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Abstract

The Alienor method has been elaborated at the beginning of the 1980s by
Yves Cherruault and Arthur Guillez (1983). The following people have also
greatly contributed to the improvement of this new optimization method:
Blaise Somé, Gaspar Mora, Balira Konfé, Jean Claude Mazza and Esther
Claudine Bityé Mvondo. The basic idea consists in using a reducing trans-
formation allowing us to simplify a multivariable optimization problem to a
new optimization problem according to a single variable. The rational gestion
of enterprises leads generally to the use of Operational Research, often called
management science. The term Operational Research means a scientific ap-
proach to decision making, that seeks optimization in a system. Consequent-
ly, it is better to take the right decisions. Otherwise, fatal consequences can
occur instantaneously [1]. Generally, we have to maximize the global profit
margin, taking into account some constraints. For instance, in an integer
programming problem, some or all the variables are required to be nonnega-
tive integers. In this paper, we present new reducing transformations for
global optimization in integer, binary and mixed variables as well as the ap-
plications in Boolean algebra by solving a Boolean Equation of 21 variables.
The applications in Operational Research are presented on various examples,
resolved by using the tabulator Excel of Microsoft.

Keywords

Alpha-Dense Curves, Boolean Equations, Diophantine Equations, Global
Optimization, and Operational Research

1. Introduction: Reducing Transformations Applied to
Global Optimization

This paper is concerned with computational resolution of a Boolean Equation of

21 variables. In this paper, it proposes new reducing transformations allowing us
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to simplify a multivariable optimization problem to a new optimization problem
according to a single variable. The Alienor method has been elaborated at the
beginning of the 1980s by Yves Cherruault and Arthur Guillez (1983). The fol-
lowing people have also greatly contributed to the improvement of this new op-
timization method: Blaise Somé, Gaspar Mora, Balira Konfé, Jean Claude Mazza
and Esther Claudine Bityé Mvondo. Let us recall the definition of an alpha-dense
curve [2] [3].

1.1. Definition

A subspace K' of a compact K cR" is said a-dense, if for any point xe K,
there exists X' € K’ such that the Euclidian distance d satisfies d (x, x’) <a.ln
other words, we can approach any x e K by apointof K’ to within a.

Our new method is described as follows. Let

X, =h(6), i=1--,n, 620 neN (1)

be a reducing transformation, a-dense curve in a compact set of R" and fa
continuous function satisfying the condition

im (g, %) > 40 (2)

X+ X

with this method the global minimization problem

Glob min f(x,--,%,) 3)
X%
becomes
min f (6) 4
by using the a-dense curve
% =h(6), i=1---n 6=0 (5)
where
£(0)= 1 (n(0). -, (9)) (©

The global minimum of (&) has to be found in an interval [0,6,,,] where
6,

o 1 bounded and independent of n. An approximation of this global mini-

mum is obtained by choosing a step A@ and by discretizing the bounded interval
[0,6,.] by means of the points iA@ where 7is an integer, i=0,---,N with
NAG = 6,,, - The discretized problem associated to our problem is therefore

min{f"(iA0),i=0,---,N} 7)
when A& — 0, equation

f7(0)= f(h(6).---.h,(0)) (8)
leads to approximations of

min f*(0) 9)

620

1.2. Theorem

Every (local or global) minimum of f(xl,m,xn) can be approximated by a

DOI: 10.4236/ajor.2022.125009

158 American Journal of Operations Research


https://doi.org/10.4236/ajor.2022.125009

E. C. B. Mvondo

minimum of f7(8).

Proof
Let (X,---,X;) be a point realizing a minimum of £ Let & be a point on the

a-dense curve minimizing the distance between
(Xox,) and () =hy(67),, % =h, (9*))

Furthermore, let 6’ be the point ensuring the minimum of ().

Recall that " is the restriction of fto the a-dense curve defined by

% =h(6), i=1---,n, 6>0 (5)

We have the following inequality
P %) < £7(9)

Because f° isa restriction of fto a subset of R".

’ ’

But fis continuous and (xz,m,x;) tends to (x{,---,x,) when the density

parameter a tends to 0. Then we have
F(07) = f (X))

<¢

involving:

with & >0, arbitrary small.

Moreover, we have

involving
e £7(07)= (X, %) 2 £7(0") = F (X, %)= 0
We deduce
F( ) < 7(0) <o £ (0 )

’
n

Consequently, f"(#') tendsto f(x{,---,x;) when atends to 0.
Suppose that & does not tend to &'. The continuity of fimplies that there

exists &, >0 (g, does not tend to 0) such that

£ (67)-1(0)> 2

But we have
f(67)-1(0))

<

£(07) = (X x)+ T ()= £ (0)
(67 ) = £ (0, x|+ £ (0, x0) = £7(0)]

<g+e<g,

This contradiction proves the result.

1.3. Remark
If
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x, =h (), i=1--,n, 620 (5)
is a reducing transformation for real numbers then,
x, = ABS(h ()), i=1---,n, 620 (10)
is a reducing transformation for positive real numbers,
xi=ABS(INT(hi(9))), i=1---,n, 6>0 (11)
or
X = MOD(ABS(INT(hi (0))):M ) i=1---,n, >0 (12)

are reducing transformations for positive integer numbers, and

X, = MOD(ABS(INT (h (9)));2), i=1--n, 620 (13)

is a reducing transformation for binary numbers.
Where ABS is the absolute value; /NT'is the integer part; MOD is the modulo
function; € varies from0to 6, ;

can use the function /NT or round.

M =3,--- is a positive integer number. We

We will carry out the necessary demonstrations in the next papers. The main
idea of our method consists in expressing 1z variables by means of a single varia-
ble. The Alpha-dense Curves generalize the Space-filling Curves. We have used
the properties of the Archimedean Spiral to build reducing transformations.

1.4. The Archimedean Spiral
1.4.1. Dimension 2
X24+Y2=T2
X =T cos(T)
Y =Tsin(T)
T20

Let us draw this example of the Archimedean Spiral (Figure 1).

N\

0 0.25

0.5

Figure 1. Archimedean spiral.
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1.4.2. Dimension 3

So we have

X?+Y?2+27Z%=T"?
X2 +Y? =K?
K2+2%=T2
K =Tcos(T)

Z=Tsin(T)

X =Kcos(K)=T cos(T)cos(T cos(T))

Y = Ksin(K) =T cos(T )sin(T cos(T))

It results

1.4.3. Dimension 4

Then

Z=Tsin(T)=Tsin(T)

X =T cos(T)cos(T cos(T))

Y =T cos(T sm(Tcos )
(T

Z =Tsin

)

X?+Y?+Z2 +K?=T7

X =T, cos(T,)
Y =T,sin(T,)
Z =T,cos(T,)
K =T,sin(T,)
T, =Tcos(T)

)

T, =Tsin(T

X =T cos(T )cos(T cos(T))
Y =T cos(T)sin(T cos(T))
Z =Tsin(T)cos(Tsin(T))

(T))

K =Tsin(T)sin (T sin(

We use the following reducing transformations.

1.5. Reducing Transformations

1.5.1. For Real Numbers

¥ = A cos(BT)
% =Tcos(T)

(14)
(15)
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Some curves

X =Tsin(T)

x, =T cos(T)cos(T cos(T)
x, =T cos(T)sin(T cos(T)
x, = A cos(BT)cos(C,T
x, =T sin(T)cos(T sin(T
X, =Tsin(T)sin(T sin(T
X = A (1—cos(BiT))
x, = A cos(BT +K)

Let us consider this reducing transformation

x, = A (1—cos(Bt))

For instance, let us draw the curve

X =1000(1- cos5001(t))
y =1000(1-cos5003(t))

We obtain the curve below by setting with Matlab

1600

1400

1200

> 1000

800

600

400

close all;
t=0:.1:65
x =1000(1-cos5001(t))
y =1000(1-cos5003(t))

pl= plot(x,y);

And for

/ \ \
400 600 800 1000 1200 1400 1600 1800
X

¥ = A cos(Bt+K)

For instance, let us draw the curve

2000

(16)
(17)
(18)
(19)
(20)
21)
(22)
(23)
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X =1000(cos5001(t)+7)
y =1000(cos5003(t)+7)

We obtain the curve below by setting with Matlab

1000

800

600

400

200

> 0] 5

-200

-a00f

-600

-800

-1000

close all;
t=0:.1:65
X =1000(c0s5001(t)+7)
y =1000(cos5003(t)+7)

p2 = plot(x,y);

-1000 -800

-600 -400 -200 0 200 400 600 800 1000

1.5.2. For Positive Real Numbers

1.5.3. For Positive Integer Numbers

X, = ABS (A cos(BT)) (24)

x, = ABS (T cos(T)) (25)

X, = ABS (T sin(T)) (26)

ABS (T cos(T )cos(T cos(T))) (27)
(T cos(T)sin (T cos(T))) (28)

= ABS (A cos(B,T)cos(C/T)) (29)

X, = ABS (T sin(T )cos(T sin(T))) (30)
X = ABS (T sin(T )sin(T sin(T))) (31)
X, = ABS (A (1-cos(BT))) (32)
X, = ABS (A cos(BT +K)) (33)
X, = ABS (INT (A cos(BT))) (34)
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X, = ABS (INT (T cos(T))) (35)
= ABS (INT(Tsin(T))) (36)
X, = ABS (INT (T cos(T )cos(T cos(T)))) (37)
X, = ABS (INT (T cos(T )sin(T cos(T)))) (38)
X = ABS (INT (A cos(BT)cos(C/T))) (39)
X, = ABS INT (T sin(T )cos(T sin(T)))) (40)
X, = ABS (INT (T sin(T)sin (T sin(T))) (41)
X, = ABS (INT (A (L-cos(BT)))) (42)
X, = ABS (INT (A cos(BT +K))) (43)
Let us consider this reducing transformation
X = abs(round (A (1—cos(Bit))))
For instance, let us draw the curve
x = abs  round (1000(1- cos5001(t))))
y = absround (1000(1-cos5003(1)) |
We obtain the curve below by setting with Matlab
close all;
t=0:.1:65
x = abs( round (1000 (1 cos5001(t)) )|
y= abs(round (1000(1—cos 5003(t))))
p3 = plot(x,y);
2000
1800
1600
1400
1200
> 1000
800
600
400
200
OO 200 400 600 800 1000 1200 1400 1600 1800 2000
X
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And for
X, = abs(round (A cos(Bt +K)))
For instance, let us draw the curve
X = abs  round (1000(cos5001(t) +7))|
y = abs  round (1000( cos 5003(t) + 7))

We obtain the curve below by setting with Matlab

close all;
t=0:.1:65
X = abs(int (1000(cos5001(t)+ 7)))

y = abs|int (1000 cos5003(t) + 7))

p4 = plot(x,y);

1000
900
800
700
600

> 500
400
300

200 / I SN ZSEIANR

ERIK

100

We also have these reducing transformations:

X, = MOD( ABS (INT (A cos(BT))):M ) (44)

X, = MOD (ABS (INT (T cos(T )));M | (45)

X, = MOD( ABS (INT (T'sin(T)));M ) (46)

X = MOD/( ABS(INT (T cos (T )cos(T cos(T))));M | (47)
¥ = MOD| ABSINT (T cos(T )sin (T cos(T)))):M ) (48)
X, = MOD( ABS (INT (A cos(BT )cos(CT)));M ) (49)
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X = MOD(ABS(INT(Tsm )cos(T sin(T

)
)

)
xi=MOD(ABS(INT(T5|n )sin (T sin(T)) )
Jim

M
X, :MOD(ABS(INT(A 1-cos(BT)) )
X, = MOD ( ABS (INT (A cos(BT +K)) M)

For binary numbers
X, = MOD( ABS (INT (A cos(B]T))):2)
X, = MOD( ABS (INT (T cos(T)));2)
X, = MOD( ABS (INT (Tsin(T)));2)
X, = MOD(ABS( INT (T cos(T ) cos (T cos(T)))); 2)
)7
)):2)
X = MOD|( ABSINT (Tsin(T)cos(T sin(T)) 2]
)2

X = MOD(ABS(INT(A (l—cos(BiT))));Z)

X, =MOD(ABS(INT (T cos(T )sin(T cos(T

X, = MOD( ABS (INT (A cos(BT )cos(C;T)
X, =MOD(ABS(INT (Tsin(T )sin (T sin(T

X, = MOD ( ABS (INT (A cos(BT +K)));2)
Let us consider this reducing transformation
xi=rnod(ab500und(A(1—cos(&t»>y2)
For instance, let us draw the curve
x = mod (abs round (1000(L- cos 5001(t)))). 2|

y=rnod(abs(round(1000(1—c035003@)»),2)

We obtain the curve below by setting with Matlab

close all;
t=0:.1:65
x=rnod(abs(round(1000(1—0055001@))»,2)
y =mod (abs  round (1000(1- cos5003(t))) ). 2)

p5 = plot(X,y);

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)
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0.9 ]

0.8f 1

0.7 1

0.6 1

> 0.5F b

0.4f 1

0.3f 1

0.2 1

0.1p 1

And for
X, = mod (abs(round (A cos(Bit+ K)));Z)

For instance, let us draw the curve

X = mod (abs(round (1000(cos 5001(t)+ 7))) , 2)
y = mod (abs(round (1000(003 5003(t)+ 7)))2)

We obtain the curve below by setting with Matlab

close all;
t=0:.1:65
X = mod (abs(round (1000(005 5001(t)+ 7))) , 2)

y =mod (abs round (1000 cos 5003(t) + 7)), 2}

p6 = plot(x,y);

0.8f ]

0.7 .

0.6 1

0.4F 1

0.3fF ]

0.2 1

0.1F 1
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where ABS is the absolute value; /NT is the integer part (we can also use the
function round); MOD is the modulo function; A is a real number, B, C,

and K are prime numbers; 7 varies from 0 to T,,; M =3,--- is a positive in-

teger number.

2. Applications

We can use different softwares like Microsoft Excel, Maple or others, to program
this method.

2.1. With Excel

Excel is a software developed at the beginning of 1980s by Microsoft. The Excel
tabulator helps to create spreadsheets, to view, to edit and share them with oth-

ers quickly and easily.

2.1.1. Reducing Transformations
We use the following reducing transformations.
1) For real numbers

= A *cos(B, *T)
% =T *cos(T)
X =T =sin(T)
X, =T *cos(T)=cos(T *cos(T))
X, =T *cos(T)=sin(T *cos(T))
% = A *cos(B; *T)*cos(C, *T)
X, =T #sin(T)*cos(T *sin(T))
X, =T #sin(T)=sin(T #sin(T))
% = A >x<(1—cos(Bi *T))
% = A *cos(B, *T +K)
2) For positive real numbers
X, = ABS (A *cos(B, *T))
X, = ABS (T *cos(T))
X, = ABS (T *sin(T))
= ABS (T *cos(T ) *cos(T *cos(T)))
= ABS (T *cos (T )sin(T *cos(T)))

ABS

*cos(B; *T)*cos(C, *T))

(A
=ABS(T #Sin T *cos T*sm )
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X = ABS (T #sin(T ) #sin(T #sin(T)))
X, = ABS (A *(1-cos(B, *T)))
X, = ABS (A *cos(B *T +K))
3) For positive integer numbers
X, = ABS (INT (A *cos(B, *T)))
X, = ABS (INT (T *cos(T)))
, = ABS (INT (T *sin(T)))
X, = ABS (INT (T *cos(T ) cos(T *cos(T

( )
X =ABS(INT(T*cos *SIn(T*COS (1))

(

(

(A

INT(T*sm *cos(T *sin(T)

X ABS(INT( +sin (T ) *sin (T *sin (
X, = ABS (INT (A *(1-cos(B, *T))
X, = ABS (INT (A *cos(B, *T +K))

X, = MOD( ABS (INT (A *cos(B, *T)));M
X, = MOD( ABS (INT (T *cos(T)));M

)
X = MOD(ABS(INT (T *sm(T))) M)

X, = MOD ABS(INT(T*sm )% cos( T*sm(T)))),M
X, = MOD(ABS(INT(T*sm )#sin(T #sin(T)))};M
X =MOD( ABS(INT (A *(1-cos(B, +T))));M |
X, = MOD  ABS (INT (A *cos(B, T +K)));M)

4) For binary numbers

X = MOD(ABS(INT(A «cos(B, *T)));

—
N
~——

X, = MOD ( ABS (INT (T *cos(T)));2)
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X, = MOD( ABS (INT (T *sin(T)));2)

INT (A *cos(B; T +K)))

>
Il
<
o
O
—_—
>
o
w
— —_—
=
—
—_—
_J>
A
H
O
o
(I)
w
*
_|

)):2)
2)

where ABS is the absolute value; INT is the integer part (we can also use the
function round); MOD is the modulo function; A is a real number, B, C,

and K are prime numbers; 7 varies from 0 to T,,; M =3,--- is a positive in-

teger number and * is the sign “multiply by”.

2.1.2. Application
With Excel, we have the following table

T Variables Constraints Test Values

Oto T, X, G 0 or 1 if Constraints verified Max. Min or value

with this powerful technique, we can solve:
® Boolean Equations.

e Diophantine Equations.

0 - 1 integer programming problems.
Mixed integer programming problems.
Integer programming problems.
Partial Differential Equations.

Etc.

2.1.3. Examples
Let us look at some examples.
1) Resolution of a Boolean Equation of 3 variables and 21 variables
Boolean Algebra is a deductive mathematical system closed over the values 0
and 1 (false and true). Boolean Logic forms the basis for computation in modern
binary computer systems. We can represent any electronic computer circuit by
using a system of Boolean Equations. We usually represent Boolean Functions
by means of truth tables. A statement with n logical variables requires a table
with 2” rows.

a) Resolution of a Boolean Equation of 3 variables
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Let us solve [1]
Xy # (X, + X))+ X, % Xy =1
We set
X, = MOD  ABS(INT (T *cos(T ) xcos(T *cos(T)))):2]
X, = MOD( ABS (INT (T #cos(T ) #sin(T *cos(T))));2]
X, = MOD( ABS (INT (T #sin(T)));2)
We calculate
F= Xl*(X2 + X3)+ X, ® X,
Tfrom 0 to 6.5514 step 0.0001
IF(F =110)
And we have four solutions, the first solution
(Xl’ Xz X3) = (1'0'1)

is first obtained when T =1.5708;
The second solution
(Xl, X,, X3) = (1,1,1)
is first obtained when T =2.5312;
The third solution
(Xl, Xy, X3) = (0,1,1)
is first obtained when T =2.7284;
And the fourth solution
(Xy, X5, X;5) = (1,1,0)

is first obtained when T =3.4369.
We obtain the following table

T X, X, X, F

0 0 0 0 0
0.0001 0 0 0 0
1.5708 1 0 1 1
25312 1 1 1 1
2.7284 0 1 1 1
3.4369 1 1 0 1
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It is easy to represent the truth table, because we have 2* (8) rows. The truth

table is given below.

X, X, X, Xl(X2+X3)+ X, X,
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

b) Resolution of a Boolean Equation of 21 variables
For twenty one variables, it is difficult to represent the truth table (2*' =
2,097,152 rows).
Let us solve
(Xy+ X, + X5+ X, + Xg + Xg + X; + Xg + Xg + Xyg + Xyy + Xy
+ x13 + X14 + X15 + Xlﬁ)* Xl + X17 * X].S + Xlg *(XZO + X21) :1

We set
X, = MOD ( ABS (INT (1000 * cos(5003+T))), 2}
X, = MOD ( ABS (INT (1000+cos (6007 +T))), 2)
X, = MOD( ABS (INT (1000 % cos(7001+T))),2)
X, = MOD( ABS (INT (1000+cos(8009+T))),2)
X = MOD( ABS (INT (1000 cos(8233+T))),2)
X, = MOD|( ABS (INT (1000+ cos(9283+T))), 2)
X, = MOD ( ABS (INT (1000 % cos(9461+T))),2)
X = MOD( ABS (INT (1000 cos(9721+T))), 2}
X = MOD( ABS (INT (1000+cos(9739+T))), 2}
X1o = MOD( ABS (INT (1000 cos(9743+T))),2)
X;; = MOD ( ABS (INT (1000 + cos(9749+T))) 2
X;, = MOD( ABS (INT (1000 cos (9767 +T))), 2]
X1 = MOD( ABS (INT (1000 cos(9769+T))),2)
X;, = MOD( ABS (INT (1000+cos(9781+T))), 2)
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=
=
g

1000+ cos (9787 T

X, = MOD( ABS (INT (1000 +cos(9791+T
INT (1000 * cos (9803 T

(ABs( (
(ABs( (
(A8s( (0803+7))).2)
Xy = MOD(ABS(INT 1000#cos(9811+T))) )
(ABS (INT (2000+cos(9817+T))),2)
X = MOD  ABS (INT (1000 cos(9829+T))),2)
(ABS (INT (1000+ cos(9833+T))), 2)

We calculate
F :(X1+X2+X3+X4+X5+X6+X7+X3+X9+X10+X11+X12
+x13+ Xl4+X15+X16)*Xl+ Xl7 >k)(18+>(19 >k(>(20 +X21)
Tfrom 0 to 6.5514 step 0.0001
IF(F =1;1;O)
And we have 11,192 solutions, the first solution
(xl'XZ'X3’X4’XS’XG’X7'X8’x9’XlO’Xll’XlZ'XlS'X14’X15'X16‘
X7, Xigr Xigs Xop,s XZl)=(0,1,0,0,0,O,1,1,O,1, 0,0,0,1,0,1,1,1,0, O,l)
is obtained when T =0.0008 ;
The second solution
(Xl’XZ’X3’X4’XS’XG’X7’XB’x9’xlO’xll’XlZ’Xl3’X14’x15’Xl6’
Xi7: Xig1 Xigs X5 XZl):(0,1,0,1,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,1,1)
is obtained when T =0.0011;
The third solution
(Xl’XZ’X3’X4’XS’XG’X7’XS’XQ’xlO’xll’xlz’XlS’X14’x15’xl6’
Xi7: X151 Xigs X0 XZl):(O,0,1,1,0,1,1,0,1,0,0,0,0,0,1,1,0,0,1,0,1)
is obtained when T =0.0015;
The fourth solution
(Xl’XZ’X3’x4’x5’XG’X7’XB’XQ’xlO’Xll’Xlz’Xl3’Xl4’x15’X16’
Xi7: Xig1 Xigs X0 X21):(0,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,1,1,1,0)
is obtained when T =0.0018;
The fifth solution
(xl'XZ'X3’X4’XS’X6'X7'X8’XQ'XlO’Xll’XlZ'XlS'xlél'X15'X16'
X7, Xigr Xigs Xop, XZl):(0,1,1,0,0,0,0,1,0,0, 0,1,1,0,1,1,,1,0,0, O)

is obtained when T =0.0029;
The sixth solution

(lexzvxav Xr Xy Koy X7, Xgy Xgy Xygr Xy Xigy Xigo Xigs Xig, Xig
X170 Xigs Xigs X0 X21) = (0,0,1,1,1,1,0,1,0,0,0,0,0, 0,0,1,1,1, 0,1,1)
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is obtained when T =0.0034;

The before last solution
(Xl'XZ'X3’ x4’ XS’ X6’X7’X8’ XQ’ XlO’ Xll’ le'XlS’X14’ X15’ x16‘
X7, Xigr Xigs Xop, le) :(0,0,0,1,1,1,1,1,0,0,0,0,1,1,0,1,1,0,1, 0,1)
is obtained when T =6.551;
The last solution
(Xl’XZ' X3’ X4’ XS’ XB’X7’X8’ XQ’ xlO’ Xll' XlZ’ X13’X14’ X15’ X16’
X170 X150 X19s X0 X21) =(0,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0,0, 0,11, 0)
is obtained when T =6.5514.
2) Resolution of a Diophantine Equation
Let us solve the system

2% X3-X2-1=0
{xl*xg—xz—4=0
We set
F=(26X8 X2 -1) +(X,# X3~ X, ~4)
X, =1.3%c0s(18753*T)
X, =1.7+c0s(35221T)
Tfrom 0 to 6.5514 step 0.0001

We calculate

2

F=(26%8 - X2 -1) +(X,# X3 - X, -4)

We obtain the following table

T X X, F

0 1.3 1.7 0.72584761
0.0001 —0.38976563 —1.57840976 13.8207581
0.0002 -1.06628115 1.23103221 76.5361338
0.0003 1.02914987 —0.70755878 13.8352353
0.0004 0.44916231 0.08287094 17.3494185
0.0005 —1.2984853 0.55367136 55.11329
2.079 1.23311618 1.65997358 0.00041371

And we find

F =0.00041371
X, =1.23311618

X, =1.65997358
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when T =2.079.
3) Resolution of a 0 - 1 integer programming problem
Let us maximize
Z=3%X,—2%X,+5%X,

Subject to
X, +2%X,-X;<2
X +4#=X,+X,<4
X, +X,<3
4% X,+X;<6
X,=00r1i=123
We set

Z=3%X,—2%X,+5%X,

X, = MOD  ABS(INT (T *cos(T ) xcos(T *cos(T))) ;2]
X, = MOD ABSINT (T *cos(T ) #sin(T *cos(T))));2)
X5 = MOD ( ABS (INT (T sin(T)));2)

Tfrom 0 to 6.5514 step 0.0001
C= X, +2% X, — X, —2
C,=X,+4*%X,+X;-4
C,= X, + X, -3
C,=4%X,+X,—-6
TEST = IF (AND(C, <0;C, <0;C; <0;C, <0);1;0)
F = IF (TEST =13% X, —2# X, +5% X,;0)

We obtain the following table

r X X X & G G G TEST F

0 0 0 0 -2 —4 -3 -6 1 0
0.0001 0 0 0 -2 —4 -3 -6 1 0
0.0002 0 0 0 -2 —4 -3 -6 1 0
0.0003 0 0 0 -2 —4 -3 -6 1 0
0.0004 0 0 0 -2 —4 -3 -6 1 0
0.0005 0 0 0 -2 —4 -3 ) 1 0
1.5708 1 0 1 -2 -2 -1 -5 1 8

And we find
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maxZ =8
X, =
2=0
=1

when T =1.5708.
4) Resolution of a mixed integer programming problem
Let us minimize
Z =X +X,+X,

Subject to
6.4+ X, +3.2%xX,<6
2# X, +3% X, +3*X; >4
X, <3
X, areal; X, and X, areintegers; X;, X,,X;2=0
We set

X, = ABS (T *cos(T)*cos(T *cos(T)))
X, = ABS INT (T *cos(T)#sin(T *cos(T))))
X5 = ABS (INT (T *sin(T)))

Tfrom 0 to 6.5514 step 0.0001
Z =X +X,+X,
C,=6.4%X,+3.2%X,-6
C,=2#X,+3*%X,+3* X, -4
C,=X,-3
TEST = IF (AND(C, <0;C, > 0;C, < 0);1,0)
F = IF (TEST =1, X, + X, + X,;10000)

We obtain the following table

T X, X X G G G TEST F

0 0 0 0 -6 —4 -3 0 10000
0.0001 0.0001 0 0 -5.99936 —-3.9998 -3 0 10000
0.0002 0.0002 0 0 —-5.99872 -3.9996 -3 0 10000
0.0003 0.0003 0 0 —-5.99808 -3.9994 -3 0 10000
0.0004 0.0004 0 0 —-5.99744 -3.9992 -3 0 10000
0.0005 0.0005 0 0 —5.9968 -3.999 -3 0 10000

1.8981 0.50008968 0 1 -2.79942606 0.00017936 -3 1 1.50008968
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And we find
min Z =1.50008968
X, =0.50008968
X, =0
Xy=1
when T =1.8981.
5) Resolution of an integer programming problem

Let us maximize
Z=7+X,+5%X,

Subject to
6+ X, +9=% X, <54
T X, +6%X, <42
X, <4
X, and X, areintegers; X;, X, >0
We set

Z=7+X,+5%X,
X, = ABS (INT (T *cos(T)))

X, = ABS (INT (T *sin(T)))

Tfrom 0 to 6.5514 step 0.0001
C,=6%X,+9%X, 54
C,=7*X,+6%X,—42

C,=X,—4
TEST = IF (AND(C, <0;C, <0;C, <0);1,0)
F =IF (TEST =1,7% X, +5%X,;0)

We obtain the following table

T X, X, ol ol ol TEST F

0 0 0 ~54 —42 -4 1 0
0.0001 0 0 ~54 —42 -4 1 0
0.0002 0 0 ~54 -42 -4 1 0
0.0003 0 0 -54 -42 -4 1 0
0.0004 0 0 -54 -42 -4 1 0
0.0005 0 0 ~54 -42 -4 1 0
5.5225 4 3 -3 -12 0 1 43
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And we find
max Z =43
X, =
X, =3

when T =5.5225.

3. Conclusion

This article is the continuation of two previous papers: Computational resolu-
tion of Diophantine Equations by means of Alpha-dense Curves (2012) and
Global Optimization with Alpha-dense Curves: resolution of Boolean Equations
(2012) from Esther Claudine Bityé Mvondo, Yves Cherruault, and Jean Claude
Mazza. We have proposed new reducing transformations allowing us to simplify a
multivariable optimization problem to a new optimization problem according to a
single variable. We have shown, in different examples, how to use Alpha-dense
Curves to solve different Mathematical Programming problems by means of the
tabulator Microsoft Excel such as a Boolean Equation of three variables, and a
Boolean Equation of twenty-one variables. We will carry out the necessary
demonstrations in the next papers. Differential Equations and Partial Differen-
tial Equations can also be solved with this powerful technique. We can also easily
solve problems involving a large number of variables with the tabulator Excel of
Microsoft. We can use different softwares like Microsoft Excel, Maple or others,

to program our method.
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