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Abstract 
In this research work we propose a mathematical model of an inventory sys-
tem with time dependent three-parameter Weibull deterioration and price- 
dependent demand rate. The model incorporates shortages and deteriorating 
items are considered in which inventory is depleted not only by demand but 
also by decay, such as, direct spoilage as in fruits, vegetables and food prod-
ucts, or deterioration as in obsolete electronic components. Furthermore, the 
rate of deterioration is taken to be time-proportional, and a power law form 
of the price dependence of demand is considered. This price-dependence of 
the demand function is nonlinear, and is such that when price of a commod-
ity increases, demand decreases and when price of a commodity decreases, 
demand increases. The objective of the model is to minimize the total inven-
tory costs. From the numerical example presented to illustrate the solution 
procedure of the model, we obtain meaningful results. We then proceed to 
perform sensitivity analysis of our model. The sensitivity analysis illustrates 
the extent to which the optimal solution of the model is affected by slight 
changes or errors in its input parameter values. 
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1. Introduction 

The classical inventory model such as presented by Harris-Wilson [1] considers 
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the ideal situation in which depletion of inventory is caused by a constant de-
mand rate alone. However, it was observed afterwards that depletion of inven-
tory may take place due to deterioration. Virtually all items deteriorate over time 
with the exception of items such as hardware, glassware, steel etc. On the other 
hand, all perishables such as food items, chemicals etc. deteriorate quite rapidly 
over time and become unsuitable for consumption. This change or deterioration 
can be defined as any process that prevents an item from being used for its in-
tended original purpose. Following its utility, the deteriorating item can be cha-
racterized into either an item whose functionality or physical fitness deteriorates 
over time (e.g. fresh food or medicine) or an item whose functionality does not 
degrade, but where demand deteriorates over time as customers’ perceived utili-
ty decreases. Both categories pertain to the same problem but require different 
actions seeing that items that lose their functional characteristics and quality of-
ten cannot, or should not be kept in inventory. However, items that lose per-
ceived utility can be kept in inventory and may be sold on a secondary market. 
This loss must be taken into account when analyzing inventory systems. In re-
cent times several research articles on the above subject have appeared in the li-
terature including Chakrabarti [2], Covert and Philip [3] developed a 
two-parameter Weibull distribution deterioration for an inventory model. This 
investigation was followed by Datta and Pal [4], Jalan et al. [5], Dixit and Shah 
[6], Giri et al. [7], Shah et al. [8] and more recently Nwoba et al. [9] analyzed an 
inventory system for items with stochastic demand and time dependent 
three-parameter Weibull deterioration function.  

The main objective of inventory management for deteriorating items is to ob-
tain optimal returns during the useful lifetime of the product [10]. This leads to 
three main issues: determining reasonable and appropriate methods for issuing 
inventory, replenishing inventory and allocating inventory. The choice of in-
ventory valuation methods adopted in issuing inventory (i.e. the order in which 
the items are to be issued), such as methods based on time sequence including 
FIFO (first-in, first-out) and LIFO (last-in, first-out), depends on both the in-
trinsic characteristics of the inventory (e.g. lifetime, quantity, variety, issuing 
frequency etc.) and the influence on the company (e.g. inventory balance, cost of 
goods sold etc.) [11]. In the present paper, we consider an Economic Order 
Quantity (EOQ) model for inventory of items that deteriorate following a time 
dependent three-parameter Weibull deterioration and price-dependent demand 
rate. 

1.1. Mathematical Formulation 

A rich literature on modelling of deteriorating inventory shows how the deteri-
oration of products has been captured in the research problem up till now. To 
integrate deterioration into mathematical models, the model type (deterministic 
or stochastic) and the considered time horizon (infinite or finite) lead to specific 
methods [12]. In what follows we consider the basic characteristics of EOQ in-
ventory models. 
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1.2. The Demand Characteristics 

The customer arrival rate per time period may be deterministic or stochastic, 
each individual demand may be deterministic or stochastic and each individual 
demand may also be discrete or continuous [13] [14]. Demand plays a key role 
in the modeling of deteriorating inventory. Aiming towards satisfying customer 
demand, companies employ demand forecasts as a prediction of customer beha-
viour. The following variations of demand labeled from the point of view of real 
life situations have been recognized and studied by a number of researchers such 
as Khanra et al. [15]. It is assumed that demand is known with certainty in a de-
terministic demand process. Stochastic demand process on the other hand basi-
cally incorporates randomness and unpredictability. 

A deterministic demand distribution can be categorized into:  
1) Uniform demand, i.e. demand is a constant, fixed number of items.  
2) Time-varying demand.  
3) Stock-dependent demand. 
4) Price-dependent demand.  
A combination of the above is also possible. 

1.3. Price-Dependent Demand Function 

It is observed that, the demand rate of an item is influenced by the selling price 
of an item, as, whenever the selling price of an item increases, the demand de-
creases and vice-versa. Generally, this type of demand is seen for finished goods. 
Several authors have investigated this type of inventory model. According to the 
market research, it is observed that time to time advertisement of an item can 
also affect its demand. The demand rates of these items may be dependent on 
displayed stock level. Such types of demand in different forms were considered 
by Maiti [16], Chung et al. [17]. All these models considered either linear or 
non-linear form of demand and derived results. In this research work we pro-
pose a demand rate that is a non-linear function of time t, and given by  

( ) ( ) ( ) ( ) 1
;  0 1,  0D t d p t t H t

η
ωη µ µ ω η

−
= − − − < < >   ,      (1) 

where 

( )
1,       
0,      

t
H t

t
µ

µ
µ

≥
− =  <

 

is the well-known Heaviside function, with graph shown in Figure 1. 
 

 

Figure 1. The Heaviside function. 
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The functional form of ( )d p  for this research is prescribed as ( ) bd p ap−= , 
where 0a >  is a scale parameter and 0b >  is a shape parameter. 

1.4. Proposed Deterioration Model 

The Weibull distribution is specified by; 

( ) ( ) ( )( )1 exp ,  0W t t t tβ βαβ γ α γ−= − − − > ,           (2) 

is often used for modeling lifetime data. When modeling monotone hazard rates, 
the Weibull distribution may be an initial choice because of its negatively and 
positively skewed density shape. Rinne [18] suggested that a three-parameter 
generalization of the Weibull distribution deals with general situations in mod-
eling survival process with various shapes in the hazard function. Chakrabarty et 
al. provided rationale for considering three-parameter Weibull deterioration 
rate. They discovered that many products that start deteriorating appreciably 
only after a certain period (e.g. after they are produced) and for which the rate of 
deterioration increases over time have a deterioration rate best described by a 
Weibull distribution. We consider the following inventory data adapted from 
Ghosh and Chaudhuri [19] and Saha and Chakrabarti [20]. 

1.5. Notations of the Model 

We adopt the following notations and assumptions in the derivation of our 
model. 

Notations:  
1) ( )I t : On-hand inventory as a function of time t. 
2) ( ) ( ) 1t t βθ αβ γ −= − : instantaneous deterioration rate function for a 

three-parameter Weibull distribution given in (2); where α  is the scale para-
meter, β  is the shape parameter and γ  is the location parameter ( 0 1α<  ). 

3) ( )D t : Demand function of time t. 
4) ( )P t : Production rate as a function of time t. 

5) T: is the fixed length of each production cycle (cycle time). 
6) 1c : is the inventory holding cost per unit per unit time. 
7) 2c : is the shortage cost per unit per unit time. 
8) 3c : is the cost of each deteriorated unit.  
9) φ : total average cost.  
10) 0I : is initial inventory size. 
11) 1t : time during which there is no shortage. 
12) κ : a constant value between 0 and 1. 
13) *T : optimal value of T. 
14) p∗ : optimal value of p. 
15) φ∗ : optimal value of φ . 
16) *

0I : optimal value of 0I . 
17) *

1t : optimal value of 1t . 
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1.6. Assumptions of the Model 

1) The inventory system under consideration deals with single item. 
2) Replenishment size is constant. 
3) Lead time is zero. 
4) The planning horizon is infinite. 
5) The demand rate is non-linear as a function of time t, and specified by Eq-

uation (1). 
6) Shortages in the inventory are allowed and completely backlogged. 
7) The supply is instantaneous and the lead time is zero. 
8) Deteriorated unit is not repaired or replaced during a given cycle. 
9) The holding cost, ordering cost, shortage cost and unit cost remain con-

stant over time. 
10) There are no quantity discounts. 
11) The distribution of the time to deterioration of the items follows the 

three-parameter Weibull distribution. 

2. The Mathematical Model 

At the beginning of the cycle, the inventory level ( )I t  reaches its maximum 
( ) 00I I=  units of item at time 0t = . During the interval [ ]10, t , the inventory 

level depletes due to the combine effects of demand and deterioration. At 1t t= , 
the inventory level is zero and all the demand hereafter (i.e. 1T t− ) is complete-
ly backlogged. The total number of backordered items is replaced by the next 
replenishment. A graphical representation of this inventory system is depicted in 
Figure 2. Since the depletion of the units is due to demand and deterioration, 
the rate of change of the inventory level at any time t is governed by the differen-
tial equations:  

( ) ( ) ( ) ( ) ( ) 1

d
,    0

d
I t

t I t P t D t t t
t

θ+ = − ≤ <             (3) 

with boundary conditions ( ) 00I I=  and ( )1 0I t = . Furthermore the produc-
tion rate ( )P t  is zero in this case, thus in the interval 0 t µ≤ < , the initial 
value problem to be solved is:  
 

 

Figure 2. An EOQ model with shortages and deterioration. 
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( ) ( ) ( ) ( ) ( ) ( )0 1

d
,    0 ,  0

d
I t

t I t D t I I I t
t

θ+ = − = =           (4) 

In the interval 1t t T≤ ≤ , the initial value problem becomes: 

( ) ( ) ( )1
1

d
,    0

d
I t

d p t I t
t

ηωη −= − =                 (5) 

Employing the previously stated assumptions, we have our inventory model 
as: 

( ) ( ) ( ) ( )1 1d
,   0

d
I t

t I t d p t t
t

β ηαβ γ ωη µ− −+ − = − ≤ <         (6) 

( ) ( ) ( ) ( )1 1
1

d
,   

d
I t

t I t d p t t
t

β ηαβ γ ωηµ µ− −+ − = − ≤ <         (7) 

( ) ( ) 1
1

d
,    

d
I t

d p t t t T
t

ηωη −= − ≤ ≤                  (8) 

2.1. Solution of the Model 

Equation (6) is a first order differential equation and its integrating factor is: 

( ) ( )1exp d e tt t
ββ α γαβ γ − − − = ∫                  (9) 

So its solution is given as  

( ) ( ) ( ) ( )1d e e
d

t tI t d p t
t

β βα γ α γηωη− −−  = −  
 

( ) ( ) ( ) ( )1
00

   e e d
t tt sI t d p s s

β βα γ α γηωη− −− ∴ = −   ∫  

( ) ( ) ( ) ( ) ( )1
0 0

  e e e d
tt sI t I d p s s

β β βα γ α γ α γηωη− − −−⇒ = − ∫  

i.e. 

( ) ( ) ( ) ( ) ( ) ( )1
0 0
e e e d ,    0

tt t sI t I d p s s t
β β β βα γ α γ α γ α γηωη µ− − − − − −−= − ≤ <∫ .  (10) 

where ( )0 0I I= . For Equation (7) we follow the same procedure  

( ) ( ) ( ) ( )1d e e
d

t tI t d p
t

β βα γ α γηωηµ− −−  = −  
 

( ) ( ) ( ) ( )1      e e d
t tt sI t d p s

β βα γ α γη
µµ

ωηµ− −− ∴ = −   ∫  

( ) ( ) ( ) ( ) ( ) ( )1    e e e d
tt sI t I d p s

β β βα γ α µ γ α γη
µ

µ ωηµ− − −−⇒ = − ∫  

i.e. 

( ) ( ) ( ) ( ) ( ) ( )1
1e e e d ,    

t tt sI t I d p s t t
β β β βα µ γ γ α γ α γη

µ µ
ωηµ µ

 − − − − − −−  = − ≤ <∫    (11) 

where ( )I Iµ µ= . On integrating Equation (8) we get; 

( ) ( ) ( )1 1,     I t d p t t t t Tη ηω= − − ≤ ≤               (12) 

Since ( )1 0I t = , from Equation (10) we get; 
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( ) ( ) ( ) ( ) ( ) ( )11 11
1 0 0

e e e d 0
tt t sI t I d p s

β β β βα γ α γ α γ α γηωηµ− − − − − −−= − =∫     (13) 

( ) ( ) ( ) ( ) ( )11 11
0 0

  e e e d
tt t sI d p s

β β β βα γ α γ α γ α γηωηµ− − − − − −−∴ = ∫        (14) 

( ) ( ) ( )11
0 0

  e e d
t sI d p s

β βα γ α γηωηµ − − −−⇒ = ∫              (15) 

Similarly, we can obtain Iµ  using ( )1 0I t = . Hence 

( ) ( ) ( ) ( ) ( ) ( )1 111
1 e e e d 0

t tt sI t I d p s
β β β βα µ γ γ α γ α γη

µ µ
ωηµ

 − − − − − −−  = − =∫  

( ) ( ) ( )11   e e d
t sI d p s

β βα µ γ α γη
µ µ

ωηµ − − −−⇒ = ∫             (16) 

Hence, the inventory level at any time [ ]0,t T∈  is given by  

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1
0 0

1
1

1 1

e e e d ,        0

e e e d ,     

,                                                            

tt t s

t tt s

I d p s s t

I t I d p s t t

d p t t t t T

β β β β

β β β β

α γ α γ α γ α γη

α µ γ γ α γ α γη
µ µ

η η

ωη µ

ωηµ µ

ω

− − − − − −−

 − − − − − −−  

 − ≤ <
= − ≤ <

− − ≤ ≤


∫

∫  (17) 

The total quantity of deteriorated items in the time interval [ ]10, t  is given by 

[ ]
[ ] [ ]{ }

( ) ( )

( ) ( )

1

1

1

0 1

0 0

1 1
0 0

Initial inventory Total demand within 0,

Total demand within 0, Total demand within ,

d d

d d

t

t

D t

I t

I D t t D t t

I d p t t d p t

µ

µ

µ η η
µ

µ µ

ωη ωηµ− −

= −

= − +

= − −

 = − +  

∫ ∫

∫ ∫

 

( ) ( ) ( )1
0 1 1    D I d p t d p tη ηω ωηµ µ−∴ = + + −  

Or  

( ) ( ) ( ) ( )11 1
1 1 0

e e d
t sD d p t t s

β βα γ α γη η ηω ηµ µ ηµ − − −− − = + − +  ∫      (18) 

The average total cost per unit time is given by 

( ) ( ) ( )1

1

3 1 2
1 0

, , d d
t T

t

c D c cT t p I t t I t t
T T T

φ = + −∫ ∫             (19) 

We observe that the integral ( )1

0
d

t
I t t∫  in Equation (18) can be broken up 

into 

( ) ( ) ( )1 1

0 0
d d d

t t
I t t I t t I t t

µ

µ
= +∫ ∫ ∫                 (20) 

Now 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( )

1
00 0 0

1
0 0 0 0

d e e e d d

              e e d e d e d

tt t s

tt t s

I t t I d p s s t

I t d p t s s

β β β β

β β β β

µ µ α γ α γ α γ α γη

µ µα γ α γ α γ α γη

ωη

ωη

− − − − − −−

− − − − − −−

= −

= −

∫ ∫ ∫

∫ ∫ ∫
 

and  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

1 1

1

1
0

d e e e d d

              e d e d e d

tt t tt s

tt t tt s

I t t I d p s t

I t d p t s

β β β β

β β β β

α µ γ γ α γ α γη
µµ µ µ

α µ γ γ α γ α γη
µ µ µ

ωηµ

ωηµ

 − − − − − −−  

 − − − − − −−  

 
= − 

 

= −

∫ ∫ ∫

∫ ∫ ∫
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The last integral in (19) is computed as: 

( ) ( ) ( )

( )

1 1
1

11
11

1 1

d d

1 1

T T

t t
I t t d p t t t

tTd p t T t

η η

ηη
η η

ω

ω
η η

++
+

= − −

   
= − − − −   + +     

∫ ∫
         (21) 

Hence, we have:  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

( )

1

1 1

3 1 1
1 1 1 0

11
0 0 0 0

11
0

11
2 1

1

, , e e d

e e d e d e d

e e d e d e d

1 1

t s

tt t s

t t tt t s

c d p
T t p t t s

T
c I t d p t s s
T
c I t d p t s
T
c d p tT t T t

T

β β

β β β β

β β β β

α γ α γη η η

µ µα γ α γ α γ α γη

α µ γ α γ α γ α γη
µ µ µ

ηη
η

ω
φ ηµ µ ηµ

ωη

ωηµ

ω
η η

− − −− −

− − − − − −−

− − − − − −−

++

= + − +

+ −

+ −

 
+ − − − + + 

∫

∫ ∫ ∫

∫ ∫ ∫

1
1
η+  

  
   

  (22) 

Our objective now is to determine the values of T, t1 and p which minimize 
( )1, ,T t pφ . However, at this stage we must prescribe the functional form of 
( )d p  which is given by ( ) bd p ap−= , , 0a b > . 
We assume 1t Tκ= ; 0 1κ< < . This assumption appears reasonable since the 

length of the shortage interval is a fraction of the cycle time. Substituting 

1t Tκ=  in Equation (21), we get: 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ){ }
( ) ( ) ( )( ) ( )( ){ }

1 13
0

11
0 0 0 0

11
0

1

2

, e e d

e e d e d e d

e e d e d e d

1
1 1

b
T s

tt t sb

T T tt t sb

b

c ap
T p T T s

T
c I t ap t s s
T
c I t ap t s
T

c ap T

β β

β β β β

β β β β

κα γ α γη η η η

µ µα γ α γ α γ α γη

κ κα µ γ α γ α γ α γη
µ µ µ

η
η η

ω
φ κ ηµ κ µ ηµ

ωη

ωηµ

ηκω κ
η η

−
− − −− −

− − − − − −− −

− − − − − −− −

+
−

= + − +

+ −

+ −

 
+ − + + + 

∫

∫ ∫ ∫

∫ ∫ ∫
 
 
 

 (23) 

The necessary conditions for minimization of ( ),T pφ  are: 

( ) ( ), , 0T p T T p pφ φ∂ ∂ = ∂ ∂ =                  (24) 

The sufficient condition for minimization of ( ),T pφ  requires that it must 
be a convex function for 0, 0T p> > . Now the function ( ),T pφ  will be con-
vex if 

( ) ( )

( ) ( )

2 2

2

2 2

2

, ,

0
, ,

T p T p
T pT

T p T p
p T p

φ φ

φ φ

∂ ∂
∂ ∂∂

>
∂ ∂
∂ ∂ ∂

                  (25) 

Equations (24) can be solved simultaneously by some computer oriented nu-
merical technique such as MathCAD or Maple, to obtain the optimal price p∗  
and optimal cycle time T ∗ . We provide a numerical example to illustrate the 
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foregoing. 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1 13
0

11
0 0 0 0

11
0

2

,
e e d

e e d e d e d

e e d e d e d

b
T sn n

tt t sb

T T tt t sb

T p c ap
T T s

T T T

c I t ap t s s
T T

c I t ap t s
T T

c ap
T

β β

β β β β

β β β β

κα γ α γη η

µ µα γ α γ α γ α γη

κ κα µ γ α γ α γ α γη
µ µ µ

φ ω
κ ηµ κ µ ηµ

ωη

ωηµ

ω

−
− − −− −

− − − − − −− −

− − − − − −− −

−

∂  ∂  = + − + 
∂ ∂   

∂
+ −
∂
∂

+ −
∂

∂
+
∂

∫

∫ ∫ ∫

∫ ∫ ∫
11

1 1
bT

η
η η ηκκ

η η

+    − +   + +    

 (26) 

Hence, 

( ),
0

T p
T

φ∂
=

∂
 

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )( ) ( )( ){ }
( )

1 13
2 0

1 1 13
0

11
02 0 0 0

01

 e e d

      e e d

      e e d e d e d

      e e

b
T s

b
T s

tt t sb

t

c ap
T T s

T

c ap
T s

T T

c I t ap t s s
T

Ic
T T

β β

β β

β β β β

β

κα γ α γη η η η

κα γ α γη η η η

µ µα γ α γ α γ α γη

α γ α

ω
κ ηµ κ µ ηµ

ω
ηκ κηµ ηµ

ωη

−
− − −− −

−
− − −− − −

− − − − − −− −

− −

⇒ − + − +

∂ + + + ∂ 

− −

∂
+

∂

∫

∫

∫ ∫ ∫

( )
0

dt
βµ γ−∫

 

( ) ( ) ( )( ) ( )( ){ }
( ) ( ) ( )( )

( )( ) ( )( )

11
2 0

1

11
0

1
2

     e e d e d e d

     e e d e d

     e d e d

1     
1

T T tt t sb

T Tt t

T tt sb

b

c I t ap t s
T

Ic t I t
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ω η κ
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∫ ∫
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η
η ηκ

η
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(27) 
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( ) ( ) ( )( ) ( )( ){ }

1 13
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11
0 0 0 0

11
0

2

,
e e d

e e d e d e d

e e d e d e d

b
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T T s

p p T

c I t ap t s s
p T
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p
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β β β β

β β β β

κα γ α γη η

µ µα γ α γ α γ α γη

κ κα µ γ α γ α γ α γη
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φ ω
κ ηµ κ µ ηµ

ωη

ωηµ

ω

−
− − −− −
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−

∂  ∂  = + − + 
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∂
+ −
∂

∂
+ −
∂

∂
+
∂

∫

∫ ∫ ∫

∫ ∫ ∫
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1 1
bT

η
η η ηκκ

η η

+    − +   + +    

 (28) 

Hence, 

( ),
0

T p
p

φ∂
=

∂
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1 11
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∫
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1

1
2

1      0
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bc abp T
η

η η ηκω κ
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+
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− − + =  + +  

 (29) 

We recall that; 

( ) ( ) ( )11
0 0

e e d
t sI d p s

β βα γ α γηωηµ − − −−= ∫ , 

( ) ( ) ( ) ( )11e e d
t sI d p s

β βα µ γ α γη
µ

µ ωηµ − − −−= ∫  

( ) ( ){ }
( ) ( )
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0

1
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e e d

e e d
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β β
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∫
            (30) 
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=
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∫
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Similarly 

( ) ( ){ }
( ) ( )
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I
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β β
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I
ap s

p p

abp s

β β
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=
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∫

∫
            (33) 

The Lebnitz rule for differentiating the integral ( ) ( )
( )

( )
, d

b

a

I f x x
α

α

α α= ∫  is giv-

en by 

( ) ( ) ( ) ( )d ,d d, , d
d d d

b

a

I f xb af b f b x
α α

α α
α α α α

∂
= − +

∂∫           (34) 

Applying this rule to ( )
0

, d
T

I t T t
T

κ∂
∂ ∫ , we get 

( ) ( ) ( )
0 0

, d , d ,
T T

I t T t I t T t I T
T T

κ κ
κ κ∂ ∂

= +
∂ ∂∫ ∫  

( )( ) ( ) ( ) ( )
0 0

e d e d e e
T Tt t T Tt t

T T
β β β βκ κα γ α γ α γ α γκ κ− − − −∂ ∂

= + =
∂ ∂∫ ∫       (35) 

Hence 
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Similarly 

( )( ) ( ) ( ) ( )e d e d e e
T Tt t T Tt t

T T
β β β βκ κα γ α γ α γ α γ

µ µ
κ κ− − − −∂ ∂

= + =
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Hence 

( ) ( )

( ) ( )

1

1

e e d

e

T sb

Tb

I
ap s

T T

a p

β β

β β

κµ α µ γ α γη
µ

α µ γ α γη

ωηµ

κ ωηµ

− − −− −

− − + −− −

∂ ∂
=

∂ ∂

=

∫             (38) 

2.2. Solution Algorithm for the Optimal Inventory Policy 

We give the following steps for computing the optimal ordering quantity, op-
timal cycle time, price and the optimal total cost for the model:  

Step 1: Solve Equations (27) and (29) simultaneously to get the optimal values 
*T  and *p  for T and p respectively. 
Step 2: If at *T  and *p  the sufficiency condition is satisfied, then go to step 

3 else stop and declare the solution infeasible. 
Step 3: Substitute *T  into 1t Tκ=  to obtain *

1t . 
Step 4: Determine the optimal EOQ *

0I  by substituting the values of *T  
and *p  into eqn. (15). 

Step 5: Substitute the values of *
0I , *T  and *p  into Equation (22) to get 

the optimal total average cost ( ),T pφ . 

2.3. Numerical Analysis and Results 

In this section we employ MathCAD 14 computational software [21] to obtain 
numerical solutions to the highly nonlinear system of Equations (27) and (29). 
The CAD stands for Computer Aided Design. This will provide us with the op-
timal solutions for the average cost function for some specified data. 

1 2 3
7

: 2.5  : 5  : 500  : 0.01  : 8  : 0.1  : 0.75

: 15 10   : 3.62  : 2  : 0.1  : 0.2  : 0.1

c c c

a b t

α β γ κ

η ω µ

= = = = = = =

= ⋅ = = = = =
 

The format for the MathCAD 14 solve block follows: 
 Initial values for the unknown variables ( ),p T . 
 Given. 
 Equation (1). 
 Equation (2). 
 Find ( ),p T . 
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2.4. MathCAD Solve Block Solution 

1 2 3
7

: 2.5  : 5  : 500  : 0.01  : 10  : 0.1  : 0.2

: 15 10   : 3.62  : 2  : 0.1  : 0.2  : 0.1

c c c

a b t

α β γ κ

η ω µ

= = = = = = =

= ⋅ = = = = =
 

: 70     : 2     Initial values of the variablesp T= =  
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µ α γ α γη

µα γ α γη

ω
κ ηµ κ µ ηµ

ω
ηκ κηµ κηµ

ωηµ

ωη

κ ωηµ

−
− − −− −

−
− − + −− − −

− − −− −

− − −− −

− − −− −

− + − +

+ + +

−

−

+ −

∫

∫ ∫

∫ ∫

∫ ( )( )2
1

2 e d
T tbap t

βκ α γη
µ

ωηµ −− −



∫

 

( )( ) ( )( )}
( ) ( ) ( ) ( )( )

( ) ( ){ }

1
0

2
2 1 22 2 2 2 21

11
0

1
1

2

e d e d

e e d

e e d

1 0
1 1

T tt sb

TT tb

tT sb

b

ap t s

c a p t
T
c ap s
T

c ap T

β β

β β β

β β

κ α γ α γη
µ

κη α µ γ α γ α γ

µ

α γ α γη

η
η η

ωηµ

κ ω η µ

κωηµ

ηκω η κ
η η

− −− −

− − − + − −−

− −− −

+
− −

−

 
+  

 

−

  
+ − + =  + +  

∫ ∫

∫

∫
 

( ) ( ) ( )( )
( )( ) ( )( ){

( )( ) ( )( )}
( )( )

( )( ) ( )( )}

1
1 13

0

1 11
0 0

1 1
0 0

2
1 11

1 1
0

e e d

e d e d

e d e d

e d

e d e d

b
T s

T s tb

tt sb

T sb

T tt sb

c abp
T T s

T
c abp s t
T

abp t s s

c abp s
T

abp t s

β β

β β

β β

β
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∫
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1

1
2

1 0
1 1

bc abp T
η

η η ηκω κ
η η

+
− −   

− − + =  + +  

 

Find ( )
42.571 10

,
1.462

p T
 ×

=  
 

 

Optimal cycle time * 1.462T =  unit, optimal price * 25710p =  unit, op-
timal total average cost ( ), 0.00377T pφ∗ =  unit. It is numerically verified that 
this solution satisfies the convexity condition for ( ),T pφ . 

In summary, for the mathematical model of an inventory system with time 
dependent three-parameter Weibull deterioration and price-dependent demand 
in the form of a non-linear function of time, we obtained the following results:  
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The optimum cycle time * 1.462T =  days. 
The optimal price * 25710p =  units. 
The optimum stock-period 1 0.2 1.462 0.292t Tκ ∗= = × =  days. 
The optimum total average cost ( ), 0.00377T pφ∗ =  per day. 
The optimum initial inventory level  

( ) ( ) ( )1* 1
0 0

e e d 0.038
t sI d p s

β βα γ α γηωηµ − − −−= =∫  units. 
The optimum number of order, * 13

01 2.18 10N I∗ = = ×  unit-order per day. 

2.5. Sensitivity Analysis 

Sensitivity analysis depicts the extent to which the optimal solution of the model 
is affected by slight changes or errors in its input parameter values. In the for-
going inventory model, we study the sensitivity of the optimal cycle length *T , 
the price *p  and cost ( ),T pφ∗  with respect to the changes in the values of the 
parameters 1 2, , , , ,a b c cα β  and 3c . The results are shown in Table 1 and Table 
2 on the other hand depicts the percentage change in the parameter values from  
 
Table 1. Sensitivity analysis table. 

Parameter 
% change in 

parameter values 
*T  *p  ( ),T pφ∗  

a 

−50 No convergence No convergence - 

−20 No convergence No convergence - 

+20 1.609 2.418 × 104 1.214 × 10−6 
+50 1.612 2.263 × 104 1.546 × 10−6 

b 

−50 No convergence No convergence - 
−20 No convergence No convergence - 
+20 1.611 2.055 × 104 2.190 × 10−6 
+50 1.620 1.793 × 104 3.604 × 10−6 

α 

−50 No convergence No convergence - 

−20 No convergence No convergence - 

+20 1.548 3.763 × 104 2.763 × 10−7 
+50 −1.095 5.469 × 104 - 

β 

−50 No convergence No convergence - 
−20 No convergence No convergence - 
+20 1.744 4.414 × 108 0.000 
+50 No convergence No convergence - 

c1 

−50 No convergence No convergence - 

−20 No convergence No convergence - 

+20 −1.192 2.393 × 105 - 

+50 No convergence No convergence - 

c2 

−50 No convergence No convergence - 

−20 1.594 5.395 × 104 6.599 × 10−8 
+20 1.553 3.134 × 104 4.622 × 10−7 
+50 1.41 3.189 × 104 4.034 × 10−7 

c3 

−50 1.612 6.933 × 104 1.346 × 10−8 

−20 1.6 3.121 × 104 3.844 × 10−7 
+20 1.494 2.616 × 104 1.035 × 10−6 
+50 1.495 2.512 × 104 1.499 × 10−6 
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Table 2. Table of change in parameter values. 

Initial values 
% change in parameter values 

−50% −20% 20% 50% 

a 0.5a 0.8a 1.2a 1.5a 

15 × 107 7.5 × 107 1.20 × 108 1.80 × 108 2.25 × 108 

b 0.5b 0.8b 1.2b 1.5b 

3.62 1.81 2.896 4.344 5.43 

α 0.5α 0.8α 1.2α 1.5α 

0.01 0.005 0.0025 0.012 0.015 

β 0.5β 0.8β 1.2β 1.5β 

10 5 8 12 15 

c1 0.5c1 0.8c1 1.2c1 1.5c1 

2.5 1.25 2 3 3.75 

c2 0.5c2 0.8c2 1.2c2 1.5c2 

5 2.5 4 6 7.5 

c3 0.5c3 0.8c3 1.2c3 1.5c3 

500 250 400 600 750 

 
their initial. The sensitivity analysis is performed by changing each of the para-
meters by −50%, −20%, +20% and +50% taking one parameter at a time and 
keeping the remaining parameters unchanged. We observe the following: 

1) The model has no convergent solution for the −50% and −20% value of the 
parameter a. For the other percentage values, however, the solution is stable.  

2) The model has no convergent solution for the −50% and −20% value of the 
parameter b. For the other percentage values, the fluctuation in the solution val-
ues is negligible.  

3) The model has no convergent solution for the −50% and −20% value of the 
parameter α . For the other percentage values, however, the solution is unsta-
ble. Here we obtain a negative value of the optimal cycle length *T , which is 
unrealistic and hence there is no admissible value for the optimal cost 

( ),T pφ∗ . Hence the parameter α  does not contribute to the sensitivity of the 
model. 

4) The model has no convergent solution for the −50%, −20% and +50% value 
of the parameter β . 

5) For the inventory holding cost ( 1c ) per unit per unit time, the model has no 
convergent solution for the −50%, −20% and +50%. Furthermore, we obtain a 
negative value of the optimal cycle length *T  and hence the holding cost does 
not contribute to the sensitivity of the model. 

6) For the shortage cost ( 2c ) per unit per unit time, the model has no conver-
gent solution for the −50% only. For the other percentage values, however, the 
solution is stable. 
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7) For the deteriorated cost ( 3c ) per unit, we have convergent solutions for all 
percentage values of this parameter. Furthermore, these solutions are stable. 

3. Conclusion 

In this work we developed an inventory model for a three-parameter Weibull 
deteriorating items with price-dependent demand rate specified by a nonlinear 
function of time, and is such that when the price of the commodity increases, 
demand decreases and when price of a commodity decreases, demand increases. 
This particular configuration has not been discussed in the literature. Our major 
contribution is the derivation of the optimal inventory policy for the proposed 
model and this also involves the necessary and sufficient conditions for the op-
timal policy. The objective of the model is to minimize the total inventory costs. 
From the numerical example presented to illustrate the solution procedure of the 
model, we obtain satisfactory results. We then proceeded n to perform sensitivi-
ty analysis of our model. The sensitivity analysis illustrates the extent to which 
the optimal solution of the model is affected by slight changes or errors in its 
input parameter values. It is important to state that the numerical procedure for 
this problem relied heavily on the power of MathCAD14, which was used to 
solve a highly nonlinear system of equations in two unknowns, and involving a 
definite integral. The advantage of this numerical software is that the equations 
are composed as they appear in the text and need not be recast in a special for-
mat for computation.  
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