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Abstract

In this research work we propose a mathematical model of an inventory sys-
tem with time dependent three-parameter Weibull deterioration and price-
dependent demand rate. The model incorporates shortages and deteriorating
items are considered in which inventory is depleted not only by demand but
also by decay, such as, direct spoilage as in fruits, vegetables and food prod-
ucts, or deterioration as in obsolete electronic components. Furthermore, the
rate of deterioration is taken to be time-proportional, and a power law form
of the price dependence of demand is considered. This price-dependence of
the demand function is nonlinear, and is such that when price of a commod-
ity increases, demand decreases and when price of a commodity decreases,
demand increases. The objective of the model is to minimize the total inven-
tory costs. From the numerical example presented to illustrate the solution
procedure of the model, we obtain meaningful results. We then proceed to
perform sensitivity analysis of our model. The sensitivity analysis illustrates
the extent to which the optimal solution of the model is affected by slight
changes or errors in its input parameter values.

Keywords
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1. Introduction

The classical inventory model such as presented by Harris-Wilson [1] considers
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the ideal situation in which depletion of inventory is caused by a constant de-
mand rate alone. However, it was observed afterwards that depletion of inven-
tory may take place due to deterioration. Virtually all items deteriorate over time
with the exception of items such as hardware, glassware, steel etc. On the other
hand, all perishables such as food items, chemicals etc. deteriorate quite rapidly
over time and become unsuitable for consumption. This change or deterioration
can be defined as any process that prevents an item from being used for its in-
tended original purpose. Following its utility, the deteriorating item can be cha-
racterized into either an item whose functionality or physical fitness deteriorates
over time (e.g. fresh food or medicine) or an item whose functionality does not
degrade, but where demand deteriorates over time as customers’ perceived utili-
ty decreases. Both categories pertain to the same problem but require different
actions seeing that items that lose their functional characteristics and quality of-
ten cannot, or should not be kept in inventory. However, items that lose per-
ceived utility can be kept in inventory and may be sold on a secondary market.
This loss must be taken into account when analyzing inventory systems. In re-
cent times several research articles on the above subject have appeared in the li-
terature including Chakrabarti [2], Covert and Philip [3] developed a
two-parameter Weibull distribution deterioration for an inventory model. This
investigation was followed by Datta and Pal [4], Jalan ef al [5], Dixit and Shah
[6], Giri et al [7], Shah et al [8] and more recently Nwoba ef al. [9] analyzed an
inventory system for items with stochastic demand and time dependent
three-parameter Weibull deterioration function.

The main objective of inventory management for deteriorating items is to ob-
tain optimal returns during the useful lifetime of the product [10]. This leads to
three main issues: determining reasonable and appropriate methods for issuing
inventory, replenishing inventory and allocating inventory. The choice of in-
ventory valuation methods adopted in issuing inventory (Ze. the order in which
the items are to be issued), such as methods based on time sequence including
FIFO (first-in, first-out) and LIFO (last-in, first-out), depends on both the in-
trinsic characteristics of the inventory (e.g. lifetime, quantity, variety, issuing
frequency etc.) and the influence on the company (e.g. inventory balance, cost of
goods sold etc.) [11]. In the present paper, we consider an Economic Order
Quantity (EOQ) model for inventory of items that deteriorate following a time
dependent three-parameter Weibull deterioration and price-dependent demand

rate.

1.1. Mathematical Formulation

A rich literature on modelling of deteriorating inventory shows how the deteri-
oration of products has been captured in the research problem up till now. To
integrate deterioration into mathematical models, the model type (deterministic
or stochastic) and the considered time horizon (infinite or finite) lead to specific
methods [12]. In what follows we consider the basic characteristics of EOQ in-

ventory models.

DOI: 10.4236/ajor.2021.114012

200 American Journal of Operations Research


https://doi.org/10.4236/ajor.2021.114012

O. N. Pius et al.

1.2. The Demand Characteristics

The customer arrival rate per time period may be deterministic or stochastic,
each individual demand may be deterministic or stochastic and each individual
demand may also be discrete or continuous [13] [14]. Demand plays a key role
in the modeling of deteriorating inventory. Aiming towards satisfying customer
demand, companies employ demand forecasts as a prediction of customer beha-
viour. The following variations of demand labeled from the point of view of real
life situations have been recognized and studied by a number of researchers such
as Khanra et al [15]. It is assumed that demand is known with certainty in a de-
terministic demand process. Stochastic demand process on the other hand basi-
cally incorporates randomness and unpredictability.

A deterministic demand distribution can be categorized into:

1) Uniform demand, 7.e. demand is a constant, fixed number of items.

2) Time-varying demand.

3) Stock-dependent demand.

4) Price-dependent demand.

A combination of the above is also possible.

1.3. Price-Dependent Demand Function

It is observed that, the demand rate of an item is influenced by the selling price
of an item, as, whenever the selling price of an item increases, the demand de-
creases and vice-versa. Generally, this type of demand is seen for finished goods.
Several authors have investigated this type of inventory model. According to the
market research, it is observed that time to time advertisement of an item can
also affect its demand. The demand rates of these items may be dependent on
displayed stock level. Such types of demand in different forms were considered
by Maiti [16], Chung ef al [17]. All these models considered either linear or
non-linear form of demand and derived results. In this research work we pro-
pose a demand rate that is a non-linear function of time £ and given by

D(t)=d(p)on[t—(t-u)H (t-u)] " 0<w<l 7>0, (1)

where

1, t>u

H(t_“)z{o,

is the well-known Heaviside function, with graph shown in Figure 1.

t<u

\

t<u t

Figure 1. The Heaviside function.
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The functional form of d(p) for this research is prescribed as d ( p) =ap™®,

where a >0 isascale parameter and b >0 isa shape parameter.

1.4. Proposed Deterioration Model

The Weibull distribution is specified by;
W (t)=ap(t-r) " exp(-a(t-r)) t>0, )

is often used for modeling lifetime data. When modeling monotone hazard rates,
the Weibull distribution may be an initial choice because of its negatively and
positively skewed density shape. Rinne [18] suggested that a three-parameter
generalization of the Weibull distribution deals with general situations in mod-
eling survival process with various shapes in the hazard function. Chakrabarty et
al. provided rationale for considering three-parameter Weibull deterioration
rate. They discovered that many products that start deteriorating appreciably
only after a certain period (e.g. after they are produced) and for which the rate of
deterioration increases over time have a deterioration rate best described by a
Weibull distribution. We consider the following inventory data adapted from
Ghosh and Chaudhuri [19] and Saha and Chakrabarti [20].

1.5. Notations of the Model

We adopt the following notations and assumptions in the derivation of our
model.

Notations:

1) | (t): On-hand inventory as a function of time t.

2) O(t)=ap(t- 7)/}71 . instantaneous deterioration rate function for a
three-parameter Weibull distribution given in (2); where o 1is the scale para-
meter, [} Is the shape parameter and y Is the location parameter (0 < a < 1).

3) D(t) : Demand function of time t.

4) P(t): Production rate as a function of time t.

5) T: is the fixed length of each production cycle (cycle time).
6) c,: is the inventory holding cost per unit per unit time.
7) C,: Is the shortage cost per unit per unit time.

8) c,: is the cost of each deteriorated unit.

9) ¢: total average cost.

10) |,: is initial inventory size.

11) t,: time during which there is no shortage.

12) «: a constant value between 0 and 1.

13) T": optimal value of T.

14) p": optimal value of p.

15) ¢": optimal value of ¢ .

16) |,: optimal value of 1.

17) t, : optimal value of t, .
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1.6. Assumptions of the Model

1) The inventory system under consideration deals with single item.

2) Replenishment size is constant.

3) Lead time is zero.

4) The planning horizon is infinite.

5) The demand rate is non-linear as a function of time £ and specified by Eq-
uation (1).

6) Shortages in the inventory are allowed and completely backlogged.

7) The supply is instantaneous and the lead time is zero.

8) Deteriorated unit is not repaired or replaced during a given cycle.

9) The holding cost, ordering cost, shortage cost and unit cost remain con-
stant over time.

10) There are no quantity discounts.

11) The distribution of the time to deterioration of the items follows the

three-parameter Weibull distribution.

2. The Mathematical Model

At the beginning of the cycle, the inventory level 1(t) reaches its maximum
1(0) =1, units of item at time t=0. During the interval [0,t,], the inventory
level depletes due to the combine effects of demand and deterioration. At t=t,
the inventory level is zero and all the demand hereafter (Ze. T —t,) is complete-
ly backlogged. The total number of backordered items is replaced by the next
replenishment. A graphical representation of this inventory system is depicted in
Figure 2. Since the depletion of the units is due to demand and deterioration,
the rate of change of the inventory level at any time ¢is governed by the differen-

tial equations:

dld(tt)JrH(t)l(t):P(t)—D(t), O<t<t, 3

with boundary conditions 1(0)=1, and I(t,)=0. Furthermore the produc-
tion rate P(t) is zero in this case, thus in the interval 0<t< x, the initial

value problem to be solved is:

Level of inventory

Time

Figure 2. An EOQ model with shortages and deterioration.
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d'd(tt)w(t)l (t)=-D(t), 1(0)=1, 1(t)=0 )

In the interval t <t <T, the initial value problem becomes:

@

L g(p)antr, 1(t)=0 ©)
Employing the previously stated assumptions, we have our inventory model
as:
dl (t ~
%.}.aﬂ(t—}/)ﬁll(t):—d(p)a)l]tﬂl, OSt<,U (6)
dl (t -
d(t ‘)+aﬁ(t—7)ﬂ1'(t)=—d(p)w77ﬂ”’1, HEt<y )
dl(t

2.1. Solution of the Model

Equation (6) is a first order differential equation and its integrating factor is:
5
exp[aﬂj(t— s 1dt] a(t=7) 9)
So its solution is given as

Ll1we |- (pyontren

t
|:I (t)e"("’)q =—d( a)nf s71e7) g

0
= (t)ea(tf}/)ﬁ _ |Oea(7)ﬂ d CUUJ‘ s7le a(s- y)ﬁds
Le
| (t) = |Oea(- —a(t-7)? _d ( p)a)ne—a(t—y)ﬁ J'; sﬂflea(s_y)ﬁdS' O<t<u. (10)

where 1, =1(0). For Equation (7) we follow the same procedure

21 -t e

‘1(1’7)ﬂ ' n-1(t a(s—y)ﬂ
[e | (t)l, =-d ( p)a)n,u Le ds
a(t_}/)ﬂ _ ao(u=7) _ n-1(t a(s—;/)/i
= e I(t)=¢e | (1)—d(p)onu J-He ds
(VP (1)
| (t) =] e [(” 7 ={t=7) ] —d ( p)wnﬂﬂ—le—a(tﬁ)/’ J’;ea(s—ﬂ/}dsl 7 <t< tl (11)

where |, =1(u).On integrating Equation (8) we get;
I(t)=—d(p)o(t’-t/), t<t<T (12)

Since 1(t,) =0, from Equation (10) we get;
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() =1,e"" 2 -alt-r)" —d(p)onute b 7 jtle“(s")ﬂds=0 (13)

0

. |Oea(- n-a-r) _ —d ( p)wnﬂ” -Lgalt- 4 J;l ea(S—r)ﬂdS (14)
= 1, =d(p)onu e " 2 j;le“(s'”ﬂds (15)
Similarly, we can obtain 1, using 1(t,)=0.Hence
_ ol ) ] _ r1g-etur) [ gatsr gg
I(t)=e |, —d(p)onu" e L "ds =
= 1, =d(p)ongu" e " jl“” (16)

Hence, the inventory level at any time te[0,T] is given by

Ioe"('”ﬁ‘“ ' _g ( p)a)ne“’(“’)ﬂ .ft sl 45, 0<t< U

o (u-y)P ~(t=y)*
|(t)= e [(#7) (17)] d(p wnﬂiylea Ie s—r)f ds, u<t<t, (17)

~d(p)o(t"-t7), t<t<T

The total quantity of deteriorated items in the time interval [0,t,] is given by
D = Initial inventory — Total demand within [0,t, ]

= I, —{Total demand within [0, ]+ Total demand within [,t, ]}
=1, [, D(t)dt—[*D(t)dt
=1, —Uoﬂd (p)ont” dt +J;1 d( p)a)n,u”'ldt]

D=l,+d(p)at! +d(p)onu"" (t,— )

D=d(p)o|t 4 (4 )+ e e as| g

The average total cost per unit time is given by

H(T 1, p)_ 14 jtl t)dt—2 L (t)dt (19)
We observe that the 1ntegral I t)dt in Equation (18) can be broken up
into
Jo 1()dt= 1 (t)de+ "1 ()t (20)
Now

Jo 1 (@)dt=] ﬂ{ 'Oea(ﬁ)u(tﬁ)ﬂ ~d(p)ane ) [lsrient) ds} dt
=t e dt—d (p)on)e a5 e as

and
t t a[(uw)ﬂf(tfy)ﬁ] a s—
Ll(t)dtzj'ﬂ{lﬂe ~d(p)onue je 7) ds}dt

al (VP 1oV
=1, [tw-r? 1) ]dt—d(p onp™ [ g e ds
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The last integral in (19) is computed as:

j; I (t)dt :—d(p)a)_[;(t" ~t7)dt

n+l n+l (21)
=— T —_t7 ti n+l
) d(p)a{[ﬂﬂ TJ [77+1 ; H

d s -
¢(T,t1,p)=CSwT(p)(t{7+nﬂ"l(ti—u)ﬂw e I " )

Hence, we have:

+%{|Oe“(’”ﬁ [le Y dt - d( )wn'f:e’“(t’”ﬁdtﬁs”‘le“(s’”ﬂds}

(22)

e ’H e a(s-r)
_IC_l{Ie #=7) jl (=7 gt — d(p) a)ﬂﬂ“fl (t=r) dtI;e( ) ds}

Cza’d(p) T 7 t{”l n+l
T K'ﬁl HTJ [ml i H

Our objective now is to determine the values of 7, ¢, and p which minimize
¢(T,t1, p). However, at this stage we must prescribe the functional form of
d(p) whichisgivenby d(p)=ap™, ab>0.

We assume t =xT; 0<x <1.This assumption appears reasonable since the
length of the shortage interval is a fraction of the cycle time. Substituting

t, =T in Equation (21), we get:

b
¢(T, p):%(ﬂ?7 +77,u”‘1(KT —,u)+77,u"‘1€ _[ g?(s7) ds)

{ j’ e gt —ap any(f” e ) dt)(j 57 tes7) ds)}

(23)
. ?{I#ea(/z—y) _[:T o7 gt ap o’ (.[:T et/ dt)(j; gels7) ds)}
n+l
+C,map °T” KL K’ j e }
n+1 n+1
The necessary conditions for minimization of ¢(T,p) are:
0¢(T,p)/oT =04(T,p)/op=0 (24)

The sufficient condition for minimization of ¢(T,p) requires that it must

be a convex function for T >0, p>0. Now the function ¢(T, p) will be con-

vex if
*¢(T,p) *¢(T.p)
oT? oTop -0 (25)
o’$(T.p) °¢(T.p)
opaT op?

Equations (24) can be solved simultaneously by some computer oriented nu-
merical technique such as MathCAD or Maple, to obtain the optimal price p*

and optimal cycle time T". We provide a numerical example to illustrate the
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foregoing.
o¢(T,p) o C3a)apb( " . BT (s
o BT KT g (6T = )+ e ) e"(”)ds)
o7 er| T (T =) k
+ ic—l{ 1, [ et gt — ap‘bamjﬂe’“("”ﬂ dt; g7tgels ) ds}
aT T 0 0 0
5 (26)
G alp=y) [T galt-r) -1 (s=7)
a_T?{I"e LI " dt—apwnu’ j e dtf e” ds}
7+l
2 c,wap ’T” LR AL
oT n+l n+1
Hence,
o¢(T.p) _,
or
b
—5 (T s (T = o) e [T e )
+—C3a)ap"b T x4 e O e e gs
T ot %o
{ f” gt dt—ap_bwn(J:e‘ dt)(j §7tg(s7) ds)}
+&%ea(-7)ﬁ J‘”e-a(t—;')ﬁdt
T ot 0
_ & a(u=yY [*T y=alt7) -1 (t-r)? t_a(s—y)?
= {Iye ) Te e gt —ap oy’ J' e dt]([ e ds
+ & Do gatoery [Tet gt i(j Tt dt)
ot " “ ot U
(27)

G -b 4 0 (o] _aft-) t a(s—y)
—?{ap onu a_T(L e dt)([ e ds

n+l
+C,0ap T L |+ =0
n+l n+1

—6¢(T,p):i{c3a)ap ( T4 (KT = )+ e _[ e“*7) ds)}

op op T
aa?{ je ) gt —ap am(_[ ("’)ﬂdt)(ﬁs”’le“(s‘”ﬁds)}
ap (28)
¢ o —y)ﬂ KT —a(t—y)ﬁ _an-b 1 (% 7a(tf;/)ﬁ t a(s—;/)ﬂ
+%?{Iﬂe “ L e dt—apwnu” (L e dt)(J'Oe ds)}
n+l
+§{Czwapr” {(L—KWJ+ /i3 }}
p n+1 n+1
Hence,
#(T.P) _,
p
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b1
_—c3a)a-|t_)p (K”T“ S (KT = ) e 0 [ e“(s")ﬁds)

0
{alo 0‘ J‘“ *ll (t=7) dt 4 abp—b—la)n(-“oﬂ efa(tfy)ﬁ dt)(.[; Sr]flea(s#)ﬂ ds)}

(29)
+&{a'_uea<u—r>ﬂ T e Gt 1 abpaomu ( [ e—a(t—r)”dt)( I ds)}
T 0op “ “ 0

n+l
—C,wabp T R U0/ LS
n+l n+1

We recall that;

l,=d(p) an]y"lea Ila57 ds,

= n-1p-a(u—7)’ [ ja(s-7)’
(1) =d (p)onu e eV ds

al n-1 11 s y }
apw e e ds
T 6T{ pramu e L [ 30)
—al— O «T _\7
= apPanute " L [T e gg
P onu =Tk
%:a{p onu e .[e”ds}
_ —-b-1 -1 7&(7}/)ﬁ T a(s—y)ﬁ
=-abp "wnu’"e _[0 e ds
Similarly
alﬂ 1 -af ,,y)ﬂ xT a(s—y)ﬁ
£ {ap onu e ["e ds}
oT oT H (32)
_ -b n-1 7a(yfy)ﬁi &T a(s—y)ﬁ
ap wnu’ e = '[” e ds
al—“:i{aFfbc<)77ﬂ”’le’”(””)ﬁ .fﬂ als=r) ds}
op op “ (33)
= —abp " tonu e 1 Y _f:T e ds
b(a)
The Lebnitz rule for differentiating the integral |(a)= I f(x,a)dx is giv-
a(a)
en by
di(a) db da %of (x,a)
=f (b, f(b,a)—+|——=dx 34
da ( a)da ( a)da £ oa (34
Applying this rule to ijﬂ I(t,T)dt, we get
or 7o
—j” T)dt=| i|(t,T)o|t+K| (x,T)
oT
i( [Te dt) "= O gettr) gt 4 o™V = igeT7) (35)
oT \*0 691'

Hence
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Vo _ apomurie = [Tt gs
oT or 7° (36)

= axp Ponu e ) T

ol 0 B kT B
T _ 9 [ap b opu-te vV [T gx(s) ds}
aT 6T{ P )
=apPonu" e v ain:T e’ ds
Similarly
i(f” e (7 dt) =" O gtV g4 g T = g (37)
oT \*# il
Hence
ol

_ _ O ¢«T Y
Tu—aptagurte ) LT gs
ar P @k ) (38)

_ aK_p—bwr]‘ur]—le—a(y—y)ﬂ+a(T—y)

2.2. Solution Algorithm for the Optimal Inventory Policy

We give the following steps for computing the optimal ordering quantity, op-
timal cycle time, price and the optimal total cost for the model:

Step 1: Solve Equations (27) and (29) simultaneously to get the optimal values
T" and p° for Tand prespectively.

Step2:Ifat T" and p~ the sufficiency condition is satisfied, then go to step
3 else stop and declare the solution infeasible.

Step 3: Substitute T~ into t, =T to obtain t;.

Step 4: Determine the optimal EOQ I, by substituting the values of T~
and p° into eqn. (15).

Step 5: Substitute the values of I;, T" and p” into Equation (22) to get
the optimal total average cost ¢(T, p).

2.3. Numerical Analysis and Results

In this section we employ MathCAD 14 computational software [21] to obtain

numerical solutions to the highly nonlinear system of Equations (27) and (29).

The CAD stands for Computer Aided Design. This will provide us with the op-

timal solutions for the average cost function for some specified data.
c,=25¢,=5¢:=500 =001 =8 y=0.1 k=075
a:=15-10" b:=3.62 n=2 o=01t=02 x£=01

The format for the MathCAD 14 solve block follows:
* Initial values for the unknown variables (p,T).
*  Given.
* Equation (1).
* Egquation (2).
* Find (p,T).
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2.4. MathCAD Solve Block Solution
c,=25¢,=5¢:=500 =001 f:=10 =01 x:=0.2
a:=15-10" b:=3.62 =2 »:=011t:=02 =01

p=70 T:=2 Initial values of the variables

Given
C,3]
—3w P (K”T"+77,u" (KT —p)+nu" e .[ e ds)
b
+ _0301_?1 : (’7K T ™ e e )
c 1 a(s—7) d u —at -7) d
_T_ ap a)n,u f e S I t

_ apfban] (J‘O!‘ e—a(t—y)ﬁ dt)(ﬁ Sr;—lea(s—y)ﬁ ds)}

C “1a(T-y)” [# —at ;/)ﬁ _ Cl b o pxT a(l—y)ﬁ 2
+_I_Kap *onu e I dt T—z{ap wnu” (L e dt

—apPonu™ ( j:T gt dt)(j; g7 ds)}
E:rl{a K p Zba)2772’u2(17 1) 7a(/177)ﬂ+2a(T7}/)ﬂ( KT ea(ty)ﬁdt)z}
"

—&{a 11geT7) [ gals) ds}
© fop w67 |

n+l
+c,ap T K—l —K”]+ i } =0

n+1

_ cuwabp ™!
=

e
+—=<{-ab 7 e’ ds dt

T{ P an ([ )
+abp™wn (.[0’ g dt)( ) s”’le"(s”)ﬁds)}

C b1 1 (5T _a(s—y) 2
+?1{—abp onu (L e ds)
+abp™tonu" (I:T g« dt)(f; g7 ds)}

n+1
—czwabp_b‘lT”[[ L —K"]+T7K }:o
n+1 n+l

2.571x10*
1.462

(K"T’i +ou (KT = p) + e jOKT g7 ds)

Find (p,T)z{

Optimal cycle time T  =1.462 unit, optimal price p”=25710 unit, op-
timal total average cost ¢ (T, p)=0.00377 unit. It is numerically verified that
this solution satisfies the convexity condition for ¢(T, p).

In summary, for the mathematical model of an inventory system with time
dependent three-parameter Weibull deterioration and price-dependent demand

in the form of a non-linear function of time, we obtained the following results:
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The optimum cycle time T~ =1.462 days.
The optimal price p” =25710 units.
The optimum stock-period t, =«T" =0.2x1.462=0.292 days.
The optimum total average cost ¢" (T, p)=0.00377 per day.
The optimum initial inventory level
l; =d(p)wnu e [*e“ s =0.038 units.
The optimum number of order, N* = 1/ I, =2.18x10" unit-order per day.

2.5. Sensitivity Analysis

Sensitivity analysis depicts the extent to which the optimal solution of the model
is affected by slight changes or errors in its input parameter values. In the for-
going inventory model, we study the sensitivity of the optimal cycle length T~
the price p~ and cost ¢ (T, p) with respect to the changes in the values of the
parameters a,b,a, f,¢,C, and c,. The results are shown in Table 1 and Table

2 on the other hand depicts the percentage change in the parameter values from

Table 1. Sensitivity analysis table.

% change in .

Parameter parameter values T P #(T.p)
=50 No convergence No convergence -
=20 No convergence No convergence -

! +20 1.609 2418 x 10* 1.214 x 107
+50 1.612 2.263 x 10* 1.546 x 107
=50 No convergence No convergence -
=20 No convergence No convergence -

b +20 1.611 2.055 x 10* 2.190 x 107
+50 1.620 1.793 x 10* 3.604 x 107
=50 No convergence No convergence -
=20 No convergence No convergence -

¢ +20 1.548 3.763 x 10* 2.763 x 1077
+50 -1.095 5.469 x 10* -
=50 No convergence No convergence -
=20 No convergence No convergence -

F +20 1.744 4414 x10° 0.000
+50 No convergence No convergence -
=50 No convergence No convergence -
=20 No convergence No convergence -

a +20 ~1.192 2.393 x 10° -
+50 No convergence No convergence -
=50 No convergence No convergence -

-20 1.594 5.395 x 10* 6.599 x 107

° +20 1.553 3.134 x 10* 4.622 x 1077
+50 1.41 3.189 x 10* 4.034 x 1077
=50 1.612 6.933 x 10* 1.346 x 107®
-20 1.6 3.121 x 10* 3.844 x 1077

© +20 1.494 2.616 x 10* 1.035 x 107
+50 1.495 2.512 x 10* 1.499 x 107¢
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Table 2. Table of change in parameter values.

% change in parameter values
Initial values

-50% -20% 20% 50%
a 0.5a 0.8a 1.2a 1.5a
15 x 107 7.5 x 107 1.20 x 108 1.80 x 108 2.25 x 10®
b 0.5b 0.8b 1.2b 1.5b
3.62 1.81 2.896 4.344 5.43
a 0.5a 0.8a 1.2a 1.5a
0.01 0.005 0.0025 0.012 0.015
B 0.58 0.88 1.28 1.54
10 5 8 12 15
q 0.5¢, 0.8¢, 1.2¢, 1.5¢,
2.5 1.25 2 3 3.75
[y 0.5¢, 0.8¢, 1.2¢, 1.5¢,
5 2.5 4 6 7.5
G 0.5¢; 0.8¢; 1.2¢; 1.5¢;
500 250 400 600 750

their initial. The sensitivity analysis is performed by changing each of the para-
meters by —50%, —20%, +20% and +50% taking one parameter at a time and
keeping the remaining parameters unchanged. We observe the following:

1) The model has no convergent solution for the —50% and —20% value of the
parameter a. For the other percentage values, however, the solution is stable.

2) The model has no convergent solution for the —50% and —20% value of the
parameter b. For the other percentage values, the fluctuation in the solution val-
ues is negligible.

3) The model has no convergent solution for the —50% and —20% value of the
parameter « . For the other percentage values, however, the solution is unsta-
ble. Here we obtain a negative value of the optimal cycle length T", which is
unrealistic and hence there is no admissible value for the optimal cost
¢ (T, p) . Hence the parameter o« does not contribute to the sensitivity of the
model.

4) The model has no convergent solution for the —50%, —20% and +50% value
of the parameter f.

5) For the inventory holding cost ( c,) per unit per unit time, the model has no
convergent solution for the —50%, —20% and +50%. Furthermore, we obtain a
negative value of the optimal cycle length T~ and hence the holding cost does
not contribute to the sensitivity of the model.

6) For the shortage cost ( C,) per unit per unit time, the model has no conver-
gent solution for the —50% only. For the other percentage values, however, the

solution is stable.
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7) For the deteriorated cost (c,) per unit, we have convergent solutions for all

percentage values of this parameter. Furthermore, these solutions are stable.

3. Conclusion

In this work we developed an inventory model for a three-parameter Weibull
deteriorating items with price-dependent demand rate specified by a nonlinear
function of time, and is such that when the price of the commodity increases,
demand decreases and when price of a commodity decreases, demand increases.
This particular configuration has not been discussed in the literature. Our major
contribution is the derivation of the optimal inventory policy for the proposed
model and this also involves the necessary and sufficient conditions for the op-
timal policy. The objective of the model is to minimize the total inventory costs.
From the numerical example presented to illustrate the solution procedure of the
model, we obtain satisfactory results. We then proceeded n to perform sensitivi-
ty analysis of our model. The sensitivity analysis illustrates the extent to which
the optimal solution of the model is affected by slight changes or errors in its
input parameter values. It is important to state that the numerical procedure for
this problem relied heavily on the power of MathCAD14, which was used to
solve a highly nonlinear system of equations in two unknowns, and involving a
definite integral. The advantage of this numerical software is that the equations
are composed as they appear in the text and need not be recast in a special for-

mat for computation.
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