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Abstract 
We first discuss the relationship between the optimal track maintenance sched-
uling model and an efficient detection method for abnormal track irregulari-
ties given by the longitudinal level irregularity displacement (LLID). The re-
sults of applying the cluster analysis technique to the sampling data showed 
that maintenance operation is required for approximately 10% of the total 
lots, and these lots were further classified into three groups according to the 
degree of maintenance need. To analyze the background factors for detecting 
abnormal LLID lots, a principal component analysis was performed; the re-
sults showed that the first principal component represents LLIDs from the 
viewpoints of the rail structure, equipment, and operating conditions. Binomial 
and ordinal logit regression models (LRMs) were used to quantitatively inves-
tigate the determinants of abnormal LLIDs. Binomial LRM was used to char-
acterize the abnormal LLIDs, whereas ordinal LRM was used to distinguish 
the degree of influence of factors that are considered to have a significant 
impact on LLIDs. 
 

Keywords 
Multivariate Analysis, Track Maintenance Scheduling, Track Irregularity, 
Longitudinal Level Irregularity Displacement, Cluster Analysis, Principal 
Component Analysis, Binomial Logit Regression Model, Ordinal Logit  
Regression Model 

 

1. Introduction 

The railroad business was privatized in Japan based on the decision of the Nak-
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asone Cabinet in 1987. Currently, railway utilities in Japan are dominated by two 
major groups: the Japan Railway (JR), comprising six companies that are head-
quartered in Hokkaido, East Japan, Central Japan, West Japan, Shikoku, and Kyu-
shu, and privately owned railways operated by general private utilities, compris-
ing approximately 90 companies. The number of passengers transported by the 
JR and the private group was 6707 (106 passengers) and 10,963 (106 passengers), 
respectively, in fiscal year 2020, denoted by FY2020. The number of passen-
ger-kilometers (sum of the products of the number of passengers and their trav-
eled distance in kilometers) transported in FY2020 is 152,084 (103 passenger-km) 
and 111,127 (103 passenger-km) for the JR and private railways, respectively [1]. 
Passenger transportation volume of the railways has been following a downward 
trend since its peak in 2018. Recently, it has declined significantly due to the 
COVID-19 outbreak. These data in [1] indicate that the JR group is responsible 
for 38% of the total number of passengers traveled and 58% of the total number 
of passenger kilometers traveled in Japan. Based on these findings, it is true that 
railways can be expected to remain the most important and indispensable public 
transportation system in Japan in future, if we consider the size of the country 
and the current geographical population distribution. In addition, the railway 
system plays an important role in the world economy and the transportation of 
people. However, the business of railway utilities has suffered severely because 
of the declining birthrate, aging population, and decrease in the working popu-
lation, in addition to the decrease in the number of passengers because of the 
COVID-19 outbreak; thus, a decline in railway business revenues can be seen in 
most railway utilities in Japan. In particular, we foresee that by 2040, the railway 
business revenues of the JR group will decrease by 20% compared with those in 
2019 [2]. Therefore, improving the business condition by increasing efficiency is 
one of the important issues [3]. 

Preventing railway accidents and obtaining passenger safety are necessary to 
ensure transportation safety and increase the reliability of transportation net-
works. Compared with other modes of transportation, railways are superior in 
terms of reliability, running speed, and safety. In terms of safety, the probability 
of accidental death per passenger kilometer per hour is 1.5 × 10−11, which is ap-
proximately 1/7 for airplanes and approximately 1/450 for automobiles. Thus 
automobiles have the highest probability of accidental death. The probability of 
accidental death per hour is approximately 1/2 for automobiles compared to that 
of airplanes, which have the highest probability of accidental death. However, 
the probability of death for railways is approximately 1/670, which is considera-
bly lower than that of airplanes [4] [5]. 

However, some large-scale accidents such as the Shigaraki accident (42 dead, 
614 injured) in 1991 and the Fukuchiyama accident (107 dead, 562 injured) in 
2005 in which many passengers died, made a significant social impact, and the 
safety of the railway system became a major social issue. The social unrest and 
economic losses caused by these rare, large-scale accidents were extremely high. 
Railway utilities also suffered significant losses in terms of compensation for 
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damages, loss of credibility, and reduction in transportation revenue. In addi-
tion, even small-scale accidents can impair railway operations and reduce trans-
portation reliability. Thus, accidents prevent the railway system from fulfilling 
its role as a public transportation system. 

In Japan, the railway system is a crucial public transportation system, and as a 
public utility, the railway business is among the most important businesses; hence, 
the safety of the railway system is critical. When considering the safety of railway 
systems, it is necessary to consider how track maintenance should be performed 
because track safety is the most essential concern. Hence, in this study, we pro-
posed an efficient method for detecting longitudinal-level irregularity displace-
ment (LLID) anomalies and validated the proposed method.  

While playing an important role as social infrastructure, railway utilities are 
facing fierce competition from other transportation systems, and there is an ur-
gent need for examining and verifying safety improvement strategies to ensure 
stable and safe transportation. It is necessary to select targets on which accident 
prevention measures should be focused, taking into account the impact of acci-
dents and the scale of human, economic and social losses, and to examine ways 
to efficiently improve safety [6] [7]. Previous studies clarified the relationship 
between safety investment cost and effectiveness by optimizing the risk minimi-
zation and the life cycle cost minimization models [8] [9]. 

Many studies have been conducted to improve railway safety and prevent spe-
cific accidents. In particular, the study of large-scale accidents helps us develop 
and introduce new technologies and mechanisms to prevent the occurrence of 
similar accidents. There are two main approaches for accident prevention: one 
way is to identify an accident or event to be analyzed, estimate the process of ac-
cident occurrence, and study preventive measures against it. The other is to first 
divide the railway into several subsystems, extract as many hazards as possible, 
then estimate the risk posed by the hazards and eliminate those hazards that are 
judged to be high-risk hazards. The former research is based on micro-analysis, 
wherein the focus is on detailed accident causes and processes of accidents. The 
latter, on the other hand, is based on macro analysis, wherein the statistical data 
on the number of accidents, their causes, and the details of the accidents are first 
analyzed. Then, based on the analysis results, the overall trends are identified to 
find directions for developing and introducing new technologies and systems. 

However, train accidents in Japan have not been investigated much, thus few 
studies have been conducted so far. [10] measured the safety of Japanese railway 
systems to mitigate train accidents by applying statistical methods, and proposed 
a model to explain the occurrence processes of train accidents from human 
viewpoints, such as train operators’ judgments and behaviors. Furthermore, [11] 
proposed several countermeasures to reduce the number of serious train acci-
dents (STAs). Using data from 1987 to 2005, [12] and [13] examined the STAs in 
Japan from various viewpoints such as their frequency distributions of occur-
rence, types, causes, and countermeasures. In particular, they showed statistical 
models and observed that the frequency and interoccurrence interval of STAs 
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could be explained using the Poisson process. [14], using data from 2001 to 2011, 
investigated the occurrence of train accidents and their effects on train opera-
tions such as delays and cancellation of train services in Japan. [15]-[20] also 
discussed train accidents in Japan using historical data. 

Train accident-causing factors in the United Kingdom have been investigated 
quantitatively in particular, where major accidents occurred frequently after the 
privatization of national railways in 1992. [21] and [22] investigated train acci-
dents in Great Britain using 75 fatal train accident data points by classifying 
them based on accident types. He built a model to estimate the occurrence 
probability and the number of deaths due to train accidents; and concluded that 
introducing accident prevention equipment and devices is effective. These stud-
ies by Evans are one of the few examples of cross-sectional analyses of accident 
data classified by the accident type and factors leading to the accident. [23] de-
veloped a model considering the occurrence processes such as the birth process 
and Poisson processes to analyze the risk of derailment using a probabilistic ap-
proach. [24] demonstrated that the risk of derailment can be significantly re-
duced by increasing the inspection frequency of grinding related to rolling con-
tact fatigue. [25] proposed a discrete-time Markov chain method for assessing 
the global risk of railway transportation systems. [26] described suitable tech-
niques used to reduce train accidents and protect infrastructures by preventing 
railway suicides, trespassing, and level crossing (LX) users. 

[27] described that safety was the core issue in railway operations, emphasiz-
ing that Railway LX safety was a highly critical aspect of railways, and performed 
a causal reasoning analysis of LX accidents using the Bayesian risk model. They 
provided results to improve countermeasures to reduce the risk and mitigate the 
consequences of LX accidents. [28] investigated various causing factors of rail-
way accidents in Iran. They concluded that approximately 55% of those acci-
dents are caused by derailment. [29], describing the problem of railway safety 
management and the criteria for evaluating traffic risk, built an assessment 
model of traffic risk at LX. Their model was based on the plan-do-check-act 
(PDCA) processes for Lithuanian railways. Assessing the safety of LX accidents 
by using the logistic regression method, they concluded that their risk evaluation 
model was flexible and could be easily adapted for evaluating and monitoring of 
the safety risks of other elements pertaining to railway infrastructure. [30] at-
tempted to identify hazardous situations, causes of hazards, potential accidents, 
and severe resulting consequences. 

In this paper, we propose an efficient method to detect abnormal LLID lots 
from an extraordinarily large data set. This method can help us generate an op-
timal track maintenance schedule as an efficient detection of abnormal LLID lots 
can reduce a large amount of data processing work and computation time for 
obtaining an optimal track maintenance scheduling solution. The rest of this pa-
per consists of five sections. Section 2 discusses the relationship between the op-
timization model for an optimal track maintenance plan and an efficient detec-
tion method for an abnormal LLID. Additionally, the sample data collection and 
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verification methods used in this analysis are described. In Section 3, we at-
tempted to apply the cluster analysis technique to the sample data to efficiently 
detect the points to be monitored based on actual LLID data. In Section 4, we 
use the principal component analysis (PCA) technique to clarify the characteris-
tics of the data contained in each cluster obtained in the previous step. In Section 
5, binomial and ordinal logit regression models (LRMs) are used to quantita-
tively analyze the determinants of abnormal LLID and the degree of influence of 
factors. Finally, Section 6 provides a summary and conclusions of this study. 

2. Optimal Track Maintenance Scheduling (OTMS) Model  
and Detection Method for Abnormal LLID Locations 

2.1. Model Analyses for Generating an OTMS 

Tracks are the basic infrastructure of railway systems; however, according to 
[31], the track maintenance cost accounts for almost one-third of the total rail-
way operating costs. Moreover, because the number of passengers is likely to de-
crease as the population declines, the revenues of railway businesses are also ex-
pected to decline. In addition, the expected increase in labor costs due to the de-
crease in the labor force requires a fundamental review of the railroad business 
structure. To improve maintenance management performance under such cir-
cumstances, an effective and efficient track maintenance strategy must be de-
termined and implemented.  

Many studies have been conducted to generate optimal track maintenance 
schedules based on the representation of these processes using mathematical 
models. [32] and [33] provided comprehensive reviews of maintenance sched-
uling. In particular, [32] classified maintenance scheduling into three levels: 
strategic, tactical, and operational, according to track conditions and planning 
periods, which allowed maintenance management to be implemented at various 
levels. [34] proposed a proactive maintenance schedule to prevent unexpected 
breakdowns in railway systems. They presented a mathematical formulation by 
applying greedy heuristics and compared the performance of their heuristics 
with the optimal solution using randomly generated instances. [34] and [35] 
developed a scheduling model that considered both short-term maintenance and 
long-term projects to minimize the overall cost and optimize track maintenance 
to prevent railway accidents.  

We know that optimizing maintenance actions at a preventive level can reduce 
the track maintenance costs during the track lifecycle. Thus, scheduling preven-
tive maintenance actions is important for railway administrations. [17] [36] and 
[37] developed OTMS models that consider the risk of derailment accidents. In 
particular, [37] aimed to obtain an optimal maintenance schedule for improving 
railway track irregularities using all-integer linear programming (AILP) optimi-
zation model analyses. They predicted changes in surface irregularities by inves-
tigating the transition process through degradation and restoration model anal-
yses. They finally obtained an optimal tamping schedule for the multiple tie tam-
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per (MTT) for the entire year. [17] presented an OTMS model developed for 
maintaining adequate railway track conditions and accomplishing efficient man-
agement of the railway service. Their models have been utilized by several major 
Japanese railway companies to develop their own OTMS models. Based on these 
optimization models, systems for planning operational schedules for various 
maintenance machines ([38] [39]) or for combining different maintenance ma-
chines to perform more sustainable track maintenance ([40]) have been devel-
oped, constructed, and empirically investigated. 

In track maintenance plan optimization, a large amount of data needs to be 
processed. Hence, the computational complexity required to obtain an exact op-
timal solution is enormous. Therefore, multifaceted efficiency procedures, such 
as methods for collecting a large amount of data, improving processing efficien-
cy, and streamlining optimization calculations, have been proposed and verified. 
This paper deals with the issue of how to efficiently collect LLID data from the 
viewpoint of collecting a large amount of data and improving the data processing 
efficiency. A specific and efficient method for detecting abnormal LLID lots is 
also proposed. 

[41] developed a mixed-integer linear programming (MILP) model to mini-
mize the maintenance cost over the track life cycle while ensuring the required 
geometrical quality. Their model was formulated to optimize tamping operations 
in ballasted tracks for preventive maintenance. [42] presented an optimization 
model for scheduling the ballast, rail, and sleeper renewal operations at the net-
work level. Their objective was to minimize the expected railway track life-cycle 
cost (LCC) and track unavailability costs, which were derived from user impacts 
caused by traffic disruption. In addition, [43] proposed a strategic model to op-
timize railway-track renewal operations at a network level aiming for a railway 
track geometry degradation that considers uncertainties in the forecast by de-
fining a track geometry reliability parameter. Their model was formulated by ap-
plying a multi-objective optimization approach to assess railway track mainte-
nance strategies taking a cost-reliability trade-off into consideration.  

2.2. Detection Methods for Finding Abnormal LLID Locations 

The final objective of this study is to develop a strategy to improve the safety of 
railway systems by optimizing track maintenance, which is an important issue in 
railway business management. Track maintenance management requires effi-
cient determination of the location of an abnormal LLID. Therefore, track inspec-
tions are usually conducted periodically to perform planned maintenance and re-
cover track geometry ([44] [45] and [46]). However, in rare cases, LLID can be 
localized and rapid owing to a large cavity in the roadbed, or initial settlement in 
the ballast after maintenance. This can threaten the safe operation of trains and 
may cause transport disorder and accidents. As a result, unplanned actions, such 
as immediate track maintenance, are performed. For stable train transportation, 
it is necessary to detect signs of rapid LLID growth, identify the location of its 

https://doi.org/10.4236/ajor.2022.126015


M. Matsumoto et al. 
 

 

DOI: 10.4236/ajor.2022.126015 267 American Journal of Operations Research 
 

occurrence and its tendency at an early stage, and perform track maintenance in 
advance. However, detecting abnormal LLID lots quickly and efficiently has not 
been done much so far, and furthermore, detection method has not been inves-
tigated before. However, detecting abnormal LLID lots quickly and efficiently has 
not been attempted much so far, and furthermore, detection method has not been 
investigated before. 

[47] proposed a computer application that uses track geometry measurements 
and maintenance operation data. It has been applied in France. [48] proposed a 
method to schedule track inspection and maintenance activities in railroad net-
works. [49] proposed a simplified condition-based maintenance (CBM) for im-
plementing LLID and carrying out appropriate and timely maintenance on track 
locations. [50] proposed a prediction framework validated using LLID data ob-
tained from measurements performed using track geometry cars. Their method 
showed a superior prediction performance than that of state-of-the-art methods. 
[51] developed a support vector machine (SVM) to model the deterioration of 
track geometry defects, focusing on three defect types: surface, cross-level, and 
dip. The model results demonstrate a prediction accuracy higher than 70%.  

Recently, improvements in LLID measurement and analysis technology have 
enabled obtaining track inspection and acceleration data with high frequency 
and simplicity. [52] developed a prototype track-measuring device mounted on a 
commercial railway vehicle. [53] and [54] confirmed that for the diagnosis and 
prognosis of rail defects, rail corrugation can be managed efficiently using the 
leading axle of the bogie. [55] showed that the detection performance could be 
improved by combining multiple detectors within a multitask learning frame-
work, and their approach resulted in improved accuracy for detecting defects. 
[56] reported that their proposed method could improve reliability and safety as 
they grasped the details of the LLID situation more clearly by visualizing the da-
ta. [57] proposed a decision-support approach for the CBM of rails based on ex-
pert-based systems. Their results supported infrastructure managers in analyzing 
the problems in their rail infrastructure and efficiently performing CBM deci-
sion-making. [58] utilized a track-recording vehicle for maintenance purposes, 
which has the potential to provide efficient and frequent measurements on a 
train car body by applying an augmented state Kalman filter. Some studies have 
examined the efficiency of maintenance, operation, and marketing using data 
envelopment analysis (DEA) in railway business management ([59] [60]). 

[61] surveyed recent applications of machine learning (ML) for the diagnosis 
and prognosis of rail defects in rail track maintenance. They presented the short-
comings of current techniques and discussed what the research community and 
rail industry could do to address these issues and suggested future research di-
rections. [62] developed a neural network model and revealed that the neural 
network technique is capable of establishing correlations between geometrical 
defects and structural problems in tracks. [63] introduced data-driven models, 
such as artificial neural networks and support vector regression, as basic ingre-
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dients of ML technology. They concluded that the maintenance and renewal of 
ballasted tracks could be optimized in terms of time and cost by deriving an ap-
propriate statistical model of track deterioration. 

2.3. Sampling Methods for Data Collection 

LLID is generally obtained by placing a reference string on the rail and measur-
ing the distance between the center of a straight line connecting the two ends of 
the string and the rail at the center of the string. The LLID obtained when the 
length of the reference string is 10 m is called a 10 m-chord irregularity, which is 
widely used by Japanese railway utilities as an indicator for track maintenance. 
However, the 5 m-chord irregularity, which is obtained when the reference 
string length is 5 m, is known to detect anomalies more accurately than the 10 
m-chord irregularity [64]. Therefore, the 5 m-chord LLID was mainly utilized in 
the analyses performed in this study. When developing the detection method for 
abnormal LLIDs, the following assumptions were made about the characteristics 
of the target line segment to be analyzed: 1) annual passing tonnage is approxi-
mately 1.7 to 2.5 million tons, 2) total track length is 558.9 km, 3) high-speed 
lines with no freight traffic (Shinkansen), and 4) track inspection period of fre-
quency is once every 10 days. This data was collected from 2015 to 2020. In oth-
er words, the data were obtained for 168 days of inspection. 

Generally, control indices are defined based on the 10 m-chord irregularity 
in order to maintain safety and a certain level of riding comfort, and to reduce 
the amount of emergent maintenance work. In this study, we defined three 
levels of control indices: the first is a maintenance target value for planning 
regular maintenance work; the second is an operative maintenance target value 
defined to maintain a certain level of riding comfort; and the third is an ex-
treme displacement value; when this value is reached, maintenance work is 
immediately applied. 

The total track length of 558.9 km was divided into lots of 100 m each, and the 
maximum value of LLID of the displacement, which is hereafter referred to as 
maximum displacement, was determined for each lot. Moreover, the set of 5589 
lots is referred to as the total set of lots. The plotted distribution for the 5 
m-chord and 10 m-chord cases of the maximum displacement is shown in Fig-
ure 1. As shown, the 10 m-chord maximum displacements tend to be larger than 
those of the 5 m-chord. However, we found that the difference is not signifi-
cantly large because the coefficient of determination between the two datasets is 
0.645.  

In this analysis, 500 lots, which we call the sample set of lots, were selected out 
of the total set of 5589 lots. In sampling, we selected the sample set of lots such that 
their characteristics were as similar as possible to the total set. Accordingly, we 
considered the following eight categories related to track structure, rail charac-
teristics, train operations, etc.: i) for rails, regular rail, and long rail with glued 
joints. ii) For the track bed, the concrete slab, ballast, direct connection to the 
sleeper, and boundary lot. iii) We classified the linear and curve radii into straight 
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Figure 1. Distribution of the 5 m-chord and 10 m-chord cases of maximum displace-
ments. 
 
lines and curves. Curves were classified into three categories according to the 
curve radius, and composites and joints connected to these curves were added. 
iv) structure, v) running speed, vi) branching, vii) expansion joint, and viii) 
glued-insulated joints of rails were also selected so that the percentages of the 
total and the selected lots were as similar as possible. 

Regarding the rail, we considered categories ii), iii), and iv), whereas for the track 
structure, we distinguished the inside of the tunnel and the tunnel mine-head, and 
separated elevated structures, bridges, and the boundary areas of the structures. 
Train speeds v) were further categorized as high-speed and low-speed lots run-
ning at 170 km/h or higher and at less than 170 km/h, respectively. For branch-
ing vi), expressions 0, 1, and 2 were used, depending on the number of branches 
in the lot. Expansion joint vii) and glued-insulated joint viii) were set to 0 and 1, 
respectively, depending on whether they were located at the lot. It is well known 
that concrete slabs are widely used on high-speed lines because the occurrence of 
track irregularity displacement is unlikely, and the track conditions inside the 
tunnel tend to be stable because they are less affected by temperature changes 
than those at the mine-head of the tunnels. Moreover, the boundary lots of rails 
and structures, as well as expansion joints and glued-insulated joints, tend to be 
weak points compared to other general tracks; thus, track irregularity displace-
ment with large maximum displacement is more likely to occur because they are 
difficult to maintain. 

As mentioned earlier, we identify a sample set of lots such that its characteris-
tics are similar to those of the total set. Figure 2 also shows the percentage dis-
tribution of the characteristics percentages of the total and sample sets of lots. It 
can be observed that the percentage distribution of both were almost identical. 

3. Applying Cluster Analysis Technique to Classify Abnormal  
LLID Lots 

3.1. Definition of Variables 

Table 1 lists the variables used in this analysis. The variables were categorized  
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Figure 2. Percentage distribution for characteristics of the total and sample sets of lots.  

 
Table 1. List of variables. 

Category Variables 

I (Displacement-related) MXDP, STDV, MXDV, NIMP, NRAD 

II (Rail structure-related) BRIN, BLST, NTBD, CRVR, EXJT, GIJT, RGRL 

III (Operation-related) RSPD, PTWT 

 
into the following three types: In the following explanation bin. indicates binary 
variable, 

(1) Track displacement-related: maximum irregularity displacement (MXDP, 
mm), standard deviation (STDV, mm), maximum deviation (MXDV, mm), num-
ber of improvements (NIMP), number of rapid advances (NRAD). 

(2) Rail structure-related: branching (BRIN, bin.), ballast (BLST, bin.), concrete 
slab (NTBD, bin.), curve radius (CRVR), expansion joint (EXJT, bin.), glued- 
insulated joints (GIJT, bin.), regular rail type (RGRL, bin.). 

(3) Train operation-related: running speed (RSPD, km/h), passing train weight 
(PTWT, ton/year). 

For variables in (1), which are related to the track irregularity data, MXDP, 
STDV, and MXDV denote the maximum value, standard deviation, and maxi-
mum deviation of the measured LLIDs, respectively, for the 5m-chord in the 100 
m lot. The NIMP indicates the number of times that the LLID improvement was 
1 mm or more on consecutive days during the measurement period. Whereas, 
NRAD indicates the number of times that the LLID advance was 2 mm or more 
on consecutive measurement days. The rail structure-related characteristic vari-
ables in (2) are binary variables that are set to 1 when each characteristic is in-
cluded and 0 otherwise. However, the curve radius was set to 1 when R > 1500 m 
and 0 when R ≤ 1500 m. For the variables in (3), the running speed and passing 
tonnage were measured in km/h and ton/year, respectively.  

For each of the MXDP, STDV, and MXDV variables, we know that the larger 
the values, the worse could be the track condition. The NIMP indicates the num-
ber of maintenance cycles, whereas MXDV and NRAD are considered to indi-

https://doi.org/10.4236/ajor.2022.126015


M. Matsumoto et al. 
 

 

DOI: 10.4236/ajor.2022.126015 271 American Journal of Operations Research 
 

cate the tendency of the track condition to deteriorate rapidly (or to improve 
significantly after a single maintenance cycle). In general, the worse the track 
condition, the higher is the maintenance frequency. Therefore, there was a high 
correlation between MXDP, STDV, and MXDV. The NIMP was defined to be 
consistent with the maintenance frequency calculated from the maintenance re-
sults. The definition of the NRAD was based on the fact that the difference be-
tween the operative maintenance target value and the extreme displacement value 
among the control indices was 2 mm. Therefore, these indicators effectively 
represent the line segments characteristics considered in this analysis, and it is 
necessary to consider appropriate values when applying them to line segments 
under different conditions.  

3.2. Numerical Results of Applying Cluster Analysis Technique 

We present the numerical results of applying cluster analysis to a set of 500 lots 
in the sample set. The five variables used here are included in Category I, i.e., 
MXDP, STDV, MXDV, NIMP, and NRAD. The data were classified into five clus-
ters based on the k-means method. In applying the cluster analysis techniques, the 
variables, units, and notations listed in Table 1 were used. 

Table 2 shows the number of lots in the sample set included in each cluster 
and the center-of-gravity coordinates, that is, the average of all corresponding 
values for the variables contained in each cluster. Clusters {1, 2, …, 5} are de-
noted as {C1, C2, C3, C4, C5}. In Table 2, the center-of-gravity coordinates of 
C1 are the largest for almost all variables given by {MXDP, STDV, MXDV, 
NIMP, and NRAD}. We can see that the variable values for C1, C2, C3, C4, and 
C5 decrease in the same order, except in the case of variable NIMP, where the 
magnitudes of the values for clusters 2 and 3 are reversed. This suggests that the 
magnitude of LLID is in the order of C1, C2, C3, C4, and C5, and that the sam-
ple set of lots in C4 and C5 represents the majority of the total set, approximate-
ly 90%, and has the smallest amount of LLID. Furthermore, the results in Table 
2 show that almost 70% of the 500 sample sets of lots were in C5, where the cen-
ter-of-gravity coordinates had the lowest LLID values. 

Table 3 lists the distances of the center of gravity coordinates among the five  
 
Table 2. Number of lots by cluster and center-of-gravity coordinates by variables. 

Cluster NELM MXDP STDV MXDV NIMP NRAV 

1 6 11.370 1.837 9.607 11 2 

2 27 9.436 1.746 7.696 4 0 

3 19 8.112 1.374 6.024 8 0 

4 116 5.843 1.026 4.070 2 0 

5 332 2.481 0.206 0.957 0 0 

Total 500      

NELM: Number of elements contained in each cluster. 
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Table 3. Distances between centers-of-gravities for clusters. 

Cluster 
Cluster 

1 2 3 4 5 

1 0 7.168 5.598 11.739 16.381 

2 - 0 4.685 5.598 10.591 

3 - - 0 6.951 11.192 

4 - - - 0 5.025 

5 - - - - 0 

 
clusters. From this result, it can be seen that the Cluster 5 is farther away from 
C4, C3, C2, and C1, in the given order. Moreover, it also shows that among these 
five clusters, C1, C2, and C3 are quite close to each other, whereas C4 and C5 are 
much farther from these and closer to each other. Thus, we can also see that they 
can be divided into two groups, {C1, C2, C3} and {C4, C5}. It should be noted 
that we argue that the lots in the first group {C1, C2, C3} obtained are those that 
should be targeted for detection as abnormal LLID (or MXDP) lots. We know 
that the shorter (longer) the distance from the center-of-gravity coordinates of 
the cluster, the higher (lower) is its similarity to the center. Thus, we find that 
clusters {C1, C2, C3} contain lots with large fluctuations and high maintenance 
frequencies, whereas {C4, C5}, which contain majority of lots, have lots with sta-
ble small track irregularities. Hence, these lots have insignificant improvement 
frequencies. 

We aim to determine the track structure characteristics of each lot in the clus-
ter. Table 4 shows the percentage of lots in each cluster based on track structure 
characteristics. The characteristics found in the lots contained in each of the 
clusters {C1, C2, C3} in the first group defined above are as follows. 

All lots in C1 recorded large values of approximately 10 mm for MXDP, 
which correspond to significant values for the maximum value of the 10m-chord 
during the inspection period. Moreover, all lots are ballasted, have a large fluc-
tuation in MXDP, and have several NIMP cycles. In addition, half of the lots are 
located at the boundaries of the structures, and many of them include EXJT or 
GIJT, which tend to deteriorate the track condition. Therefore, C1 is the group 
that requires the most attention for maintenance operations because it includes 
lots that are maintained at a high frequency and have a large NIMP and NRAD 
values. In addition, all lots are located in sections with curve radii of 3000 m or 
more, or in straight sections with high-speed lots. This suggests that the high- 
speed lots in this line are due to the fact that the track condition is more likely to 
deteriorate. Moreover, C2 contains lots with MXDP values close to extreme val-
ues. Compared to C1, C2 tended to have more lots with a lower maintenance 
frequency, even though the track condition was poor. This is because several lots 
in C2 are difficult to maintain on a routine schedule and require large-scale 
maintenance work such as track structures, structure boundary areas, and bridges.  
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Table 4. Percentages of track structures for each cluster (%). 

Track Item C1 C2 C3 C4 C5 

Rail 
Long rail 100.0 96.3 100.0 97.4 100.0 

Unit length rail 0.0 3.7 0.0 2.6 0.0 

Roadbed 

Concrete slab 0.0 0.0 5.3 16.4 66.9 

Ballast 100.0 81.5 84.2 81.0 32.5 

Boundary 0.0 18.5 10.5 2.6 0.6 

Liner and curve 
radius (R) 

Straight lines 83.3 70.4 52.6 50.9 48.5 

R > 3000 16.7 29.6 47.4 41.4 46.1 

1000 < R ≤ 3000 0.0 0.0 0.0 3.4 3.3 

R ≤1000 0.0 0.0 0.0 4.3 1.8 

Structure 

No structure 16.7 3.7 15.8 10.3 1.2 

Inside tunnel 16.7 7.4 10.5 21.6 65.7 

Mine-head 0.0 0.0 5.3 4.3 0.6 

Elevated structure 0.0 29.6 21.1 26.7 16.0 

Bridge 16.7 33.3 26.3 16.4 4.2 

Boundary 50.0 25.9 21.1 20.7 12.3 

Speed 
High speed 100.0 96.3 100.0 89.7 92.2 

Low speed 0.0 3.7 0.0 10.3 7.8 

Branching 
No branching 100.0 96.3 89.5 96.6 99.4 

With 1 branching 0.0 3.7 10.5 3.4 0.6 

Expansion joint 
No expansion joint 83.3 88.9 84.2 92.2 99.7 

Included 16.7 11.1 15.8 7.8 0.3 

Glued-insulated 
joint 

No glued-insulated joint 66.7 85.2 78.9 89.7 89.8 

Included 33.3 14.8 21.1 10.3 10.2 

 
Such lots often require some preparation period before maintenance can be per-
formed. Lots in C2 also belong to a group that requires attention to rapid ad-
vances. Lots in C3 also occasionally have large MXDP with a large NIMP. Alt-
hough several lots include BRIN, EXJT, and GIJT, which are difficult to main-
tain, they are maintained comparatively regularly. This may be due to the fact 
that most lots are managed on site as they are easily affected by the MXDP. 

Regarding the characteristics found in the lots in each of the clusters {C4, C5}, 
C4 mainly contains lots with relatively stable track conditions, although there 
are some lots that have some MXDP fluctuations and several NIMP. This is due 
to the fact that many of the lots have sharper curves than the other clusters, 
which results in a smaller irregularity displacement advance due to slower train 
running speeds and less impact to the track by the trains. C5, which contains 
more than half of the sample set of lots, can be said to show the least fluctuation 
in MXDP among all clusters. Most lots had no maintenance record during the 
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measurement period, as the MXDP remained close to 0 mm without fluctuation. 
More than half of the lots are located on the concrete slab, where irregularity 
displacement does not occur, or in tunnels, which are less affected by tempera-
ture changes. Therefore, this group had a relatively steady track condition. 

3.3. Efficient Method for Detecting Abnormal LLID 

Using the historical track inspection data of the LLID, five variables: MXDP, 
STDV, MXDV, NIMP, and NRAD were calculated for each 100 m lot during the 
measurement period, and a cluster analysis technique was applied to categorize 
the lots and characterize each cluster element. Based on the categorization, it was 
possible to divide the five clusters into two groups: one requiring attention to 
track management and the other that did not. The lots in the first group {C1, C2, 
C3} are considered to be those where abnormal LLID lots are likely to occur. 
Based on these analysis results, we describe a method for efficiently detecting 
abnormal LLID lots. 

First, when detecting abnormal LLID lots, we attempted to find a lot in the 
sample set for which a large irregularity displacement or its advance actually oc-
curred. Here again, the control indices based on the value of the 10 m-chord 
LLIDs are applied. In selecting the abnormal LLID lots, the following three indi-
cators were used: (i) lot exceeding 10 mm, (ii) lot with 4 mm/10 days advance, 
and (iii) lot with the extreme displacement value. Indicator (i) is a lot in which 
the 10 m-chord MXDP exceeds the extreme displacement value of 10 mm. The 
operative maintenance target value is 6 mm and the extreme displacement value 
is 10 mm in the control indices for the 10 m-chord LLID. Therefore, Indicator 
(ii) is a lot whose MXDP has reached the operative maintenance target value of 6 
mm, and its maximum value reaches the extreme displacement value by the next 
inspection after 10 days. Indicator (iii) is a lot for which the MXDP of 11.2 mm 
is actually detected on the 10 m-chord irregularity displacement, and the ex-
treme displacement value is exceeded owing to rapid advancement.  

As for the abnormal LLID lots, among the lots in the sample set, nine lots be-
long to Indicator (i), and one lot each belongs to Indicators (ii) and (iii), thus 
amounting to a total of 11 lots. The distribution of the 11 lots with abnormal 
LLID lots was five lots in C1 and six lots in C2. Thus, it can be seen that all ab-
normal LLID lots are in either C1 or C2. The lots in C1 tend to have a consist-
ently large LLID among the abnormal LLID lots and need to be frequently im-
proved, which implies that these lots have been periodically maintained. In C1, 
five of the six lots were abnormal LLID lots, but the remaining lot also detected 
MXDP of 9.6 mm and a large NIMP, thus showing a behavior similar to that of 
Indicator (i). On the other hand, C2 includes lots with steady periods of irregu-
larity displacement progression but tends to occasionally suffer from rapid ad-
vances. As can be seen from the cluster analysis results, the distance between the 
center-of-gravity coordinates of C2 and C3 was close, and both the displacement 
data characteristics and structural characteristics were found to be similar. Fur-
thermore, the lots in C3 also have a large number of improvements, and large 
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displacements occur occasionally. Moreover, C3 has more lots that need 
maintenance more frequently. This tends to include lots that are maintained rel-
atively regularly and managed in the field as locations where large LLIDs are 
likely to occur.  

Based on these verification results, we conclude that lots included in C1 or C2, 
where a large LLID or rapid advance has actually occurred, should be carefully 
maintained. Furthermore, even if the MXDP is not extremely high, such as in 
C3, we should pay attention to lots with large NIMP and those including BRINs, 
EXJTs, and GIJTs. We consider that it is effective to prevent the occurrence of 
extreme values and post-maintenance by paying particular attention to the changes 
in the LLID and material conditions around the lots included in C1.  

4. Applying Principal Component Analysis (PCA) for Finding  
Factors Related to the Occurrence of Abnormal LLID Lots 

4.1. PCA for Applying the Sampling Data 

PCA is a widely used method for extracting major features from big data. The 
main idea of PCA is to transform p variables of interest (x1, x2, ... xp) into the 
same (or a smaller) number of variables (y1, y2, ... yp), in descending order of their 
“importance”. Thus, we express y1, referred to as principal component (PC) 1, 
and denoted by PC1 as a linear combination. It is expressed as follows: 

1 11 1 21 2 1p py a x a x a x= + + +L ,                   (1) 

where the coefficients a11, a21, ... ap1 are determined to maximize the variance of 
y1 in (1) under the following condition:  

2 2 2
11 21 1 1pa a a+ +…+ =                        (2) 

within the p − 1 dimensional space orthogonal to y1, PC2 (y2) and the coeffi-
cients a12, a22, ..., ap2 satisfying the same condition as Equation (2) can be deter-
mined to maximize the variance. Mathematically, PCAs can be calculated as the 
eigenvectors of the covariance matrix. The “importance” of each component, re-
ferred to as the proportion of variance, can be calculated as the corresponding 
eigenvalue divided by the sum of all eigenvalues. By applying PCA, we can find 
the principal features behind the entire dataset regarding how those data are dis-
tributed to each other.  

Our methodology, which applies cluster analysis to the variables related to dis-
placement, rail structure, and operation, which are given in Table 1, identifies 
regional characteristics and their principal features. This helps railway utilities to 
detect abnormal LLID lots and to more quickly apply their track maintenance 
operations to improve their operational performance. We consider that by tak-
ing the regional characteristics results into consideration, the PCA approach 
clarifies the principal factors behind the data of those variables, thus improving 
those factors could significantly reduce the LLID.  

To detect abnormal LLID lots, PCA is applied using data based on the 14 var-
iables shown in Table 1 to identify background factors related to its occurrence 
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and rapid advance process. The analysis was performed in two cases: using data 
from all 500 lots (Case 1) and using only 52 lots from C1, C2, and C3, which 
were determined to have bad track conditions by cluster analysis (Case 2). Note 
that the 52 lots in Case 2 were all linear sections, so there were 13 variables, ex-
cluding the “curve” variable CRVR. By calculating the correlation coefficients 
(CCs) among the 14 variables using data from all 500 lots, we found that the 
variables MXDP, MXDV, and STDV have very high CC values that are mutually 
higher than 0.91. The variables NIMP and NRAD also have rather high CC val-
ues, and are higher than 0.75 and 0.33, respectively. The other variables had low 
or small negative CC values. In general, when the raw data represent ratios or 
rates, if no large disparity exists between them, normalization of the data will 
probably expand the disparity. The eigenvalues of the CC matrix correspond to 
the standard deviations of the PC scores and represent the amount of infor-
mation in the PC.  

The PC load factor (L.F.) was obtained from the coefficient of the eigenvectors 
of each variable multiplied by the standard deviation of the eigenvalues for the 
four PCs. Here, the PC L.F. is obtained by multiplying the eigenvector coefficient 
by the square root of the eigenvalue.  

4.2. Numerical Results of the PCA 

The numerical results for Case 1 of the eigenvalues (E.V.s), where the PCA was 
performed on 14 variables for the sample set with 500 lots, are shown in Figure 
3 as a scree plot. The contribution rates (C.R.s) of E. V. s, and their cumulative 
contribution rates (C.C.R.s) of the CC matrix among the 14 variables are listed 
in Table 5. The E.V.s after rotation, based on the varimax method, and their  
 
Table 5. E.V.s, C.R.s and C.C.R.s (Case 1). 

P.C. E.V. C.R. C.C.R. 

1 4.605 32.892 32.892 

2 2.157 15.405 48.297 

3 1.613 11.524 59.821 

4 1.278 9.128 68.949 

5 0.888 6.345 75.294 

6 0.834 5.957 81.251 

7 0.756 5.402 86.653 

8 0.641 4.581 91.234 

9 0.477 3.404 94.639 

10 0.373 2.662 97.301 

11 0.247 1.767 99.067 

12 0.068 0.485 99.552 

13 0.043 0.305 99.857 

14 0.020 0.143 100.000 

E.V.: eigenvalue; C.R.: contribution rate; C.C.R.: cumulative contribution rate. 
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C.R.s are listed in Table 6. In this analysis, the E.V.s were approximately 1.0 or 
higher, and the C.C.R.s corresponding to the C.R.s were approximately 68.95% 
when we included the four PCs. Note that the C.R. is obtained by the sum of the 
squared load factor. Scree plots of the 14 E.V.s, and the four E.V.s after rotation 
(for those with values greater than 1) are shown in Figure 3. The L.F.s by varia-
ble for each of the four PCs are presented in Table 7. In this analysis, the E.V.s 
were approximately 1.0 or higher, and the C.C.R.s corresponding to the C.R.s 
were approximately 68.95% when we included four PCs. A graphical representa-
tion of Table 7 in descending order for each PC is also shown in Figure 4. 

Next, the numerical results for Case 2 of the E.V.s, where the PCA was per-
formed on 13 variables of 52 lots, are shown in Figure 5 as a scree plot. The 
E.V.s, C.R.s and C.C.R.s of the correlation matrix among the 13 variables are 
listed in Table 8. The E.V.s after rotation, based on the varimax method, and 
their contributions are listed in Table 9. In this analysis, the E.V.s were approxi-
mately 1.0 or higher, and the C.C.R.s corresponding to the C.R.s were approxi-
mately 74.67% when we included five PCs. 

 
Table 6. E.V.s, C.R.s and C.C.R.s (Case 1). 

P.C. E.V. C.R. C.C.R. 

1 4.128 29.48 29.48 

2 2.165 15.46 44.94 

3 1.776 12.69 57.63 

4 1.585 11.32 68.95 

 
Table 7. L.F.s by variable for each of the P.C., E.V.s, C.R.s and C.C.R.s (Case 1). 

Variables 
P.C. 

1 2 3 4 

MXDP 0.921 0.112 −0.011 0.190 

STDV 0.898 0.229 −0.067 0.114 

MXDV 0.936 0.196 −0.057 0.124 

NIMP 0.879 0.090 −0.026 0.108 

NRAV 0.597 −0.166 0.082 −0.187 

BRIN 0.026 −0.024 0.074 0.764 

BLST 0.415 0.832 0.091 0.133 

NTBD −0.348 −0.855 −0.092 −0.140 

CRVR −0.031 0.128 0.809 −0.019 

EXJT 0.177 0.046 0.021 0.591 

GIJT 0.232 −0.109 0.471 −0.395 

RGRL 0.067 −0.043 0.493 0.503 

RSPD 0.180 −0.129 −0.785 −0.254 

PTWT −0.222 0.743 0.046 −0.171 
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Table 8. E.V.s, C.R.s and C.C.R.s (Case 2). 

P.C. E.V. C.R. C.C.R. 

1 3.032 23.33 23.33 

2 2.410 18.54 41.86 

3 1.752 13.47 55.34 

4 1.417 10.90 66.23 

5 1.097 8.44 74.67 

6 0.885 6.81 81.48 

7 0.667 5.13 86.62 

8 0.551 4.24 90.86 

9 0.480 3.69 94.55 

10 0.435 3.34 97.90 

11 0.205 1.58 99.47 

12 0.043 0.33 99.80 

13 0.026 0.20 100.00 

 
Table 9. E.V.s, C.R.s and C.C.R.s (Case 2). 

P.C. E.V. C.R. C.C.R. 

1 2.711 20.85 20.85 

2 2.631 20.24 41.09 

3 1.695 13.04 54.13 

4 1.452 11.17 65.30 

5 1.219 9.37 74.67 

 

 
Figure 3. Scree plot of E.V.s (Case 1). 

 
Scree plots of the 13 E.V.s, and the five E.V.s after rotation (for those with 

values greater than 1) are shown in Figure 5. Table 9 lists the E.V.s, C.R.s, and 
C.C.R.s for Case 2. The L.F.s by variable for each of the five PCs, which were ob-
tained from the eigenvectors or coefficients of the eigenvectors, are shown in  
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Figure 4. L.F.s by PCs (Case 1). 

 

 
Figure 5. Scree plot of E.V.s (Case 2). 
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Table 10. A graphical representation of Table 10 in descending order for each 
PC is shown in Figure 6. 

From Figures 4(a)-(d) and Figures 6(a)-(d), representing the descending 
order of PC L.F.s obtained from the coefficients of eigenvectors in Table 7 and 
Table 10, the following suggestions can be obtained for each PC. For PC1 in 
Case 1 and Case 2, we find from Figure 4(a) and Figure 6(a) that the L.F.s show 
that the LLID-related variables MXDV, MXDP, and STDV have large positive 
values, whereas those related to rail structure and operation: NTBD and PTWT, 
have small or negative values in Case 1. Moreover, those related to rail equip-
ment, maintenance, and operation: EXJT, NIMP, and PTWT, have small or 
negative values in Case 2. Thus, we can conclude that PC1 in both Cases 1 and 2 
represents the axis from the LLID data-related values to those related to rail 
structure, equipment, and operation.  

For PC2 in Case 1 and Case 2, as shown in Figure 4(b) and Figure 6(b), the 
L.F.s show that variables related to rail structure, equipment, and operation: 
BLST, PTWT, RGRL, and BRIN, have large positive values, whereas the other 
variables related to rail structure and operation: NTBD and RSPD, have large 
negative absolute values. Thus, we can conclude that PC2 in both Cases 1 and 2 
represents the axis from the values related to rail structure and operation to 
those related to maintenance and operation.  

For PC3 in Case 1, as shown in Figure 4(c), the L.F.s show that variables re-
lated to rail structure, and the equipment: CRVR, RGRL, and GIJT, have large 
positive values, whereas the operation related variable RSPD has large negative 
absolute values. Thus, we can conclude that PC3 in Case 1 indicates the axis from  
 
Table 10. L.F.s by variable for each of the P.C. (Case 2). 

Variables 
Principal Component 

1 2 3 4 5 

MXDP 0.864 0.075 0.197 −0.081 0.069 

STDV 0.828 −0.196 −0.156 0.155 −0.203 

MXDV 0.954 −0.021 0.033 0.077 0.108 

NIMP −0.178 −0.108 0.831 0.085 −0.018 

NRAV 0.267 −0.019 0.778 −0.216 −0.053 

BRIN −0.182 0.743 −0.027 0.104 −0.210 

BLST 0.158 −0.026 −0.277 0.760 −0.019 

NTBD 0.028 −0.094 −0.147 −0.808 −0.212 

EXJT −0.341 0.543 0.161 0.286 −0.245 

GIJT 0.234 −0.082 0.370 0.027 0.523 

RGRL 0.094 0.934 −0.123 −0.038 0.071 

RSPD −0.071 −0.915 0.091 0.068 −0.221 

PTWT −0.148 0.048 −0.220 0.179 0.825 
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Figure 6. L.F.s by PCs (Case 2). 

 
values related to rail structure and equipment to operation-related values. In 
Case 2, we find from Figure 6(c) that the load factors show that the displace-
ment-related variables NIMP and NRAD have large positive values, whereas the 
those related to rail structure and operation: BLST and PTWT have large nega-
tive absolute values. Thus, we can conclude that PC3 in Case 2 represents the 
axis from maintenance-related values to those related to rail structure and oper-
ation. 

For PC4 in Case 1, as shown in Figure 4(c), the L.F.s indicate that rail equip-
ment-related variables BRIN, EXJT, and RGRL have large positive values, whereas 
the other variables related to rail equipment and operation: GIJT and RSPD, 
have large negative absolute values. Thus, we can conclude that PC4 in Case 1 
indicates the axis from values related to rail structure and equipment to opera-
tion-related values. In Case 2, we find from Figure 6(c) that the load factors 
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show that the variables related to rail structure and equipment: BLST and EXJT, 
have large positive values, whereas the other variables related to rail structure 
and maintenance: NTBD and NRAD, have large negative absolute values. Thus, 
we can conclude that PC4 in Case 2 indicates the axis from the values related to 
rail structure and equipment to the other values related to rail equipment and 
maintenance. 

Figure 7 shows a scatter plot of the scores for the principal components PC1 
and PC2 for all variables. The orange points in Figure 7 indicate the results of 
Case 1 for all datasets from C1 to C5, whereas the blue ones correspond to those 
variables in Case 2, which only includes C1, C2, and C3. The cumulative contri-
bution ratios of these PCs were 44.94% and 41.09%, respectively. We find from 
Figure 7 that those L.F.s are very close to positive values, whereas they are rela-
tively farther from negative values. This is due to the difference in interpretation 
for PC1 and PC2, that is, variables with large positive and negative absolute val-
ues are similar for PC1, whereas they are dissimilar for PC2. 

5. Applying Logit-Type Regression Model (LRM) Analyses to  
Investigate the Occurrence Mechanism of the Abnormal  
LLIDs 

As described in Section 3.2, we classified the sample set of lots into five clusters 
with two major groups by applying a cluster analysis technique to 500 sample 
sets of lots: the set of lots with abnormal LLID in {C1, C2, C3} consisting of 52 
lots and the set of other “normal” lots in {C4, C5} consisting of 448 lots. In this 
section, a quantitative analysis of the factors that cause abnormal LLID and ac-
tions required to reduce them are analyzed by focusing on the factors that cause 
abnormal LLID lots and by applying various LRMs. The lots that should be sub-
jected to track maintenance in {C1, C2, C3} are further characterized in detail 
with respect to their influencing factors. Specifically, the set of lots to be subject 
to track maintenance obtained as a result of the cluster analysis was divided into  
 

 
Figure 7. Scatter plot of P.C. scores PC1 and PC2. 
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three clusters with sets of 5, 27, and 19 lots in each cluster, and a quantitative 
analysis was conducted to determine the relationships among the factors affect-
ing the occurrence and expansion of track irregularity. The purpose of this study 
was to apply ordinal LRM analysis. 

5.1. Applying Binomial LRM Analysis for Identifying the Factors  
Causing Abnormal LLID 

We developed an LRM to predict the occurrence probability of certain events. 
We assume that the log-odds function can be expressed by a linear regression 
model as follows: 

0 1 1 2 2 n ny a a x a x a x= + + + +L ,                    (3) 

where x1, x2, …, xn are independent variables, y is a 0 - 1 type dependent variable, 
a0 (constant), and a1, a2, ..., an are parameters.  

First, we developed a prediction model to estimate the probability that a cer-
tain event occurs by applying a logistic regression model. The logistic model 
corresponding to (3) is defined as follows: 

( ) ln
1

pf p
p

 
=  − 

,                         (4) 

where p  represents the probability that a certain event occurs and ( )f p  is  

the log-odds function, as the ratio 
1

p
p−

 denotes the odds indicating the ratio  

of the probability of the event occurring to that of the event not occurring. Then, 
assuming that the log-odds function (4) can be expressed by the linear regres-
sion model given in (3), that is, 

( ) 0 1 1 2 2 n nf p a a x a x a x= + + + +L ,                     (5) 

we obtain the following relationship from (4) and (5): 

0 1 1 2 2ln
1 n n

p a a x a x a x
p

 
= + + + + − 

L .                   (6) 

The log-odds function given by (6) can be used to estimate the probability of 
occurrence of a certain event. Thus, the probability p can be expressed as  

( )
1

1 exp
p

z
=

+ −
,                          (7) 

where we assume that 

0 1 1 2 2 n nz a a x a x a x= + + + +L .                    (8) 

All independent and dependent variables were categorical numbers rather than 
cardinal ones. The dependent variables are 1 and 0 depending on whether they 
belong to a certain category.  

We developed a binomial LRM to quantitatively determine the influence fac-
tors related to the lots that should be subject to track maintenance, with the aim 
of detecting abnormal LLID that increases track irregularity as early as possible. 
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Variable selection was done using the PCA method and was based on the results 
of an analysis of the 52 lots in Case 1 ({C1, C2, C3}) in terms of track structure 
characteristics and operation characteristics. In the binomial LRM analysis, the 
dependent variables were 1 and 0 for lots in Cases 1 and 2, respectively ({C4, 
C5}). As independent variables, we used the 10 variables: MXDP, STDV, MXDV, 
NIMP, NRAD, BLST, NTRB, CRVR, RSPD, and PTWT, which were identified 
in the PCA as factors significantly affecting the occurrence and rapid advance-
ment of track irregularity displacement. Table 11 presents the numerical results 
of the binomial LRM based on the dependent and independent variables de-
scribed above. Using the 11 variables case as the initial model, Table 12 was ob-
tained by reducing the variables so that the significance probability of each vari-
able was less than 0.1. Table 12 shows the regression coefficient estimates, stand-
ard errors, Wald’s square, significance probability, and odds ratio values. The 
Wald statistic value is given by the formula (estimate of partial regression coeffi-
cient/standard deviation of partial regression coefficient)2 and follows a χ2 dis-
tribution with one degree of freedom. Therefore, the larger the Wald statistic val-
ue, the higher is the dominance, and the greater is the influence on the dependent  
 
Table 11. Parameter estimation results for the binomial LRM (11 variables). 

Variable z Standard error Wald square 
Significance 
probability 

MXDP 1.312 2.486 0.279 0.598 

STDV −4.557 6.456 0.498 0.480 

MXDV 5.915 3.923 2.274 0.132 

NIMP 3.350 1.919 3.047 0.081 

NRAD 1.524 16.821 0.008 0.928 

BLST 19.72 1229.5 0.000 0.987 

NTRB 9.753 196.91 0.002 0.960 

CRVR −10.93 8151.63 0.000 0.999 

RSPD 0.038 0.047 0.658 0.417 

PTWT 0.000 0.000 0.134 0.714 

CNST −82.40 1230.50 0.004 0.947 

 
Table 12. Parameter estimation results for the binomial LRM (5 variables). 

Variable z 
Standard 

error 
Wald 
square 

Significance 
probability 

Exp(B) Odds Ratio 

MXDP 2.924 2.472 1.400 0.237 18.62 18.62 

MXDV 5.366 2.948 3.313 0.069 214.03 214.03 

NIMP 4.223 2.229 3.590 0.058 68.21 68.21 

RSPD 0.050 0.053 0.905 0.341 1.05 1.05 

CNST -81.506 48.503 2.824 0.093 0.00 0.00 
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variable. On the other hand, (7) shows that the smaller the significance probabil-
ity, the larger the impact on the dependent variables. We add that the significant 
probability can be obtained by (7) using exp(z) values in Table 11. The odds ra-
tio is based on the probability value p given by Equations (6), (7), and (8), and is 
expressed as 

odds ratio
1

p
p

=
−

.                        (9) 

The results in Table 12 show that the four variables MXDP, MXDV, NIMP, 
and RSPD were the most influential factors in generating abnormal values. More-
over, the values of the odds ratio are larger for these variables in the given order. 
This suggests that the probability of abnormal irregularity also increases the or-
der of these variables. Among these four variables, MXDP and MXDV are related 
to LLID, whereas NIMP and RSPD are related to maintenance and train opera-
tion, respectively. It is interesting to note that these factors are more influential 
in causing abnormal LLID lots than other factors such as rail structural charac-
teristics and facilities. Thus, we conclude that variables such as STDV, MXDV, 
NIMP, and RSPD are appropriate for inclusion in the LRM. In addition, we can 
confirm from omnibus testing that all variables are significant with significance 
probabilities of less than 0.001, which is much less than 0.05. 

5.2. Applying Ordinal LRM Analysis for Finding Variation Factors  
in Lots to Be Maintained 

We applied the ordinal LRM to the clusters {C1, C2, and C3} with a large LLID 
for the 6, 27, and 19 lots, respectively, in each of those clusters, which are the sets 
of lots to be maintained, as obtained by the cluster analysis. The dependent var-
iables take values of 1, 2, and 3 for C1, C2, and C3, respectively, for the respec-
tive lots included in C1, C2, and C3, respectively. As mentioned in Section 5.1, 
nine independent variables were: MXDP, STDV, MXDV, NIMP, NRAD, BLST, 
NTRB, RSPD, and PTWT. These variables were considered to have a high prob-
ability of generating abnormal LLID occurrence in this LRM analysis. Parameter 
estimation results for ordinal LRM are shown in Table 13. We again attempted 
to reduce the variables to the regression equation, and each variable became sig-
nificant using the variable reduction method. Because C1, C2, and C3 are all in 
the linear section, we excluded the variable CRVR. By applying the variable se-
lection method while reducing variables so that the significance probability for 
each variable is less than 0.5, and deleting a variable one by one, we obtained 
numerical results with three variables, namely, MXDV, NIMP, and NRAD. The 
significance probabilities for all three variables MXDV, NIMP, and NRAD be-
come less than 0.5, that is, they prove to be significant. The results are shown in 
Table 14, which indicates that the variables NIMP, NRAD, and MXDV are par-
ticularly significant in the given order as influencing factors that cause abnormal 
LLID occurrence. The fact that the odds ratio values are large in this order also 
indicates that the influence of these variables is highly related to the probability  
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Table 13. Parameter estimation results for ordinal LRM (9 variables). 

Variable z Standard error Wald square Significance probability 

MXDP −1.083 0.835 1.681 0.195 

STDV −0.722 1.851 0.152 0.697 

MXDV −0.612 0.908 0.455 0.500 

NIMP 0.302 0.155 3.783 0.052 

NRAD −1.493 0.524 8.123 0.004 

BLST −17.816 0 
  

NTRB 0.479 1.069 0.201 0.654 

RSPD 0.004 0.017 0.053 0.818 

PTWT 0.000 0 0.384 0.535 

 
Table 14. Parameter estimation results for ordinal logit model (3 variables). 

Variable z 
Standard 

error 
Wald 
square 

Significance 
probability 

Exp(B) Odds Ratio 

MXDV −1.629 0.406 16.06 <0.001 0.196 0.196 

NIMP 0.274 0.147 3.50 0.061 1.31 1.31 

NRAD −1.330 0.460 8.35 0.004 0.265 0.265 

 
of abnormal LLID occurrence. Among the three variables, NIMP and NRAD are 
related to maintenance management, and MXDV is a data-related variable for 
LLID. This suggests that factors based on maintenance-related indicators have a 
greater influence on abnormal LLID occurrence than other factors, such as LLID 
indicators related to rail structural characteristics, facilities, and equipment.  

It is interesting to note that both the binomial and ordinal logit models showed 
similar results to the significant variables. This suggests that these variables are 
the most important factors in the occurrence, rapid advancement, and detection 
of abnormal LLID. 

6. Summary and Conclusions 

In this study, we focused on the railway business as a major social infrastructure 
that plays a fundamental role in transportation and logistics in many countries 
worldwide. We proposed and verified an efficient method for detecting lots that 
indicate abnormal LLID from the perspective of track maintenance manage-
ment, which is necessary to enhance the reliability and safety of the railway sys-
tem. We applied various types of multivariate analysis techniques such as cluster 
analysis, PCA, and binomial and ordinal LRMs to investigate the degree of ab-
normalities of the LLIDs. We can say that this approach is not only new, but it 
can lead to future important work focusing on RAMS (Reliability, Availability, 
Maintainability, Safety) and LCCA (Life Cycle Cost Analysis). We have been 
working to take the risk measurement into consideration (refer to [17]) and to 
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investigate the serious train accidents in Japan using a probabilistic mathemati-
cal modeling approach (refer to [65]). These papers aim for improving reliability 
(R), maintainability (M), and safety (S). Our future problem exists in attempting 
to incorporate the factors related to RAMS-LCCA on the railway track elements 
into our OTMS model. 

The results obtained from this study are summarized as follows.  
1) We defined ten variables that influence the abnormal LLID lots, which can 

be mainly classified into three categories as follows. (i) Displacement-related: 
MXDP, STDV, MXDV, NIMP, NRAV; (ii) rail structure-related: Turnout, BLST, 
CRSL EXJT, CRVR, GIJT, and RGRL; (iii) train operation-related: RSPD and 
PTWT. 

2) When the cluster analysis technique was applied using five variables to the 
sample set of lots, they were classified into five clusters, C1, C2, C3, C4, and C5, 
in the decreasing order from the one with the largest LLID to the one with the 
smallest. They were divided into two groups: {C1, C2, C3} and {C4, C5}. 

3) The lots in clusters {C1, C2, C3}, accounting for approximately 10% of the 
total lots, required maintenance, whereas those in the remaining clusters {C4, 
C5}, accounting for approximately 90% of the total, showed good track condi-
tion and did not require maintenance. 

4) Clusters {C1, C2, C3} generally contain lots with large values for MXDP, 
and NIMP exhibits large fluctuations in LLID and a large number of improve-
ments. These include lots with particularly poor track conditions among the 
clusters. The lots in C4 are stable with no significant LLID and low maintenance 
frequency. C5, which contains the majority of lots, is classified as lots that have 
remained in a state of almost no fluctuation with an LLID close to 0 mm. 

5) To analyze the background factors related to the detection of abnormal LLID 
lots, PCA was applied using data based on 14 variables. We assumed two cases: 
using data covering all 500 lots (Case 1) and using only 52 lots in {C1, C2, C3} 
with poor track conditions obtained by cluster analysis (Case 2). Regarding PC1, 
variables MXDV, MXDP, and STDV had large positive values, whereas variables 
NTBD and PTWT had small or negative values in Case 1, and variables EXJT, 
NIMP, and PTWT had either small or negative values in Case 2. Thus, we con-
cluded that PC1 represents the axis from the values related to LLID data to those 
related to rail structure, equipment, and operation. The variables that had large 
positive values in PC2 in Cases 1 and 2 were BLST, PTWT, RGRL, and BRIN, 
while negative variables with large absolute values were NTBD and RSPD. Thus, 
we concluded that PC2 represents the axis from values related to rail structure 
and operation to those related to maintenance and operation. 

6) Binomial LRM analysis for investigating the causes of the abnormal LLID 
lots revealed that by gradually eliminating the less influential variables from the 
10 variables, namely, MXDP, STDV, MXDV, NIMP, NRAV, BLST, NTRB, 
CRVR, RSPD and PTWT, MXDP, MXDV, NIMP and RSPD were found to be 
the four most influential variables. Furthermore, the values of odds ratio were 
found to be larger for these variables in the given order, thus increasing the 

https://doi.org/10.4236/ajor.2022.126015


M. Matsumoto et al. 
 

 

DOI: 10.4236/ajor.2022.126015 288 American Journal of Operations Research 
 

probability of abnormal LLID. 
7) Ordinal LRM was applied to the LLID of 6, 27, and 19 lots in each of the 

clusters {C1, C2, C3}, from 9 variables MXDP, STDV, MXDV, NIMP, NRAV, 
BLST, NTRB, RSPD and PTWT, using the variable reduction method. As a re-
sult of decreasing the variables until the regression equation and until each vari-
able became significant, it was found that the three variables MXDV, NIMP, and 
NRAD were particularly influential in generating abnormal LLID lots. Further-
more, the odds ratio were found to be larger for these variables in the given or-
der, thus increasing the probability of abnormal LLID. 

We applied multivariate analysis techniques to validate our solution for se-
lecting abnormal LLIDs. How to find abnormal LLIDs more quickly, more effi-
ciently and more accurately to incorporate those solutions into our optimization 
OTMS model is one of the remaining problems we have been challenging. In 
addition, investigating the deterioration process of tracks in more detail, then 
obtaining more accurate forecasting explicitly is another remaining problem. In 
this study, we proposed and validated a method for efficiently detecting abnor-
mal LLID lots, from the viewpoint of efficient track maintenance. Based on the 
results obtained here, a more efficient track maintenance management system 
can be constructed by providing data on the lots to be maintained to the optimal 
track maintenance planning and scheduling system, which we have developed 
and verified. Our system for optimal track maintenance planning and scheduling 
is already being used by the major railway companies in Japan. We aim to in-
troduce the results of this study to these systems to construct a more efficient 
track maintenance management system. 
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