 5, I have a property on 
the relation of the optimal repairs. 

Theorem 3. I suppose that ( )
ll hD R=x  and ( )

uu hD R=x  for 
T

l ux x . If 
Assumptions 5-(i) and 5-(ii) hold then l uh h≥ . And if Assumptions 5-(iii) and 
(iv) hold then l uh h≤ .  

Proof. I define that, for 1 2

T
x x  and 1 2h h≤ ,  

( ) ( ) ( )
( ) ( )( ) ( ) ( ){ } ( )

1 2 1 2,

1 2 1 2 ,

h h h h

jjj

R R R

h h h h Vβ

∆ ≡ −

 = − + − ∑
x x x

r r x x Q Q e  

( ) ( ) ( )
( ) ( ){ }( )

( ) ( ) ( ){ } ( )

1 2 1 2 1 2

2
, 2 1 , 2 , 1

1 2 2 1

2 1 1 2

,

.

h h h h h h

jjj

R R R

h h

h h Vβ

∆ ≡ ∆ − ∆

= − −

 + − − ∑

x x x x

r r x x

x x Q Q e

 

Also, I suppose that  

( ) ( )2 1and .
h h

D R D R∗ ∗= =x x  

If Assumptions 5-(i) and 5-(ii) hold then  

( )
1 2

2
, 2 1, 0,h hR∆ ≤x x  

and this means that there exists a vector 
1Cx  which satisfies  

 ( )
1 2 1, 0 for ,

T

h h CR∆ >x x x  

 ( )
1 2 1, 0 for .

T

h h CR∆ ≤x x x  

Hence, if ( )
21 hD R=x  and ( )

12 hD R=x  then 1 2

T
x x   since I suppose that 
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1 2h h≤ . And if Assumptions 5-(iii) and 5-(iv) hold then  

( )
1 2

2
, 2 1, 0.h hR∆ ≥x x  

This indicates that there exists a vector 
2Cx  which satisfies  

( )
1 2 2, 0 for ,

T

h h CR∆ ≤x x x  

( )
1 2 2, 0 for .

T

h h CR∆ >x x x  

Thus, if ( )
21 hD R=x  and ( )

12 hD R=x  then 1 2

T
x x   Hence, the proof of this 

theorem completes.  
Theorem 3-(i) means that I should select larger numbered repairs in lower 

state vectors in terms of 2TP  and Theorem 3-(ii) has the contrary interpreta-
tion. This theorem is also useful for finding an optimal maintenance policy more 
efficiently. For example, I suppose that there are H options on imperfect repair 
and ( ) h

D R ∗=x  for [ )ˆ,∈x x x  in terms of 2TP  In this case, Theorem 3 tells 
us that, under Assumption 5, the number of options on imperfect repair gradu-
ally reduces from H as a state vector in [ )ˆ,x x  increases, that is, the system de-
teriorates. 

5. Discussion 

In this section, I explain the significance of Theorems 2 and 3 to find an optimal 
maintenance policy. Generally, I know that monotone properties are available to 
find an optimal maintenance policy numerically. 

Now this section supposes that the system has two states as good (0) and bad 
(1) and there are three options for imperfect repair ( { }1,2,3= ). And the state 
vector x  becomes a scalar x which means a probability that the system stays in 
a bad state. In this case, since I have to decide on an optimal action ( )D x  for 

[ ]0,1x∈ , our problem has an infinite state space. However, if Theorem 2 holds, 
that is, I can know the problem satisfies Assumptions 1, 2, 3 and 4 in advance, 
then I may find 3 real numbers α , α̂ , α  in Theorem 2. Then, I first compare 

( )W x  and ( )h
R x∗  for [ ]0,1x∈  and find real numbers α  and α̂  such that  

( ) ( ) [ )for 0, ,
h

W x R x x α∗≤ ∈   

( ) ( ) [ )ˆfor ,1 ,
h

W x R x x α∗≤ ∈  

( ) ( ) [ )ˆfor , .
h

W x R x x α α∗> ∈   

Second, similarly, I compare ( )W x  and ( )Rt x  for [ ]ˆ,1x α∈  and find α  
such that  

 ( ) ( ) [ ]for ,1 ,W x Rt x x α> ∈  

 ( ) ( ) [ )ˆfor ,W x Rt x x α α≤ ∈ , 

since ( ) ( )h
W x R x∗≤  for [ )ˆ,1x α∈ . Thus, Theorem 2 can reduce the computa-

tional effort for finding an optimal maintenance policy numerically. This use-
fulness is conserved for more than two states. 
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To find the optimal maintenance policy in the above, I need obtain ( )h
R x∗ , 

that is, the comparison of ( )hR x  for h∈  arises in this problem. Then Theo-
rem 3 is useful to address the problem. Since I have 3 options for imperfect re-
pair, if the costs and the probabilities satisfy Assumptions 5-(iii) and 5-(iv) then 
Theorem 3-(ii) holds. In this case, comparing ( )1R x  with ( )W x , I find 1α  
such that ( ) ( )1R x W x≤  for [ ]0,1x∈  as a first step. In the next, I find 2α  
that ( ) 2D x R= , that is, ( ) ( )2 1R x R x<  for [ ]1 ˆ,x α α∈   through comparison of 

( )1R x  and ( )2R x . And finaly, I find 3α  that ( ) ( )3 2R x R x<  for [ ]2 ,1x α∈   
through comparison of ( )2R x  and ( )3R x . As a result of this procedure, I can 
find the real numbers 1α , 2α , 3α , α̂  and α , and determine the optimal 
maintenance policy that satisfy 1 2 3 ˆα α α α α≤ ≤ ≤ ≤   . On the other hand, if the 
costs and the probabilities satisfy Assumptions 5-(i) and 5-(ii) then I may use 
Theorem 3-(i) to find an optimal maintenance policy where  

3 2 1 ˆα α α α α≤ ≤ ≤ ≤   . 
Even if the number of states is more than 2, I can similarly use Theorems 2 

and 3. However, the computational effort becomes much harder with larger 
states. 

6. Conclusions 

In this paper, I considered a system whose deterioration follows a discrete-time 
and discrete-state Markov chain under incomplete information on the true state 
and constructed a POMDP model for an optimal maintenance problem. I have 
several options for repair which has different recovery effects on the system in 
addition to replacement as maintenance actions. Then, I derived sufficient con-
ditions that the monotone property holds as per Theorem 2. As described in Sec-
tion 4.2, since this theorem is a generalization of some previous results and is 
useful for efficiently solving the optimal maintenance problem since the optimal 
maintenance policy may be classified into 4 regions at most. 

Furthermore, I established the sequence of optimal repairs under several as-
sumptions in Theorem 3. Since the previous studies on POMDP models for op-
timal maintenance problems do not focus on the concept of multiple imperfect 
repairs that the repair probabilities are different, Theorem 3 is a significant prop-
erty in this area even if the assumptions are so strict. In particular, the feature 
that the number of options on imperfect repair gradually reduces with the in-
crease of a state vector in terms of 2TP  is so interesting. 

I can check whether the costs for the respective actions and the transition and 
repair probabilities satisfy the assumptions for Theorems 2 and 3 before solving 
an optimal maintenance problem. Thus, as discussed in Section 5, the theorems 
obtained in this study are available to reduce the computational time since the 
number of regions of the optimal maintenance policy can be limited. 

However, I do not provide quantitative analysis through numerical experi-
ments. While there exist algorithms for POMDP models (see e.g. Monahan [34], 
Guo and Lian [35]), as stated by the previous studies, POMDP models with 
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many states have an aspect of time-consuming computation. Thus, future works 
are to construct an efficient algorithm for solving our problem under the as-
sumptions for the monotone properties and to obtain some characteristics of the 
optimal maintenance policy through numerical analysis. Also, I need to consider 
how to relax the sufficient conditions for the theorems. In particular, four condi-
tions in Assumption 5, which are used for deriving Theorem 3 and are originally 
proposed in this study, are so strict that it would be difficult for them to be satis-
fied in real situations. Hence, it is important to construct a numerical method 
for addressing the optimal maintenance problems without Assumption 5. 
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