
American Journal of Operations Research, 2021, 11, 324-337 
https://www.scirp.org/journal/ajor 

ISSN Online: 2160-8849 
ISSN Print: 2160-8830 

 

DOI: 10.4236/ajor.2021.116020  Nov. 22, 2021 324 American Journal of Operations Research 
 

 
 
 

Some Convexificators-Based Optimality 
Conditions for Nonsmooth Mathematical 
Program with Vanishing Constraints 

Qingjie Hu1, Zhijuan Zhou2, Yu Chen3* 

1Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin, China 
2School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, China 
3School of Mathematics and Statistics, Guangxi Normal University, Guilin, China 

 
 
 

Abstract 
In this paper, by using the notion of convexificator, we introduce the genera-
lized standard Abadie constraint qualification and the generalized MPVC 
Abadie constraint qualification, and define the generalized stationary condi-
tions for the nonsmooth mathematical program with vanishing constraints 
(MPVC for short). We show that the generalized strong stationary is the first 
order necessary optimality condition for nonsmooth MPVC under the gene-
ralized standard Abadie constraint qualification. Sufficient conditions for 
global or local optimality for nonsmooth MPVC are also derived under some 
generalized convexity assumptions. 
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1. Introduction 

We consider the following mathematical program with vanishing constraints 
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where : , : , :n n m n pf R R g R R h R R→ → →  and , : n lG H R R→  are the 
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given functions. 
The MPVC problem was firstly introduced by Achtziger and Kanzow [1], and 

it originated from the optimization topology design problems in mechanical 
structures [1]. The current researches show that the robot motion planning 
problem [2], the economic dispatch problem [3] and the nonlinear integer op-
timal control [4] [5] can all be transformed into the MPVC problem. As pointed 
out in [1], the major difficulty in solving problem (1) is that it does not satisfy 
most of the standard constraint qualifications, including linearly independent 
constraint qualification (LICQ for short) and Mangasarian-Fromovitz constraint 
qualification (MFCQ for short) at any interesting feasible point so that the stan-
dard optimization methods are likely to fail for this problem. The MPVC can be 
formulated as a mathematical program with equilibrium constraints (MPEC for 
short) and vice versa. However, the formulation has certain disadvantages like 
the introduction of additional solutions, the large dimension and so on. In [6], 
the MPVC can be formulated as a nonsmooth MPEC, but the reformulation vi-
olates the MPEC type constraint qualifications, which causes some trouble when 
solving the MPEC formulation by the suitable algorithms. These observations 
motivate us to consider it as an independent class of interesting optimization 
problems. The MPVC has attracted much attention in recent years. Several 
theoretical properties and different numerical approaches for MPVC can be 
found in [1]-[25]. 

It is well known that convexifactor is one of the important tools of nonsmooth 
analysis; the concept of convexificator was firstly introduced by Demyanov 
[26] in 1994 as a generalization of the notation of upper convex and lower 
concave approximation. It can be viewed as a weaker version of the notion of 
subdifferential. Indeed, the convexificator is in general a closed set unlike the 
well-known subdifferentials which are convex and compact sets. Moreover, for a 
locally Lipschitz function, most known subdifferentials are convexificators and 
these known subdifferentials may contain the convex hull of a convexificator 
[27]. Therefore, from the viewpoint of optimization and applications, the opti-
mality conditions using convexificators are sharper than those using Clarke, 
Michel-Penot subdifferentials, etc. Convexificators were further studied by De-
myanov and Jeyakumar [28], Jeyakumar and Luc [27], Dutta and Chandra [29] 
[30], etc. Recently, the notion of convexificators has been used to extend various 
results in nonsmooth analysis; see, e.g., [31] [32] [33] [34]. For nonsmooth op-
timization problems, various convexificators-based results with respect to the 
Fritz-John type and the Karush-Kuhn-Tucker type necessary optimality condi-
tions have been developed in [32] [33] [34] [35] [36]. Very recently, Ansari, 
Movahedian and Nobakhtian [37] deal with constraint qualifications, stationary 
concepts and optimality conditions for a nonsmooth mathematical program with 
equilibrium constraints by using the notion of convexificators. However, the cor-
responding results about the nonsmooth mathematical program with vanishing 
constraints can be very few. Until recently, based on the Clarke subdifferential, Ka-
zemi and Kanzi [21] study a broad class of mathematical programming with 
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non-differentiable vanishing constraints. They firstly propose some various qua-
lification conditions for this problem. Then, these constraint qualifications are 
applied to obtain, under different conditions, several stationary conditions of 
Karush-Kuhn-Tucker type. 

In this paper, different from [21], by utilizing the concept of convexificators 
which is weaker than the Clarke subdifferential, we introduce the generalized 
standard Abadie constraint qualification and the generalized MPVC Abadie 
constraint qualification, and define the generalized stationary conditions for the 
nonsmooth MPVC. We derive the necessary and sufficient optimality conditions 
for nonsmooth MPVC under the generalized standard Abadie constraint quali-
fication and some generalized convexity assumptions. 

The rest of the paper is organized as follows. Section 2 contains the prelimi-
naries and basic definitions which are used in the sequel. In Section 3, some ne-
cessary and sufficient optimality conditions are derived for nonsmooth MPVC 
based on the notion of convexificators. We close with some final remarks in the 
end. 

2. Prelimilaries 

In this section, we will give some basic definitions, which will be used in the se-
quel. 

Let nS R⊆  be a nonempty subset contains the origin. The convex hull of S, 
the closure of S and the convex cone generated by S is denoted by ,coS clS  and 
coneS , respectively. The negative polar cone is defined by  

{ }: , 0,nS v R x v x S− = ∈ ≤ ∀ ∈ . 
Let x clS∈ , the contingent cone ( ),T x S  to S at x is defined by 

( ) { }, | 0, , s.t. .n
n n n nT x S v R t v v x t v S= ∈ ∃ ↓ ∃ → + ∈

 

Let { }: nf R R→ +∞  be an extended real valued function. The lower and 
upper Dini directional derivatives of f at x in the direction v are defined, respec-
tively, by 

( ) ( ) ( )
0

, liminf
t

f x tv f x
f x v

t+

−

→

+ −
=

 

and 

( ) ( ) ( )
0

, limsup .
t

f x tv f x
f x v

t+

+

→

+ −
=

 
Definition 2.1 [27] A function { }: nf R R→ +∞  is said to admit an upper 

convexificator, ( )* f x∂  at nx R∈  if ( )* f x∂  is a closed set and for every 
nv R∈ , 

( )
( )*

, sup , .
f x

f x v v
ξ

ξ−

∈∂

≤
 

Definition 2.2 [27] A function { }: nf R R→ +∞  is said to admit a lower 
convexificator, ( )* f x∂  at nx R∈  if ( )* f x∂  is a closed set and for every 
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nv R∈ , 

( )
( )*

, inf , .
f x

f x v v
ξ

ξ+

∈∂
≥

 
A closed set ( )* nf x R∂ ⊂  is said to be a convexificator of f at x if it is both 

upper and lower convexificator of f at x. 
Definition 2.3 [30] A function { }: nf R R→ +∞  is said to admit an upper 

semi-regular convexificator, ( )* f x∂  at nx R∈  if ( )* f x∂  is a closed set and 
for every nv R∈ , 

( )
( )*

, sup , .
f x

f x v v
ξ

ξ+

∈∂

≤
 

If the equality holds in the above inequality, then ( )* f x∂  is called as an up-
per regular convexificator of f at x. 

Definition 2.4 [30] Let { }: nf R R→ +∞  be an extended real valued func-
tion that has an upper semi-regular convexificator at nx R∈ . Then f is said to 
be 

(i) *∂  convex at x  if for every nx R∈ ,  
( ) ( ) ( )*, ,f x f x x x f xξ ξ≥ + − ∀ ∈∂ . 
(ii) *∂  pseudoconvex at x  if for every nx R∈ , 
( ) ( ) ( )*, 0, .f x f x x x f xξ ξ< ⇒ − < ∀ ∈∂  

(iii) *∂  quasiconvex at x  if for every nx R∈ , 
( ) ( ) ( )*, 0, .f x f x x x f xξ ξ≤ ⇒ − ≤ ∀ ∈∂  

3. Optimality Conditions for Nonsmooth Mathematical  
Program with Vanishing Constraints 

In this section, we will develop several optimality conditions for nonsmooth 
MPVC in terms of the concept of convexificator. It is worth mentioning that 
since the upper convexificator is not necessary unique, all the new definitions 
given in this section depend on the the choice of the convexificator. 

First, we introduce some notations. For the problem (1), we denote the feasi-
ble region by X, that is, 

( ) ( ) ( ) ( ) ( ){ }| 0, 0, 0, 0, 1, 2, , .n
i i iX x R g x h x H x G x H x i l= ∈ ≤ = ≥ ≤ = 

 
For x X∈ , we define the following index sets: 

( ){ }| 0 ,g iI i g x= =
 

( ) ( ){ }0 | 0, 0 ,i iI i H x G x+ = > =
 

( ) ( ){ }| 0, 0 ,i iI i H x G x+− = > <
 

( ) ( ){ }0 | 0, 0 ,i iI i H x G x+ = = >
 

( ) ( ){ }0 | 0, 0 ,i iI i H x G x− = = <
 

( ) ( ){ }00 | 0, 0 .i iI i H x G x= = =
 

Now, we assume that all the functions have an upper convexificator at x . For 
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the above index sets, we introduce the following notations: 
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0 0 0 00
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+ + −

− − − − − −Γ =     

 

( ) ( )
0 0 0 00 00

.I I I I Ix g h G H H H GH
+ + −

−− − − − − −Λ =      

 
Utilizing the above notations, motivated by [37], we are ready to introduce the 

Abadie type constraint qualification in the form of convexificator which is very 
important to establish the optimality conditions. 

Definition 3.1. Let x X∈ , and assume that all of the functions have an up-
per convexificator at x . We say that the generalized standard Abadie constraint 
qualification (GS ACQ for short) holds at x  if at least one of the dual sets used 
in the definition of ( )xΓ  is nonzero and ( ) ( ),x T X xΓ ⊂ . 

Definition 3.2. Let x X∈ , and assume that all of the functions have an up-
per convexificator at x . We say that the generalized MPVC Abadie constraint 
qualification (GMPVC ACQ for short) holds at x  if at least one of the dual sets 
used in the definition of ( )xΛ  is nonzero and ( ) ( ),x T X xΛ ⊂ . 

Remark 3.1. Since ( ) ( )x xΛ ⊂ Γ , the GS ACQ implies the GMPVC ACQ. 
Following the procedure in this section, we will formulate several extended 

version of stationary concepts for MPVC in the context of convexificator. 
Definition 3.3. A feasible point x  of MPVC is called as a generalized weak-

ly stationary point (GW stationary point) if there are vectors  
( ) 2, ,g h H m p lRλ λ λ λ + += ∈  and ( ) 2, ,h G H p lRµ µ µ µ += ∈  such that the fol-

lowing conditions hold true: 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )

* * * *

1

* * *

1 1

0

,

g

p
g h h

i i j j j j
i I j

l l
H G H
i i i i i i

i i

co f x co g x co h x co h x

co H x co G x co H x

λ λ µ

λ µ µ

∈ =

= =

 ∈ ∂ + ∂ + ∂ + ∂ − 

 + ∂ − + ∂ + ∂ 

∑ ∑

∑ ∑
 (3.1) 

0, , 0, 1, 2,3, , , , , 0, 1, 2,3, , .
g

g h h H G H
I j j i i ij p i lλ λ µ λ µ µ≥ ≥ = ≥ =     (3.2) 

0 0 0 0 00, 0, 0, 0, .H H G H H
I I I I I I I i i i Iλ µ µ λ µ
+ +− + +− + +− − −= = = − ≥ ∈
   

     (3.3) 
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Definition 3.4. A feasible point x  of MPVC is called as a generalized T sta-
tionary point (GT stationary point for short) if there are vectors  

( ) 2, ,g h H m p lRλ λ λ λ + += ∈  and ( ) 2, ,h G H p lRµ µ µ µ += ∈  such that (3.1)-(3.3) 
and the following conditions hold true: 

( )00 , 0.G H H
i i ii I µ λ µ∀ ∈ − ≤

 
Definition 3.5. A feasible point x  of MPVC is called as a generalized M sta-

tionary point (GM stationary point for short) if there are vectors  
( ) 2, ,g h H m p lRλ λ λ λ + += ∈  and ( ) 2, ,h G H p lRµ µ µ µ += ∈  such that (3.1)-(3.3) 

and the following conditions hold true: 

( )00 , 0.G H H
i i ii I µ λ µ∀ ∈ − =

 
Definition 3.6. A feasible point x  of MPVC is called as a generalized S sta-

tionary point (GS stationary point for short) if there are vectors  
( ) 2, ,g h H m p lRλ λ λ λ + += ∈  and ( ) 2, ,h G H p lRµ µ µ µ += ∈  such that (3.1)-(3.3) 

and the following conditions hold true: 

( )00 , 0, 0.G H H
i i ii I µ λ µ∀ ∈ = − ≥

 
Remark 3.2. If all the functions are differentiable, then these notions reduce 

to the stationary concepts defined in [25]. Directly from the definitions, we get 
the following relationships between these stationary concepts. 

- - - - .GS staionary GM staionary GT staionary GW staionary⇒ ⇒ ⇒  
On the other hand, it is obviously that the above stationary concepts include 

the ones of Karush-Kuhn?C Tucker type which are proposed by Kazemi et al in 
[21] as a special case. 

In the rest of this section, we will focus our attention to the necessary and suf-
ficient optimality conditions for the nonsmooth MPVC under the framework of 
convexificator. The following theorem is the first main result of this paper. We 
will see that this result is proved under very weak assumptions. Only the objec-
tive function is assumed to be Lipschitz, while the other functions do not satisfy 
any type of continuity. 

Theorem 3.1. Let x  be a local optimal solution of MPVC (1.1). Suppose 
that f is a locally Lipschitz at x  which admits a bounded upper semi-regular 
convexificator ( )* f x∂ . Assume that GS-ACQ holds at x  and the cone 

0 0

0 00

I I

I I

K cone co g cone co h cone co H cone co H

cone co G cone co H
+ −

+

= + + +

+ +
       (3.4) 

is closed. Then x  is a GS stationary point. 
Proof. Firstly, we will prove that 

( )*0 .co f x K∈ ∂ +                      (3.5) 

Assume that (3.5) does not hold, one has ( )*co f x K∂ − = ∅ . In view of 
( )*co f x∂  being a bounded upper semi-regular convexificator, we know that 
( )*co f x∂  is compact and convex. Since K is a closed convex set, thus utilizing 

the convex separation theorem, there exists a nonzero vector nv R∈  and a real 
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number Rρ ∈  satisfying 

( )*sup , inf , , , .v v co f x Kξ ρ η ξ η< < ∀ ∈ ∂ ∀ ∈−          (*) 

Notice that K−  is a cone, this implies that 0ρ =  and 

( )*sup , 0, .v co f xξ ξ< ∀ ∈ ∂                  (3.6) 

By the definition of upper semi-regular convexificator and (3.6), one gets 
( ); 0f x v+ < . Hence, there is a 0δ >  such that 

( ) ( ) ( ), 0, .f x tv f x t δ+ < ∀ ∈                  (3.7) 

On the other hand, using the relationships (*) and 0ρ = , we obtain 

, 0, .v Kζ ζ≤ ∀ ∈  
This implies that 

( )
( ) ( )( )
( ) ( )( )
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( )( )
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2 2 * *
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4 4 *
0
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, 0, , ,
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, 0, , ,

, 0, , ,

, 0, , ,

, 0, , .

i i i g

i i i i

i i i i

i i i

i i i

i i i

v co g x i I

v co h x co h x i p

v co H x co H x i I

v co H x i I

v co G x i I

v co H x i I

ζ ζ

ζ ζ

ζ ζ

ζ ζ

ζ ζ

ζ ζ

+

−

+

≤ ∀ ∈ ∂ ∀ ∈

≤ ∀ ∈ ∂ ∂ − ∀ =

≤ ∀ ∈ ∂ ∂ − ∀ ∈

≤ ∀ ∈ ∂ − ∀ ∈

≤ ∀ ∈ ∂ ∀ ∈

≤ ∀ ∈ ∂ − ∀ ∈

 



    (3.8) 

This is to say 

( )
0 0 0 00

.I I I Iv g h G H H H x
+ + −

− − − − − −∈ = Γ    

 
Taking into account GS-ACQ at x , we obtain ( ),v T X x∈ . Thus, there exist 

the sequences 0kt →  and kv v→  such that , Nk kx t v X k+ ∈ ∀ ∈ , where N 
denotes the natural number set. On the other hand, since f is Lipschitz near x  
with the modulus 0L > , we have for all sufficiently large k, 

( ) ( )
( ) .

k k k k k

k k

f x t v f x t v Lt v v

f x Lt v v

+ ≤ + + −

≤ + −
              (3.9) 

Combining (3.7) and (3.9), we get for all sufficiently large k, 

( ) ( ) ,k kf x t v f x+ <  
which contradicts the local optimality of x . Thus, (3.5) is true. This implies 
that there exist the nonnegative multipliers ,g

i gi Iλ ∈ , , , 1, 2,3, ,h h
j j j pλ µ =  , 

0,H
i i Iµ +∈ , 0 0 00,H

i i I I Iλ + −∈   , 0,G
i i Iµ +∈  such that 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )
0 0 00 0 0

* * * *

1

* * *

0

.
g

p
g h h

i i j j j j
i I j

H H G
i i i i i i

i I I I i I i I

co f x co g x co h x co h x

co H x co H x co G x

λ λ µ

λ µ µ
+ − + +

∈ =

∈ ∈ ∈

 ∈ ∂ + ∂ + ∂ + ∂ − 

+ ∂ − + ∂ + ∂

∑ ∑

∑ ∑ ∑
 

 (3.10) 

Let 
0 00 0 0 0 0 00

0, 0, 0H H G
I I I I I I I I I Iλ µ µ
+ +− − +− + +− + −

= = =
      

, we obtain from (3.10), 
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( ) ( ) ( ) ( )( )

( )( ) ( ) ( )

0 0 0 00 0

* * * *

1

* * *

1 1

0

,

0, , 0, 1, 2,3, , , , , 0, 1, 2,3, , .

0, 0,

g

g

p
g h h

i i j j j j
i I j

l l
H G H
i i i i i i

i i
g h h H G H
I j j i i i

H H
I I I I I I I I

co f x co g x co h x co h x

co H x co G x co H x

j p i l

λ λ µ

λ µ µ

λ λ µ λ µ µ

λ µ µ
+ +− + +− − + +−

∈ =

= =

 ∈ ∂ + ∂ + ∂ + ∂ − 

 + ∂ − + ∂ + ∂ 

≥ ≥ = ≥ =

= =

∑ ∑

∑ ∑

    

 

0

00

0,

, 0, 0.

G
I

G H H H
i i i ii I µ λ µ λ

−
=

∀ ∈ = − = ≥



 
This shows that x  is a GS stationary point and the proof is complete. 
Since the constraint functions admitting a bounded upper semi-regular con-

vexificator assure that the set K in (3.4) is closed, we immediately obtain the fol-
lowing corollary of Theorem 3.1. 

Corollary 3.1. Let x  be a local optimal solution of MPVC (1.1). Suppose 
that f is a locally Lipschitz function at x . Assume also that f and the constraint 
functions admit a bounded upper semi-regular convexificator. If the GS-ACQ 
holds at x , then x  is a GS stationary point. 

Now, we provide the following example to illustrate Theorem 3.1, this exam-
ple is a modified version of Example 4.7 in [37]. 

Example 3.1. Consider the following two-dimension nonsmooth MPVC 
problem: 

( )
( )
( )
( ) ( )

1 2

2

2

1 2

min
s.t. 0;

0;
0.

f x x x
g x x
H x x
G x H x x x

= −
= ≤
= ≥

= ≤  
Obviously, 0 is the global optimal solution of the above problem and we have 

( ) ( ) ( ) ( )1 2 2 20; , 0; , 0; ,f v v v g v v H v v++ += − = − = −  
( ) ( )1 20; , 0; .G v v H v v+ += =  

Moreover, we obtain the following bounded upper semi-regular convexifica-
tors for these functions 

( ) ( ) ( ){ } ( ) ( ) ( ){ }T T T T* *0 1, 1 , 1,1 , 0 0, 1 , 0,1 ,f g∂ = − − ∂ = −
 

( )( ) ( ){ } ( ) ( ){ } ( ) ( ){ }T T T* * *0 0, 1 , 0 1,0 , 0 0,1 .H G H∂ − = − ∂ = ∂ =
 

Hence, we get 

{ } { }
002 2| 0 , | 0 .Ig v v H v v− −= = = ≥

 
This implies that the GS-ACQ is satisfied at 0 and K is closed. By taking 

0H G H
gλ λ µ µ= = = = , one gets 

( ) ( ) ( )( ) ( ) ( )* * * * *0 0 0 0 0 0 .H G H
gco f co g co H co G co Hλ λ µ µ∈ ∂ + ∂ + ∂ − + ∂ + ∂  

This shows that the GS-stationarity of 0. 
The next result shows that the GM-stationarity is a necessary optimality con-

dition for MPVC if GMPVC ACQ is satisfied at a local optimal solution of 

https://doi.org/10.4236/ajor.2021.116020


Q. J. Hu et al. 
 

 

DOI: 10.4236/ajor.2021.116020 332 American Journal of Operations Research 
 

MPVC. 
Theorem 3.2. Let x  be a local optimal solution of MPVC (1.1). Suppose 

that f is a locally Lipschitz at x , and assume that f and the constraint functions 
admit a bounded upper semi-regular convexificator. If the GMPVC-ACQ holds 
at x , then x  is a GM stationary point. 

Proof. Firstly, we claim that 

( ) ( ) ( )
00

* * *0 .i ii I
co f x K cone co G x co H x

∈
∈ ∂ + + ∂ ∂



     (3.11) 

Suppose that (3.11) does not hold. Since ( )*co f x∂  is compact and convex, 
and ( ) ( )

00

* *
i ii I

K cone co G x co H x
∈

+ ∂ ∂



 is closed and convex, similar to the 
proof of Theorem 3.1, we can find a nonzero vector nv R∈  and the sequences 

0kt ↓  and kv v→  such that for all sufficiently large k, 

( ) ( ) ,k kf x t v f x+ <  

which contradicts the local optimality of x . Thus (11) holds true. This implies 
that there exist the nonnegative multipliers ,g

i gi Iλ ∈ , , , 1, 2,3, ,h h
j j j pλ µ =  , 

0,H
i i Iµ +∈ , 0 0 00,H

i i I I Iλ + −∈   , 0,G
i i Iµ +∈ , 00,H

i i Iµ ∈  such that 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )
0 0 00 0 00 0

* * * *

1

* * *

0

.
g

p
g h h

i i j j j j
i I j

H H G
i i i i i i

i I I I i I I i I

co f x co g x co h x co h x

co H x co H x co G x

λ λ µ

λ µ µ
+ − + +

∈ =

∈ ∈ ∈

 ∈ ∂ + ∂ + ∂ + ∂ − 

+ ∂ − + ∂ + ∂

∑ ∑

∑ ∑ ∑
  

(3.12) 

Let 
0 0 0 0 0 00

0, 0, 0H H G
I I I I I I I I Iλ µ µ
+ +− − +− + +− + −

= = =
     

, we obtain from (3.12), 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )

0 0 0 0

* * * *

1

* * *

1 1

0

,

0, , 0, 1, 2,3 , , , , 0, 1, 2,3, , ,

0, 0, 0,

g

g

p
g h h

i i j j j j
i I j

l l
H G H
i i i i i i

i i
g h h H G H
I j j i i i

H H G
I I I I I I I

co f x co g x co h x co h x

co H x co G x co H x

j p i l

λ λ µ

λ µ µ

λ λ µ λ µ µ

λ µ µ λ
+ +− + +− + +− −

∈ =

= =

 ∈ ∂ + ∂ + ∂ + ∂ − 

 + ∂ − + ∂ + ∂ 

≥ ≥ = ≥ =

= = =

∑ ∑

∑ ∑

   

 

( )
0

00

0, ,

, 0, 0.

H H
i i

G G H H
i i i i

i I

i I

µ

µ µ λ µ

−− ≥ ∈

∀ ∈ = − =
 

This shows that x  is a GM stationary point and the proof is complete. 
Next, we will show that the GW stationarity is a global or local sufficient op-

timality condition under certain generalized convexity assumptions. 
Theorem 3.3. Let x  be a feasible GW stationary point of MPVC (1.1) and 

define the following index sets: 

{ } { } { }
{ } { }

00 00 00 00 0 0

0 0 0 0

| 0 , | 0 , | 0 ,

| 0 , | 0 .

G G H H H H
i i i

H H G G
i i

I i I I i I I i I

I i I I i I

µ µ µ

µ µ

− −

+ + + +

= ∈ > = ∈ > = ∈ >

= ∈ > = ∈ >
 

Assume that f is *∂  pseudoconvex and ( )i gg i I∈ , ( )1,2,3, ,ih i p± =   
and ( )0 0 00iH i I I I+ −− ∈    are *∂  quasiconvex at x . Then the following 
assertions hold true: 

(i) If 00 00 0 0 0
G H H H GI I I I I+ − + = ∅    , then x  is a global optimal solution of 

MPVC. 
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(ii) If ( )0
G

iG i I+∈  and ( )0
H

iH i I +∈  are continuous and *∂  quasiconvex at 
x , and 00 00 0

G H HI I I − = ∅  , then x  is a local optimal solution of MPVC. 
(iii)If ( )0

G
iG i I+∈  and ( )0 0

H H
iH i I I+ −∈   are continuous and *∂  quasicon-

vex at x , and x  is an interior point relative to the set  
( ) ( ){ }00 00 0| 0, 0, G H H

i iX x G x H x i I I I −= = ∈   , then x  is a local optimal so-
lution of MPVC. 

Proof. Let x  be an arbitrary feasible point of (1.1). Since ( ) ( )0i ig x g x≤ =  
for gi I∈ , by *∂  quasiconvexity of ig  at x , we get 

( )*, 0, , .i i i gx x g x i Iζ ζ− ≤ ∀ ∈∂ ∀ ∈             (3.13) 

Similarly, we get 

( )
( )( )
( )( )

*

*

*
0 0 00

, 0, , 1, 2,3, , .

, 0, , 1, 2,3, , .

, 0, , .

i i i

i i i

i i i

x x h x i p

x x h x i p

x x H x i I I I

η η

ν ν

ξ ξ + −

− ≤ ∀ ∈∂ ∀ =

− ≤ ∀ ∈∂ − ∀ =

− ≤ ∀ ∈∂ − ∀ ∈





 

      (3.14) 

(i) We multiply each inequality in (3.14) by ,g
i gi Iλ ∈ ,  

, , 1, 2,3, ,h h
j j j pλ µ =  , 0 0 00,H

i i I I Iλ + −∈   , respectively, and adding, we get 

0 0 001
, 0.

g

p
g h h H

i i j i j i i i
i I j i I I I

x xλ ζ λ η µ ν λ ξ
+ −∈ = ∈

 + + + − ≤ ∑ ∑ ∑
   

Since 00 00 0 0 0
G H H H GI I I I I+ − + = ∅    , taking into account the GW stationarity 

of x , one gets 

( ) ( )
1 1 1

* *

, 0,

, .
g

p l l
g h h H G H

i i j i j i i i i i i i
i I j i i

i i i i

x x

G x H x

λ ζ λ η µ ν λ ξ µ τ µ δ

τ δ

∈ = = =

   + + + + + − ≤   

∀ ∈∂ ∀ ∈∂

∑ ∑ ∑ ∑

 
This implies that there exists ( )*co f xϑ∈ ∂  such that , 0x xϑ − ≥ . The 

*∂  pseudoconvexity of f at x  shows that ( ) ( )f x f x≥  for all x X∈ . 
Hence, x  is a global optimal solution of MPVC. 

(ii) For any 0i I+∈ , since ( ) 0iH x > , the continuity of iH  implies that 
( ) 0iH x >  for all feasible points x which is sufficiently close to x . This shows 

that ( ) 0iG x ≤  for such x. Hence, for x which is sufficiently close to x , one 
has 

( ) ( ) 00 , .i iG x G x i I+≤ = ∀ ∈  
Utilizing the *∂  quasiconvexity of ( )0

G
iG i I+∈  at x , we deduce that for the 

feasible point x which is sufficiently close to x , 

( )*
0, 0, , .G

i i ix x G x i Iτ τ +− ≤ ∀ ∈∂ ∀ ∈             (3.15) 

Similarly, one gets, for the feasible point x which is sufficiently close to x , 

( )*
0, 0, , .H

i i ix x H x i Iδ δ +− ≤ ∀ ∈∂ ∀ ∈             (3.16) 

Similar to the proof of case (i), we can find ( )*co f xϑ∈ ∂  such that 
, 0x xϑ − ≥ . The *∂  pseudoconvexity of f at x  shows that ( ) ( )f x f x≥  

for all feasible point x which is sufficiently close to x . Hence, x  is a local op-
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timal solution of MPVC. 
(iii) Taking into account that x  is an interior point relative to the set 

( ) ( ){ }00 00 0| 0, 0, G H H
i iX x G x H x i I I I −= = ∈   , we know that, for the feasible 

point x which is sufficiently close to x , 

( ) ( ) ( ) ( ) 00 00 00 , 0 , .G H H
i i i iG x G x H x H x i I I I −= = = = ∈    

By the *∂  quasiconvexity of the above functions at x , we have 

( )
( )

*
00

*
00 0

, 0, , ,

, 0, , .

G
i i i

H H
i i i

x x G x i I

x x H x i I I

τ τ

δ δ −

− ≤ ∀ ∈∂ ∀ ∈

− ≤ ∀ ∈∂ ∀ ∈ 

          (3.17) 

Multiplying (3.13)-(3.17) by ,g
i gi Iλ ∈ , , , 1, 2,3, ,h h

j j j pλ µ =  ,  

0 0 00,H
i i I I Iλ + −∈   , 00 0,G G G

i i I Iµ +∈  , 00 0 0,H H H H
i i I I Iµ + −∈   , respectively, 

and adding, we get 

1 1 1
, 0.

g

p l l
g h h H G H

i i j i j i i i i i i i
i I j i i

x xλ ζ λ η µ ν λ ξ µ τ µ δ
∈ = = =

   + + + + + − ≤   ∑ ∑ ∑ ∑
 

This implies that there exists ( )*co f xϑ∈ ∂  such that , 0x xϑ − ≥ . The 
*∂  pseudoconvexity of f at x  shows that ( ) ( )f x f x≥  for all feasible points 

x which is sufficiently close to x . Hence, x  is a local optimal solution of 
MPVC. 

4. Concluding Remarks 

In this paper, under the framework of convexificator, by introducing two gene-
ralized MPVC type constraint qualifications and the stationary concepts, we de-
rive the necessary and sufficient optimality conditions for the nonsmooth 
MPVC using the notion of convexificators. As the future work, some other ge-
neralized MPVC type constraint qualifications under the framework of convex-
ificator will be investigated. 
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