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Abstract 
In the petroleum industry, sensor data and information are valuable. It can 
detect, predict and help to understand processes during oil production. Off-
shore wells require more attention. Once workovers, maintenance, and inter-
vention are more costly than onshore wells. Coupling data-driven methods 
for well-monitoring applications, two unsupervised classification methods, 
one statistical and one machine learning-based, are proposed to detect ano-
malies in well data. The novelty is presented by applying a Control Chart us-
ing a 3 standard deviations window for the Permanent Downhole Gauge Pres-
sure sensor (P-PDG), and a Fuzzy C-means algorithm to classify data from pres-
sure and temperature sensors in an offshore field. The main goal in structur-
ing a classified data set is using it to train machine learning models to moni-
tor and manage petroleum production. Modeling applications for early fault 
detection systems in offshore production, based on real-time data from pro-
duction sensors, require classified data sets. Then, labeling two target classes: 
“normal” and “fault” is a key step to be implemented in order to train the 
machine learning models. Therefore, this paper applies two methodologies to 
classify a real-time data set to create a training data set divided into “normal” 
and “fault” classes. Thus, it is possible to visualize the abnormal events pointed 
out by the methodologies and compare how sensible is each method. In addi-
tion, it is proposed a random forest application to test the performance of the 
classified data sets from both methods. The results have shown that the con-
trol chart method presents higher sensibility than fuzzy c-means, however, the 
differences between are insignificant. The random forest performance displayed 
sensitivity and specificity values of 99.91% and 100% for the data set classified 
by the control chart method and 94.01% and 99.98% for the data set classified 
by fuzzy c-means algorithm.  
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1. Introduction 

Brazilian oil and gas production has been increasing in the last 50 years. In 2019, 
Brazil was the tenth bigger petroleum producer, with an average of 2787 million 
barrels per day (bpd) and 12,253 million cubic meters per day of natural gas [1]. 
Most of the Brazilian production is centered in offshore fields, which demands 
more complex and expensive operations [2]. 

The predominant production unit established in Brazil is the FPSO (Floating, 
Production, Storage, and Offloading). The FPSO is built using petroleum ship 
structures that are attached to the process and storage plant [3]. The subsea set 
of offshore fields is characterized by wet Christmas trees, flowlines, riser, and other 
subsea equipment. Christmas trees are an assembly of valves, sensors, and connec-
tors responsible for controlling the hydrocarbon flow from inside the well through 
the flowline and riser, up to the topside. The sensors and valves are designed to 
uphold high pressure and severe working conditions. 

Developing new strategies that apply data mining, machine learning and intel-
ligent methods have become a new trend in petroleum exploration and devel-
opment [4]. The data mining process allows the extraction of knowledge from 
databases. Knowledge would help build decision systems, improving productivi-
ty, and reducing costs [5]. Thus, the database that will provide the required 
knowledge for helping the decision-making process must present some key as-
pects; for instance, the data set for supervised machine learning applications re-
quires labeled data. The novelty presented in this paper provides two methods to 
classify real well data in “normal” and “fault” labels. Hence, with a structured 
method to classify well data into the desired classes, intelligent systems and su-
pervised machine learning algorithms to detect early fault occurrence can be ap-
plied.  

In oil and gas fields, the monitoring and maintenance of production systems 
are key points considering revenue and safety aspects. Data has become a poten-
tial resource that allows the continuous development of artificial intelligence 
technology. Although, smart systems require high-quality data, clear application 
scenarios, proper models, and other provisions as well [4]. Supervised machine 
learning techniques have been applied to data collected by multi-domain sensors 
for integrity monitoring of production components. The Knowledge Discovery 
in Database is the key to extract new findings and unravel patterns in databases 
[6]. However, for old component systems where the sensor reliability is compro-
mised or in cases where there is no labeled data available, an unsupervised me-
thod is required [7].  

Considering the different sensors disposed on the subsea and topside set and 
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the advance in data acquisition, storage, and process, the production data ac-
quired by monitoring systems aligned with smart solutions can lead to improve-
ments in well management. This paper proposes using two unsupervised ap-
proaches to classify a real data from oil and gas production to identify fault oc-
currence from normal production operation. The main gain in producing a clas-
sified data set, labeling normal and abnormal production, is producing a training 
data set for further machine learning applications. With an unsupervised me-
thod using sensor data to create a training data set, it is possible to classify new 
data, providing, then, a data-driven approach to manage well production infor-
mation.  

1.1. The Early Fault Detection Approach 

To minimize costly intervention in production wells, alongside preventive meas-
ures, it is necessary to take corrective action as soon as a fault is identified. Thus, 
avoiding more complex issues. Several papers tackle machine learning applica-
tions for early fault detection [8] [9] [10] [11]. Besides early fault detection, da-
ta-driven methods can also perform fault diagnosis. However, in the initial stag-
es, the features of a fault are hard to identify due to noise in signals and the un-
noticeable symptoms. Thus, in order to combine fault diagnoses with early de-
tection systems, it is important to invest in other techniques to improve data 
quality in data-driven based algorithms [12]. 

This paper aims to classify a training data set in two target classes (“normal” 
and “fault”) for further machine learning applications focused on fault detection. 
The Control Chart method using 3 standard deviations limits the normal opera-
tion zone and is a hard classification. Therefore, a given instance belongs to one 
class or another, they are mutually exclusive. On the other hand, the Fuzzy C- 
means classification is a soft classification. A given instance can belong to more 
than one class with different values for the membership function, but with a higher 
value for one class than another. The Fuzzy C-means classification implements 
data from downhole pressure, temperature and flow sensors, while the control 
chart classification is built on downhole pressure data. 

1.2. Fuzzy C-Means 

The Fuzzy C-means algorithm was created by Bezdek in 1992. By default, it is 
necessary to specify firsthand how many clusters the data set will be divided into 
[13]. However, there are alternative methodologies to determine previously the 
number of clusters necessary, as published in [14] [15] [16]. This algorithm is 
characterized by a fuzzy clustering problem, where the goal is to obtain a fuzzy 
partition in a data set assigning each instance to a membership function value for 
each class. Nevertheless, the Fuzzy C-means method involves splitting the data 
into clusters, assigning random coefficients of cluster membership for each in-
stance, calculating the clusters’ centroid and the clusters’ membership values, and 
repeating this process until the algorithm converges. For the Fuzzy C-means me-
thod, the R package named “e1071” was implemented. 
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1.3. Control Chart Using 3 Standard Deviations 

The control chart approach is commonly used to monitor a process. It shows 
graphically the average value and the upper and lower control limits of a process 
[17]. The control chart method is a continuous way to monitor one or more pa-
rameters of a production process. The upper and lower limits established help to 
detect changes in the process. They can be categorized into two types; memo-
ry-less and memory control charts [18]. The memory-less type depends on cur-
rent information to draw control limits. However, the memory type is built on 
current as well past samples. Fuzzy exponentially weighted moving average [17], 
and cumulative sum [19] are examples of memory control charts. In this paper, a 
memory-less control chart is proposed, and the lower and upper limits are cal-
culated based on 3 standard deviations from the average value in the interval. 

2. Methodology and Principals 

The methodology carried out in this paper follows the workflow shown in Fig-
ure 1. The production data available by the Plant Information system go through 
consistency routines to avoid outliers, problems with sensor signal or instrument 
failures. Thus, the real data gathered from pressure and temperature sensors in a 
production well in Campos Basin are assembled in a database, where pressure 
and temperature data per minute from different sensors are synchronized. The 
database also included Christmas tree and topside valves status for each time-
stamp. The data processing phase embraces the study of subsea and topside 
valve configuration to determine whether the well is in a production or main-
tenance operation. Thus, excluding maintenance operation data and also taking 
out periods after changes in valves status, the production data sets were created. 
Separating a data set with variables related to pressure and temperature sensors 
only, producing an unlabeled data set for unsupervised classification methods. 
 

 
Figure 1. Methodology flowchart. 
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The unsupervised methods, Fuzzy C-means and Control Chart using 3 stan-
dard deviations, applied in the data set provided the classification of production 
data. The Fuzzy C-means algorithm classified the data set into three classes; “nor-
mal”, “high fault” and “low fault” for data above and under the normal level, re-
spectively. Meanwhile, the Control Chart divided the data set into groups “nor-
mal” and “fault”, considering data with variation higher than 3 standard devia-
tions to be a failure indication.  

2.1. Performance Evaluation 

The values reported by the production sensors are the input information to de-
velop models for fault detection in oil and gas wells. Regarding the performance 
of the two unsupervised methods proposed in this work, a comparison metric 
considering the amount of a variable value that overlaps the two target classes. In 
other words, the amount of data that belong, at the same time, to the “normal” 
and “fault” classes. Figure 2 characterizes how to issue this metric. For a given 
pressure sensor, the orange data represents input values labeled as “normal”, in 
blue and green is shown the advance of a faulty state. On the left is marked the 
range of pressure values that were labeled as “normal” and, on the other side, is 
the range of pressure values considered as “fault”. The values that overlapped the 
normal and fault range were taken into account to compare the control chart 
and fuzzy c-means classification. Considering that a higher degree of overlap-
ping data causes negatives impacts on model training, it is aimed for a sensor 
and method that present the least amount of overlapping data for better perfor-
mance.  

Nevertheless, as for the performance of the classified data set produced by the 
unsupervised methods in the random forest application, two training data sets 
regarding the same production interval and the same number of labeled classes 
(“high fault” and “low fault” labeled by fuzzy c-means algorithm were consi-
dered as “fault” class) were implemented. In this study, the Random Forest  
 

 

Figure 2. Comparison parameter proposed to compare the unsupervised methods. The 
red printed segment represents the values labeled as “normal”, the blue and green seg-
ments are the values assigned as “fault”. 
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algorithm from the library “random Forest” available in Rstudio, with 1000 trees 
settled as input parameter, was applied to test the classified data sets. Moreover, 
specificity and sensitivity metrics compared the model’s performance for using 
the classified data set by Fuzzy C-means and Control Chart method. 

2.2. Pressure and Temperature Sensors 

With the advance of Digital Transformation in the oil and gas sector, production 
units with adequate instrumentation systems produce reliable information within 
short intervals. The temperature, pressure, and flow rate sensors generate direct 
information in real-time for offshore wells [20]. These sensors are located in dif-
ferent positions, collecting data in distinct points during the production flow. In 
the present paper, the data set contained 6 production variables related to the 
sensors available, they are displayed in Table 1. 

2.3. Problems during Oil and Gas Production 

Oil fields have a long production life, reaching many years or decades. Thus, as-
suring production maintenance at profitable levels requires efficient manage-
ment. To fail in controlling and managing the production operation is to reduce 
the field’s expected production life [21]. The detection of an abnormal behavior 
during the production flow is based on an individual or group of monitored pro-
duction variables. Therefore, depending on the variable’s behavior, decisions and 
measures to mitigate the production loss can be made in time.  

Anomalies during oil and gas production can be due to flow assurance, me-
chanical, and integrity problems. Restriction in the diameter available to the pro-
duction flow, caused by the fluid composition, solid deposition, or related to pres-
sure and temperature fluctuations, leads to flow assurance issues. Hydrate for-
mation, scaling, and slugging are some examples [22] [23] [24]. Also, changes in 
the reservoir static pressure can increase BSW (Basic Sediments and Water) rate, 
modifying the viscosity of the production fluid. On the other hand, mechanical 
or integrity failures in oil wells lead to fluid leaking. Some equipment and struc-
tures prone to these types of faults are DHSV (Downhole Safety Valve) valves, 
production and casing tubing, production packers, Christmas Tree, wellhead, 
flowlines, gas lift, and choke valves. In addition, there are also issues related to  
 
Table 1. Production variables from subsea and topside sensors. 

Variable Description 

P-PDG Pressure at the Permanent Downhole Gauge sensor 

T-PDG Temperature at the Permanent Downhole Gauge sensor 

P-PCK Pressure at the topside production choke sensor 

T-PCK Temperature at the topside production choke sensor 

P-GL Pressure at the gas lift injection sensor 

Q-GL Flowrate at the gas lift injection sensor 
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the reservoir as water and gas cones, and sediments production. In Brazilian 
offshore production, hydrate formation, scaling, restriction in the production 
choke valve, increase in BSW, DHSV failure, severe slugging, rapid production 
loss, and flow instability are the most common undesired events that occur dur-
ing offshore petroleum production [25]. 

2.4. Data Processing 

In the present work, data from real wells were provided by the petroleum com-
pany which manages the offshore field in Campos Basin that is responsible for a 
large contribution to the national oil and gas production. The data were ex-
tracted from P-PDG, T-PDG, P-PCK, T-PCK, Q-GL, and P-GL once these sen-
sors were provided with higher quality signals than others. 

The well data refer to 4 periods of analysis, selected between January and De-
cember in 2012. Thus, the data processing proceeded by following the steps bel-
low: 

1) Remove data that follow a valve closing or opening and data during main-
tenance periods. Data-driven models for fault detection use the well normal condi-
tion as a parameter to establish whether the operation is at fault or not. Knowing if 
the valves are assembled for operation or maintenance purposes, enables opera-
tors to separate intervals where the hydrocarbon production is steady, without 
oscillations due to valve closing and opening or due to maintenance implica-
tions.  

2) Then, after selecting the target intervals with only operation data, with-
drawing transient data related to change in valves’ status. The well data were 
partitioned into 11 intervals, where 4 of them were chosen as input for the un-
supervised classification process. For each chosen interval, step 3 was carried on.  

3) First, apply Fuzzy C-means classifier in P-PDG, T-PDG, and T-PCK, group-
ing 3 classes; “normal”, “high fault” (when the target data is above the normal 
class), and “low fault” (when the target data is under the normal class). After-
ward, the “low fault” and “high fault” classes will be reclassified as “fault” class. 
This subdivision was done to help in the clustering process, once signals can be 
related with system pressurization or depressurization. Then, plot and analysis 
the classes graphs and their membership function for the “normal”, “high fault” 
and “low fault” classes. After identifying the “normal” class membership diagram, 
consider as normal operation the data with 95% of chance to belong to “normal” 
class and consider as fault occurrence everything else. On the other hand, the 
control chart approach classifies the data set directly into “normal” and “fault” 
classes. 

4) Compare the classification obtained by the Fuzzy C-means algorithm and 
the control chart method, in a machine learning application such as Random 
Forest, using sensitivity and specificity metrics. 

For Control Chart method it is important that the data is normally distributed. 
The algorithm loses its definition when the input data is no longer a normal dis-
tribution and the results obtained cannot be trusted. Therefore, before applying 

https://doi.org/10.4236/ajor.2021.115014


A. O. De Salvo Castro et al. 
 

 

DOI: 10.4236/ajor.2021.115014 234 American Journal of Operations Research 
 

the control chart methodology, the unclassified data set was tested to verify if the 
data were normally distributed. The Shapiro-Wilk normality test showed a p- 
value of 0.01749 indicating that the normality hypothesis was not rejected using 
a significance level of 1%. The kurtosis coefficient was 1.5602, indicating the data 
distribution has a more flattened aspect than a normal distribution curve. In ad-
dition, the asymmetric coefficient value obtained was −0.29512 implicating that 
the curve is slightly shifted to the left. The visual data representation of the P- 
PDG sensor is displayed in Figure 3. 

3. Results 
3.1. Data Classification 

Using Fuzzy C-means, the data set was divided into 3 clusters. The clusters were 
colored in red, blue, and orange displayed in the first graphic in Figure 4. To 
determine which cluster accounts for the normal condition data, an analysis of 
the membership function was carried out. Figure 5 and Figure 6 show the mem-
bership function of cluster 1 and 2. The cluster which may represent the normal 
condition must be the one that better divides the probability of a given data be 
“normal” or “fault” class. Indeed, cluster number 3, showed in more detail in 
Figure 7, presents a membership function that provides a clearer visualization of 
the “normal” and “fault” class (“0” and “1”, respectively). Then, with a signific-
ance level of 0.5%, data with a probability assigned by the membership function 
of cluster blue with values lower than 0.005 would be classified as “normal” and 
otherwise “fault”.  
 

 

Figure 3. Data distribution of pressure values from P-PDG sensor and the normal distri-
bution hypotheses. 
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Figure 4. Membership function for each class cluster. Fuzzy C-means data classification. 
 

 

Figure 5. Membership function for cluster 1. 
 

 

Figure 6. Membership function for cluster 2. 
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Figure 7. Membership function for cluster 3, the cluster with normal operation data. 
 

The Control Chart method already divides the data set into two groups, one 
group limited by the normal condition zone specified within a variation of 3 
standard deviations and another containing the data gathered outside this zone. 
From the 77,307 instances in the interval chosen, 72,033 were classified as nor-
mal condition and 5274 as fault events for this method. Moreover, for the Fuzzy 
C-means algorithm, 73,303 instances were classified as “normal” and 4004 as 
“fault”.  

The resulting classification for both methodologies applied is presented in 
Figure 8. For the P-PDG sensor, it is shown the normal range condition for this 
sensor considering both techniques. In blue is represented the data considered as 
normal operation during oil and gas production, and in red is presented abnor-
mal behavior during well production that was not caused by a change in valves 
status or maintenance procedures. 

3.2. Comparing Fuzzy C-Means and Control Chart Method 

In order to compare the unsupervised methods proposed a metric, considering 
the percentage of data that overlay two the target classes, is proposed. Table 2 
displays the results obtained for each production sensor available in this study. 
The “Overlapping 3SD” column stands for the percentage of overlapping data in 
the control chart method using 3 standard deviations, and “Overlapping FUZ” 
for the fuzzy c-means algorithm. The lower the percentage of overlapping data 
the better the classified data set to develop fault detection models. Thus, among 
the sensors available, P-PDG and P-PCK are the ones with higher potential to 
deliver a better classification model. Meanwhile, the columns named “FAULT” 
indicate the percentage of the total sensor’s range that was classified as “fault”. In 
the cases where sensors presented 100% of their range as fault class states that all 
range of values labeled as normal are overlaying the values assigned as fault. More-
over, the “NORMAL” columns display the percentage of the sensor’s range that 
is classified as “normal”. Thus, as stated in Table 2, the P-PDG sensor presents a 
lower amount of overlapping data. For the production sensor available, the con-
trol chart method showed the least degree of overlaying data, however, the dif-
ference compared with the results from fuzzy c-means is negligible. 
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Figure 8. Classified data set applying Control Chart (upper graph) and Fuzzy C-means 
algorithms. Where the normal condition is shown in blue and anomalies in red. The 
y-axis presents the pressure range values while the x-axis accounts for the instances clas-
sified. 
 
Table 2. Amount of overlapping data regarding control chart and fuzzy c-means classifi-
cation for each sensor. 

SENSOR 
Overlapping 

3SD 
Overlapping 

FUZ 
Fault 
3SD 

Fault 
FUZ 

Normal 
3SD 

Normal 
FUZ 

P. PDG 0 0.05 0.91 0.96 0.09 0.1 

T. PDG 0.52 0.52 1 1 0.52 0.52 

P. PCK 0.23 0.09 1 1 0.23 0.09 

T. PCK 0.32 0.32 1 1 0.32 0.32 

QGL 0.65 0.65 1 1 0.65 0.65 

3.3. Random Forest Application 

The random forest algorithm using 1000 trees was applied in the two data sets 
classified by Control Chart and Fuzzy C-means techniques. The data sets con-
tained 77,307 instances, where 50,000 were set as the training data set and the 
remaining 27,307 as the testing data set. The training data set size was estab-
lished based on the number of faults occurred. Within the 50,000 instances, both 
training data set presented the same number of “fault” labels, which allowed a 
better comparison between the two methods. 

Furthermore, sensitivity and specificity, metrics based on the number of true 
positives and the number of true negatives over total instances, respectively, were 
assigned to compare the result obtained by a random forest classifier.  

The data set classified by the Control Chart method divided the training data 
set into 45,923 “normal” class and 4077 “fault” class. Meanwhile, the Fuzzy C- 
means training data set had 46,848 instances of “normal” class and 3142 “fault” 
class. The inconsistency between the two classified training data sets numbered 
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925 instances. Graphically, as presented in Figure 9, the differences between the 
Control Chart and Fuzzy C-means training data sets are very smooth. The re-
sulting classification from the random forest algorithm using the two different 
data sets is shown in Figure 10. The classification based on the training data set 
using the Control Chart method presented a sensitivity of 99.91% and 100% of 
specificity. Nevertheless, the result from the training data set classified by Fuzzy 
C-means showed 94.01% of sensitivity and 99.98% of specificity. The results 
from both methods confirm that the training data set size was enough to achieve 
a satisfactory classification. 
 

 

Figure 9. Classified training data sets for control chart and fuzz c-means methods used as 
input in the random forest model. 
 

 

Figure 10. Resulting classified data set from random forest application using control 
chart and fuzzy c-means training data sets. Blue data represents “normal” condition data 
while red printed data displays “fault” occurrence. 
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4. Discussion 

Real data from offshore well does not always present good quality. When work-
ing with sensors data, it is important to structure and synchronizing the infor-
mation available in a way to avoid the loss of data. The data set structured with 
production data presented the P-PDG variable as the one with more quality and 
higher frequency, also it was the sensor with fewer overlapping classes as shown 
by Table 2, hence the best to be applied in the Control Chart methodology. 
Otherwise, the Fuzzy C-means algorithm could be applied in any sensor, the best 
outcome was led by the P.PCK sensor but for comparison reasons, the P-PDG 
was chosen to be displayed. For this method, the key to identifying the “normal” 
class is studying the membership function, as plotted in Figure 7. Furthermore, 
Figure 8 infers that both methods resulted in similar classifications. The Control 
Chart technique classified more instances as “fault” than Fuzzy C-means. Nev-
ertheless, the training data sets used for the random forest application also pre-
sented similar classification. Once more the control chart data set showed few 
more “fault” instances; however, the training data sets also led to analogous clas-
sification. The random forest sensitivity and specificity metrics have shown that 
both methodologies are qualified to build classified training data sets for super-
vised learning applications for monitoring and managing well data.  

5. Conclusions 

To apply intelligent solutions and reduce costs with well interventions, struc-
tured and labeled databases are necessary. This work described two methods to 
classify well data from subsea and topside sensors of an offshore field. The Con-
trol Chart Method used the P-PDG sensor to divide the data set into “normal” 
and “fault” labels. Meanwhile, the Fuzzy C-means approach could be applied to 
the other sensors as well. The classification performed by Control Chart and 
Fuzzy C-means showed that both methods generate similar results. A normal 
distribution of sensor data is a key point for the Control Chart method, its im-
plementation is simpler than the fuzzy c-means algorithm, which needs a mem-
bership function and established limits to classify the data set. 

A random forest application was also proposed to show how the labeled data 
set from the Control Chart and Fuzzy C-means algorithms would perform as 
training data sets for supervised machine learning-based systems. The training 
data sets were similar and, thus, were the resulting classifieds data sets using 
random forest. Nevertheless, the data set from the Control Chart method pro-
duced a model with higher sensitivity and specificity.  
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