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Abstract 

Respecting the on-time delivery (OTD) for manufacturing orders is manda-
tory. However, for non-JIT Batch & Queue Push-manufacturing systems, the 
compliance of OTD is not intrinsically guaranteed. As an OTD related man-
ufacturing theory is largely missing it is crucial to understand and formalize 
the necessary conditions of OTD compliance for complex production envi-
ronments for maximum exploitation of the production capacity. This paper 
evaluates the conditions of post-optimality while being OTD compliant for 
production systems, which are characterized by stochastic order rate and a 
deterministic product-mix. Instead of applying discrete event simulation to 
explore the real case-by-case order scheduling optimization for OTD com-
pliance, a Cartesian approach is followed. This enables to define theoretically 
the solution space of order backlog for OTD, which contributes to developing 
further manufacturing theory. At the base stands the recently defined new 
concept of virtual manufacturing elasticity by reducing lead-time to increase 
virtually production capacity. The result has led to defining additional two 
corollaries to the OTD theorem, which sets up basic OTD theory. Apart from 
defining the post-optimal requirements to guarantee for orders at least a weak 
solution for OTD compliance, this paper reveals that for a deterministic 
product-mix a non-ergodic order arrival rate can be rescheduled into an er-
godic order input rate to the shopfloor if the virtual elasticity ∆T is large 
enough, hence the importance of having fast and flexible production lines.  
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1. Introduction and Approach to the Problem 

As the fulfillment of customer requirements for product quality, the on-time de-
livery (OTD), which is the punctual delivery of manufactured products, is essen-
tial for a customer-satisfaction sustainable business. The OTD requirement can 
be considered as fulfilled, if deliveries match the expected delivery time 
(EDT)—the jointly agreed date of delivery. Whereas a widely used key metrics to 
calculate OTD exists, which is the ratio of goods delivered to customers on time 
related to the total goods deliveries, the necessary and sufficient conditions for 
OTD compliance have not yet been a topic of mainstream manufacturing the-
ory. Indeed, this apparently trivial, but important objective has rarely been re-
searched. The reason is simple: progressing simulation of complex manufactur-
ing systems has prevented the development of such a theory. With a series of 
papers, we intend to bridge this gap. 

This paper is a generalization of a previous paper [1], which examined the 
post-optimality conditions to comply with the OTD requirement for time-bound 
order rate (OR) above production capacity with deterministic or mainly ergodic 
order-arrival characteristic for a single mono-product manufacturing. A manu-
facturing theory textbook evoking the topic of OTD is [2]. It is the first textbook 
approaching systematically the topic of OTD from a theoretic, law-based view 
defining the necessary and sufficient conditions for OTD in a mono-product 
manufacturing system. With the present paper we extend the problem setting 
by developing the post-optimality conditions for OTD of a multi-product 
manufacturing system showing a predominant non-ergodic stochastic arrival 
OR characteristic, however, with a deterministic product-mix. This topic is of 
high interest in view of forthcoming graph-based and artificial intelligence 
(AI)-controlled new cyber physical production systems (CPPS). This paper 
analyses and allows fully understanding the preconditions for OTD of a highly 
non-ergodic process within a non-deterministic product-mix production envi-
ronment. Indeed, the OTD topic has not yet been examined analytically, but the 
solution is usually hands-on simulated at the occasion of real order scheduling.  

In [1] were expanded the necessary and sufficient conditions for OTD, basic 
conditions defined with the OTD theorem in [2], with post-optimality condi-
tions enouncing two additional corollaries. It reveals that a temporary (during 
∆t) higher OR than the exit rate (ER) of a production system in a fix capacity re-
gime can be backlog-buffered and rescheduled according to the difference ∆T of 
expected delivery time (EDT) and the process lead time (PLT). Due to this, the 
process is OTD compliant. The ∆T is the virtual manufacturing elasticity leading 
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to increased capacity, which has been defined in [1]. The increased capacity is 
only virtually increased and not physically. Physical nominal production capac-
ity ER is still given by the cycle time CTb at the bottleneck. The virtual elasticity, 
however, allows supplying the customer order exceeding bottleneck-capacity still 
on time. This reveals the importance of fast lean manufacturing lines reducing 
PLT. Two cases were distinguished and have been solved for deterministic 
mono-product OR (Equation (1)) and for stochastically variable ergodic OR 
process (Equation (2)), with post-optimality of ( )x t  for OTD 

( ) ( )1 T
t

t f
x
λ

 
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                    (1) 
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where the variable ( )x t  represents a deterministic, but time-bound variable 
OR and ( ),x tτ  represents a stochastic OR with variable inter-arrival time τ, 
the λ represents the constant ER which should be in line with the average OR. 
The findings of the paper also have led to enounce the Second Corollary to the 
Theorem of General Production Requirement (Corollary of Strong and Weak 
OTD Solutions) formulating the necessary and sufficient condition for a strong 
OTD solution for Equations (1) and (2) [1]: 

Second Corollary to the Theorem of General Production Requirements 
(Corollary of Strong and Weak OTD Solutions):  
Given is an order rate with generally random arrival character within a 
fixed-capacity regime. Necessary and sufficient condition for a strong OTD 
solution is the ergodic characteristic of a stochastic order process paired 
with symmetric distribution of order rates of the random OR variable and 
if they comply with the requirements of the OTD theorem. However, 
non-ergodic processes with erratic arrivals, or ergodic processes with 
asymmetric random distributions of order rate, constitute only a weak solu-
tion for OTD observance, observance depending on the specific circum-
stances. The circumstances are the distribution of arrivals, the sequence of 
arrivals, and timespan of non-randomness, as well as dependency on the 
virtual elasticity of the production system. 

It is important to note that the problem of post-optimality does not represent 
a topic of interest in TPS-derived perfect lean just-in-time (JIT) production sys-
tems, because the product-mix and OR are deterministically known and there-
fore the manufacturing system can be conceived and implemented accordingly 
to meet the OTD requirement. This is not only important, but also interesting 
and shows the sophisticated functioning of the Toyota JIT production system. A 
rational and formalised scientifically founded description of the JIT production 
system, as well as basic manufacturing theorems, have been developed in [2] de-
fining production-related laws and implementation principles. The JIT produc-
tion system relies mainly on a make-to-stock production principle. TPS-derived 
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lean JIT productions base on pull manufacturing principle with one piece trans-
fer principle forming a perfect single piece flow (SPF) and shows an even OR, 
called takt rate (TR) with ideally SD[TR] = 0, which corresponds to a determi-
nistic order regime. Furthermore, the Toyota JIT lean production system relies 
on a deterministic and predefined product-mix leading to ergodic-type of 
processes. In addition, manufacturing batches produced in multi-product 
manufacturing cells (mixed model) are standardized in equal timeslots called 
pitches to reduce Mura (unevenness), while the production-mix is alternated 
using Heijunka-box levelled scheduling. This allows having all products, but also 
all necessary intermediate components along the manufacturing sequence, ready 
to be assembled according to customization specification and finally supplied to 
the next workstation, or delivered to the customer, nearly instantaneously. Tai-
ichi Ohno (Toyota), the father of the JIT production system, extended Henry 
Ford’s mass production into a flexible production system. However, a perfect 
smooth running JIT system bases on a differentiated, but deterministic prod-
uct-mix, which, nevertheless, can be flexibly called-off.  

In this paper we will analyse the OTD compliance for a deterministic prod-
uct-mix, which ideally should be manufactured, under ideal conditions, using a 
lean JIT-based pull manufacturing system and not a batch and queue (B & Q) 
system. However, we will analyse the consequences to a traditional push B & Q 
manufacturing system, without dealing immediately with stochastic prod-
uct-mix variability of envisaged CPPS. This intermediate step of analysis allows 
understanding the requirements to pay attention for the omnipotent CPPS, In-
dustry 4.0 manufacturing system characterized by non-ergodic order processes 
with stochastically variable product-mix. In the following, we will apply the same 
approach, which has already been used in the paper [1]. That paper mainly dealt 
with the elasticity topic of production systems, i.e. the insensitivity of cost-change 
to production volume change. In the present paper, we will not yet consider the 
flexibility topic, i.e. the insensitivity of cost-change to production mix variability, 
applied for OTD compliance. This in order not to explode the complexity of the 
topic to be modelled—it will be the topic of a next paper. Similar to the distinc-
tion of experimental and theoretic physics, in the following, we will not employ 
the usually applied discrete event simulation (DES) technique to gain insights, 
but continue to derive the development of the solution to the problem based on 
analytic law-based production theory, approach defined for the first time in the 
modern manufacturing theory textbook [2]. This scientific-theory approach 
bases on solid production theorems and corollaries related to manufacturing 
laws. Indeed, instead of exploring the behaviour heuristically by simulation, or 
even worse empirically by trial and error, a Cartesian-based approach allows 
understanding the intrinsic functioning of a production system to get a formal-
ized description of the laws governing OTD. 

This topic is highly innovative and not yet researched. The reason is linked to 
the lack of a mathematical definition of OTD, given only in 2017 with the OTD 
theorem [2], which states the necessary and sufficient condition to supply an 
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order on time: 

Theorem of General Production Requirements (or OTD Theorem): 
The necessary and sufficient conditions to supply a customer with OTD, i.e. 
with the right quantity at the right time, is that first the capacity require-
ment and second the lead time requirement have to be satisfied simulta-
neously, independent of the applied transfer principle, i.e. SPF or B & Q. 
The capacity requirement is given by the Corollary of Weak WIP Stationar-
ity and the lead time requirement necessitates that MLT plus BWT is short-
er than EDT. 

We have reported here again the OTD theorem, because it is central to the 
present problem development and is generally one of the most important theo-
rems for manufacturing on which further corollaries can be derived. 

2. A Little Bit More Theory and Preliminary Assumptions 

In the following, we analyse arrival processes of OR cases with increased com-
plexity and variability leading to non-ergodic processes. Analysing a manufac-
turing system, the full attention has to be put on the bottleneck. Remembering 
the Bottleneck Theorem for a mono-product manufacturing line, the bottleneck 
is the machine or, general speaking, the operation with the longest cycle time 
(CT) determining the exit rate (ER) of the production line. For a detailed ex-
amination of the concept of bottleneck and related theorem and corollaries, we 
refer to [2]. Due to the presence of a product-mix, requiring flexible production 
equipment, we cannot rely anymore on the Second Corollary to the Theorem of 
Throughput (Corollary of Bottleneck Time-invariance) valid for a mono-product 
manufacturing process. Indeed, a product-mix entails that the ER might change. 
Also the Theorem of Throughput (or Bottleneck Theorem) has to be extended 
and the concept of bottleneck-equipment has to be redefined when a mix of 
products are manufactured on shared equipment leading to the Theorem of 
Generalized Throughput (or WTT-Aggregated Bottleneck Theorem) [2]. This is 
also valid for the bottleneck cell within a complex inter-linked production of 
various manufacturing cells. To identify the bottleneck workstation, or bottle-
neck cell, of a mixed-production we have to introduce the concepts of work-
station turnover time (WTT) and cell turnover time (CTT). The WTT is the 
time to produce once the whole mix and can be identified with WTTm,K where m 
identifies the specific machine (workstation) and K represents the products 
manufactured on the workstation. The WTTm,K is defined for the mth worksta-
tion with the product-mix of K products in Equation (3) where the capital K re-
fers to the mix of products and the minor k to the specific product 

( )| | |m K m k m k kkWTT ST CT B= + ⋅∑                  (3) 

where STm,k means set-up time of the workstation m for the kth product and 
CTm,k is the cycle time of the mth workstation for the kth product and Bk is the 
batch-size of the kth product. For a detailed examination of the concepts of WTT 
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and CTT, we refer again to [2]. The introduction of WTT is required for a de-
terministic product mix to identify the bottleneck workstation. In the case of 
non-deterministic product mix, the bottleneck does not only change dynami-
cally (see the corollary reported hereafter), but the definition of WTT makes less 
sense, because of the difficulty to define the mix. For the definition and calcula-
tion of CTT we refer to [2]. We have to anticipate that the concept of manufac-
turing cell makes mainly sense for standard or standard-like components of a 
defined mix. Indeed, all the products to be manufactured within the same cell 
have to follow a defined sequence of operations according to the Theorem of 
Cell Product Congruency (or Linear Dependency Theorem) or to the Corollary 
to the Theorem of Cell Product Congruency (Corollary of Imperfect Dependen-
cy) [2].  

Theorem of Cell Product Congruency (or Linear Dependency Theo-
rem): 
Necessary condition to put similar but different products undergoing the 
same treatments/operations into the same manufacturing cell is that the cy-
cle times CTmk elements of the cell matrix have to be linearly dependent. 

A manufacturing cell or transfer line (TFL) constitutes a “productive capacity” 
suitable for LMHV (low mix high volume) production best represented by a 
flowshop organization. For high variable mix including one-offs (HMLV) a 
“technological competence” is required with variable production paths between 
the workstations (jobshop organization) such as envisaged by CPPS-organised 
shopfloor, workstations which have to be served by AGVs (Automatically 
Guided Vehicle). The concepts of WTT and CTT lead to the Theorem of Gener-
alized Throughput (or WTT-aggregated Bottleneck Theorem) and, in the case of 
not observance of the Linear Dependency Theorem, to the First Corollary to the 
Theorem of Generalized Throughput (Corollary of Generalized Bottleneck 
Time-variance) [2]: 

Theorem of Generalized Throughput (or WTT-Aggregated Bottleneck 
Theorem): 
In a multi-product manufacturing cell (or transfer line) with cycle times 
CTi|k the workstation (or cell) with the longest WTTi (or CTT) determines 
the bottleneck workstation (or bottleneck cell) to supply a mix of products. 
Please note, the exit rate ER of the cell is still given by the workstation with 
longest CTi|k processing a certain product. 

and 

First Corollary to the Theorem of Generalized Throughput (Corollary 
of Generalized Bottleneck Time-Variance): 
Different than in mono-product cells (or line) where the bottleneck is 
time-invariant (under “ceteris paribus” conditions), in mixed-product 
manufacturing cells with high differences between the cycle times CTi|k of 
different products k, the operation i for a product k being the bottleneck 
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may vary and the bottleneck being therefore time-variant according to the 
product k in the cell. 

Furthermore, a mixed-product manufacturing introduces an additional com-
plication compared to a mono-product manufacturing. Indeed, the usually ap-
plied concept of process lead-time (PLT) of a single product has to be substi-
tuted by the concept of manufacturing lead-time (MLT) of an entire batch. The 
MLT is the timespan when the first piece of the batch enters the manufacturing 
process and the last piece of the batch leaves the manufacturing process. As per 
the Theorem of Generalized Lead-Time (or Speed Theorem) the MLT depends 
on the transfer principle B & Q or SPF. MLT can be computed for a perfectly 
SPF balanced line with m equal CTk by Equation (4); the CTk refers here to the 
specific product. 

( )SPF 1k k kMLT B m CT= − + ⋅                     (4) 

For the case of a production line applying an n-piece transfer principle leading 
to an n-piece flow (nPF) consult [2] for the equations to calculate the MLTnPF 
variant. A complete derivation of equations and transformations between PLT 
and MLT for the different transfer principles is given in [2]; we repeat here only 
important conclusions. Equation (4) shows that the bigger the batch Bk of prod-
uct k is and the more workstations or machines m have to be used to manufac-
ture the product, the bigger becomes the difference between MLT and PLT, 
hence the fundamental importance to use the MLT concept of lead-time in this 
case. In addition, MLTSPF is always shorter than B&Q k kMLT B m CT⋅ ⋅=  manu-
facturing lead-time of a B & Q production principle, law expressed by the Main 
Theorem of Production Time (or SPF Dominance Theorem) and its corollary 
and lemma [2]. Stressing the importance of delivering the entire batch com-
pletely is represented also by the enlarged concept of OTD stating “on-time-in-full” 
deliveries (OTIF). This entails that we cannot use the OTD equation system used 
in [1], but we have to use equation system 5 substituting PLT with MLT derived 
from the Theorem of General Production Requirements (or OTD Theorem) 
giving the necessary and sufficient conditions for OTD compliance. 

[ ]
{ } [ ]

for : 0

: inf
:

i

Z Z

SD OR

i ER E OR
Z BWT MLT EDT

>

∀ >


+ ≤

                     (5) 

The index Z in Equation (5b) indicates the order entry point of the process 
from which the customer perceives the lead-time, called customer visible time 
(CVT). Therefore, the whole PLT (or MLT) starting from the raw materials 
might differ from the CVT. Typically, the entry point Z could be a customization 
operation buffered with up-stream standard components supermarkets. 

Another complication in the analysis of a realistic order situation compared to 
the simplistic mono-product manufacturing analysed in [1] is that in a 
multi-product environment each order refers to different products with different 
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order sizes. Therefore, we have to add to the arriving OR distribution Χk also the 
customer-related order information writing according to Equation (6) 

( ): , ,k k k kX B EDTΩ =                        (6) 

Each product order Ωk is characterized by a 3-tupel (or triple) where the index 
k refers to the specific product k. We can therefore claim that the entity “order” 
Ωk belongs to a 3-dimensional vector-space of complex data-range defined for 
non-negative numbers and distributions. Indeed, associated with each order Ωk 
is always the order quantity Bk of the commercial order as well as an associated 
expected delivery time (EDTk). The commercial order might be split in the case 
of lean JIT manufacturing in n sub-batches of size Bk/n. Indeed, the Theorem of 
Lean Batch Sizing and its corollary, the Corollary of Cycle Time of a Mixed-Product 
Workstation, give the necessary conditions to assure the availability and timely 
replenishment of all products. However, we will assume to produce the ordered 
quantity in full as requested by classic customer orders (OTIF) with an entire 
batch transfer principle if not specified differently. This corresponds also to the 
traditional way, how Western companies produce and supply customers. If the 
OR is non-deterministic, to model the performance we have to add additional 
information to the OR variable X about the distribution of the inter-arrival time 
τ and the potential verification of non-random distribution represented by t 
leading to non-ergodic processes. The distribution of OR given by ( )1 ,X tτ  or 
better the respective Markovian time-dimension of inter-arrival time ( )1 ,X tτ−  
represents the time-dimension of order arrival process. The presence of the in-
dex k in ( )1 ,kX tτ−  refers to the specific product k, the absence refers to the 
general order entry load without considering which product arrives. In this pa-
per, we prefer to use the capital Greek symbol ( ),X tτ  over the Roman nota-
tion ( ),x tτ  used in the former paper (part 1) for single piece order to indicate 
a batch-dimension order-entry with product-mix. The order entry rate ORk has 
to be transformed into a shopfloor input rate IRk. If the release sequence of or-
ders kΩ  is not FIFO but rescheduled, we use the symbol ( )1

kχ τ−  to indicate 
the inter-scheduling time (i.e. the time between the product k is produced again) 
of the inter-arrival time ( )1 ,kX tτ− , else we keep the arrival notation. We will 
perform also a brief comparison between the here analyzed B & Q behavior and 
the state-of-the-art lean JIT system, which is the ideal manufacturing system for 
such type of order and production regimes. We indicate with (τ) a stochastic 
(ergodic) and with ( ), tτ  a stochastic, but non-ergodic variable. The determi-
nistic, stochastic, or non-ergodic nature of the scheduled variable is, however, 
often indicated generically with ( ), tτ  and needs a case by case consideration 
(Figure 1).  

Interesting is the congruency of Markovian time-dimension of scheduled IR, 
i.e. the order inter-scheduling time ( )1

kχ τ−  with the product interval time 
(PIT) of Kanban-controlled and Heijunka pitch-levelled manufacturing cells [2]. 
We can already now anticipate that ( )1 ,k tχ τ−  is the stochastic interpretation of  

https://doi.org/10.4236/ajor.2021.113009


B. G. Rüttimann, M. T. Stöckli 
 

 

DOI: 10.4236/ajor.2021.113009 149 American Journal of Operations Research 
 

 
Figure 1. Schematic comparison between push OTIF-delivery and pull JIT-production. 
The lean TPS comparison is shown to clarify the alternative possibility of a pull or-
der-handling in deterministic product-mix environment compared to a classic B & Q 
push. 
 
deterministic PITk, PIT and WTT together used to size Kanban supermarkets. 
However, we have to precise that ( )1 ,k tχ τ−  is an external market-driven varia-
ble from ( )1 ,kX tτ−  whereas the PIT is an internally defined and adapted pro-
duction variable (usually constant) used to replenish timely the supermarkets 
based on external TR-based call-offs. Furthermore, related to the single prod-
uct-pieces, manufacturing is a deterministically resulting consequence of sche-
duling the single pieces of the batch considering the applied work shift regime, 
which translates into a takt-time TT; we can therefore write TTk   

In Figure 2 it is shown that the PITA of product A has a double reorder fre-
quency than PIT of products B and C. In lean JIT manufacturing systems PIT 
should be a multiple of the pitch, hence the interest to reduce pitch. The pitch is 
a standard time-slot associated to a standard quantity (internal batch-size 
adapted to a manageable logistic transportation bin such as a pallet or another 
defined pack-out quantity). Note that pitch comprises set-up and processing 
time. Associated to the Theorem of Generalized Throughput for a Kanban-managed 
manufacturing cell is the Second Corollary to the Theorem of Generalized 
Throughput (Corollary of Frequency) and the Theorem of Lean Batch Sizing (or 
Optimal Batch Theorem) paraphrasing the driving variables of the manufactur-
ing cell to replenish the supermarket on time. These facts show that lean manu-
facturing intends to bring non-ergodic order processes to deterministic produc-
tion processes reducing by that complexity, facilitating or even eliminating pro-
duction planning and allowing even a Cartesian-based description of production 
theory [2]. This shows that in presence of a deterministic mix the lean JIT pull 
manufacturing system should be preferred over a B & Q push manufacturing 
system, at least for the part of the production mix, which is deterministic. 

To each order Ωk is unequivocally associated with a specific characteristic of 
the product k, which is the process mapping reflecting the required sequence of 
operations to manufacture the product. The sum of cycle times CT of 
non-necessarily ordered sequence represents its work content (WC), which can 
be either touch-time (manually) or processing-time (machining), in any case it is 
the Muda-free value-add time-content of the product without waiting or trans-
portation time. 

:k kk WCΩ →∀ ∃  
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Figure 2. PITk and ( )1 ,k tχ τ−  congruency as well as respectively batch-indifferent con-

stant pitch and ( )1 ,tχ τ−  congruency as well as product-specific takt-time kTT , which 

may be different from 1kTT +  of another product. The figure shows the case of a 
pitch-leveled Heijunka-box scheduling for JIT manufacturing (adapted from [2]). 
 

It is obvious that the WC can vary from product to product. We will simplify 
the problem by not allowing customization of product k so that WCk is a deter-
ministic and time-invariant constant for each product. In such deterministic 
cases we can map production as a deterministic matrix representing the input 
for master capacity mapping of production for a defined product-mix (Equation 
(7)). 

[ ]
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              (7) 

The rows of the production matrix P in Equation (7) represent the m ma-
chines (or generally the operations to be performed) and the columns the k 
products forming a matrix of non-necessarily quadratic order with dimension 
m k×  of unitary specific CT representing the base to calculate the resource ab-
sorption. Therefore, the specific work content WCk of each product k corres-
ponds to the sum of the CT of the column-vector of the matrix [ ]mkCT , i.e. 

k mkmWC CT= ∑  

Please note that in the matrix represented in Equation (7) it may happen that 
some 0liCT = , where 1 l m≤ ≤  and 1 i k≤ ≤ . Matrices according to Equation 
(7) form the base of Linear Programming problems of the type A x b⋅ ≤  to 
identify the optimal production-mix *x  to maximize margin contribution 
function Tz c x= ⋅ . However, such “ex ante” optimization techniques, although 
delivering Pareto-efficient solutions, are inferior to “live” operational lean JIT 
manufacturing systems [3]. Indeed, the optimal “ex-ante” defined mix cannot be 
reproduced in reality. However, lean JIT production allows reacting to the in-
stantly requested real product-mix. 

If there is a modern cellular-organized manufacturing system, i.e. we have a 
complex manufacturing system with multiple manufacturing cells intercon-
nected (semantically-correct speaking they are not interconnected, but de-coupled, 
because linked via Kanban-managed supermarkets) the matrix of Equation (7) 
can be split into several matrices of lower order (Equation (8)).  
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  

�
� � �

�

              (8) 

The different cells j may comprise the same type of machines m or prod-
uct-specific different ones. The different matrix Cj can even have the same 
products k if the cells j are manufacturing the product in components, which 
then are assembled in a separate cell. 

In such cases of complex manufacturing the concept of bottleneck equipment 
computed with WTTm for each machine m of each cell j has to be widened de-
fining the cell turnover time (CTTj) for each cell j identifying the bottleneck cell 
of production [2]. The splitting of Equation (7) in several new matrix Cj for each 
cell j (Equation (8)) usually of lower order ( ),m l k i− − , where the matrix order 
(row and column dimensions) have not to be equal, can logically be represented 
by 

[ ] |: : ,mk m l k i j j j jj
j

CT ct j l m i k− −

   = ∀ < <    
∪  

Equation (8) applies ideally for such products k if the CTmk of these products 
in Equation (7) are linearly dependent, then such similar products k can be put 
into the same manufacturing cell represented by Equation (8). These products 
obey to the before mentioned Theorem of Cell Product Congruency (or Linear 
Dependency Theorem) or to the Corollary to the Theorem of Cell Product Con-
gruency (Corollary of Imperfect Dependency). Therefore, the big difference re-
garding matrix of Equations (7) and (8) between lean JIT Kanban-managed cell 
and traditional cells consist of CT-affine products and non-affine CT products. 
Indeed, for lean JIT manufacturing only products with linearly dependent CT of 
the process are grouped into the same cell, forming matrix of Equation (8). The 
linear dependency is not necessary for traditional B & Q manufacturing cell, 
which may constitute a sort of mini jobshop organization where the different 
machines are grouped into a shopfloor layout improperly named cell (improper 
or fake cell), where the Corollary of Generalized Bottleneck Time-Variance ap-
plies. We could call such improper cells pseudo-cell-type manufacturing, but not 
cellular manufacturing. Therefore, to name a layout a cell, the Theorem of Cell 
Product Congruency should apply. A cellular manufacturing allows implement-
ing a JIT manufacturing system. It is not important whether or not such cells are 
operated manually or implemented as automatic FMS (Flexible Manufacturing 
System). 

In the following, we will solve the problem of OTD regarding a single cell j 
according to Equation (8). Not only for JIT-managed production systems Equa-
tion (8) might be relevant; also for traditional B & Q manufacturing systems 
Equation (8) applies. However, although considering non-lean JIT manufactur-
ing systems, we will base the following considerations on lean JIT-derived prin-
ciples [2] applied to non-Kanban supermarket decoupled cell-type manufactur-
ing. 
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In lean JIT manufacturing, the necessary number of equipment or worksta-
tions as well as number of required blue-collar operators to match with the 
market-imposed takt-time (TT) in order to be potentially on-time can be com-
puted as follows 

k
k

k

WC
m

TT
=                           (9) 

Equation (9) computes the necessary capacity to be able to face the imposed 
demand given by the TT, i.e. TR, where ideally SD[TR] = 0. However, Equation 
(9) does not state if the number of equipment is tayloristically split (sequentia-
lized) or WC-integrally multiplied (parallelized) in the manufacturing cells or 
TFL. Equation (9) allows to debottleneck and to balance the processing steps of 
the WC applying the debottleneck principle. Please note that sequentialization 
will lead to change the order of the matrix [ ]j mkC ct=  with regard to the col-
umn dimension m (number of rows) with smaller cycle time ctmk, but same WCk 
work content. For a mixed-product cell according to Equation (8) we can ap-
proximate Equation (9) with Equation (10) giving the number of operators (or 
respectively machines) and may correspond for Tayloristic split WC to the di-
mension of the column-vector in matrix [ ]mkCT  of Equation (7) 

[ ]
[ ]cell

E WC
m

E TT
=                        (10) 

The Theorem of Debottlenecking (or Dual Solution Theorem) and its four 
lemmas as well as the debottlenecking principles can help to adapt the necessary 
capacity to the required OR. Furthermore, with the de-bottleneck principles it is 
always possible to transform a non-balanced SPF into a balanced flow. Based on 
the Main Theorem of Production Time (or SPF Dominance Theorem) and its 
Corollary to the Main Theorem of Production Time (Corollary of Lead Time 
Limit) it is advisable to establish a perfectly balanced SPF and therefore we can 
enounce the following. 

Second Corollary to the Main Theorem of Production Time (Corollary 
of Balanced Line):  
Given is a non-balanced SPF. By applying the Tayloristic-sequentialization 
de-bottlenecking principle, it is possible to transform a non-balanced pro-
duction line into a perfectly balanced line with equal cycle times. 

Nevertheless, it has to be noted, this corollary is subject to the property of 
sub-additivity, i.e. it might result ( )1 2 1 2CT CT CT CT+ ≤ + . The order arriv-
als and the order quantities will determine the instantly imposed TTk for product 
k. However, different order arrivals will impose an average takt-time E[TT] 
(Equation (11)), which depends also on the net available work time (WT), i.e. 
the applied shift regime 

[ ]: avail

kk t

WT
TT E TT

B
∆

= =
∑

                    (11) 
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Furthermore, it has to result (from Equation (5a)) written in the Markovian 
time-dimension that the CT at the bottleneck has to be shorter than the average 
market-imposed TT (Equation (12)) 

[ ]|, : m kk m CT E TT∀ ≤                      (12) 

Now we can extend the meaning of ER in Equation (5a), by defining a norm 
on the ER. The instant ER is given by 

( ) ( )
( ) ( )

1

1lim k
k kn

k

dB n
ER t t

dt n CT
λ

→
= = =               (13) 

where ( )dt n  is the time to process one piece. The ER is therefore a specific ca-
pacity. Equation (13) is an important statement; it can be seen as the proto-norm 
from which we can derive different aggregations of ER defining generally a space 
of nominal normed capacities. The word nominal refers to the standard specific 
entity-dimension of defined product ER. 

According to the just enounced Corollary of Balanced Line, in lean JIT 
pull-manufacturing the CTm can be deterministically established and ba-
lanced-out by applying the de-bottlenecking principles, because also the TT is 
deterministic. The variable TT of Figure 2 is therefore an artificial construct, 
because it is the consequence of a stochastic OR and hence for each product k 
different and rather given by the product-specific necessary CT imposed by the 
equipment. Indeed, in push B & Q productions, the general, universal equip-
ment usually has a functional-affinity oriented layout (similar equipment 
grouped into the same department) and a given speed of equipment. This trans-
lates according to the product in a resulting specific CTm,k for each product and 
machine, which usually is not balanced-out. If the affinity is product-oriented we 
get a pseudo-cell. In the case that the resulting [ ],m kCT E TT> , the instant ca-
pacity is not sufficient to process the workload forming a backlog (BL). And ex-
actly in such cases, the post-optimality conditions come into play for the 
orders waiting in the backlog (BL) resulting in a backlog waiting time 
(BWT) defining the solution space of queued orders to comply with OTD. 

Now, we are able to define the post-optimality conditions for OTD of an er-
godic or non-ergodic multi-product arrival process. 

In general, adapting the conditions described in [1] developed for a 
mono-product, taking the second part of Equation (5), the condition to compute 
the virtual elasticity for OTD of a backlog (BL) with FIFO-based scheduling 
principle for a multi-product machine m becomes 

( )1k k k

k k k

BWT t MLT EDT
EDT MLT T

− + ≤


− = ∆
                  (14) 

where ( )1kBWT t−  is a FIFO-based BL of maximum k − 1 products resulting 
that the ( )1kBWT t−  at the instant t for product k has to be smaller than the in-
herent virtual elasticity kT∆  to meet the OTD requirement of the order for 
product k, i.e. 

( )1k kBWT t T− ≤ ∆                       (15) 
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Equation (14) represents a necessary condition of product k to be on time. 
Equation (15) is the synthesized expression of Equation (14) and represents 
generally the post-optimality condition for OTD compliance, and is an extended 
interpretation of Equation (5b). If Equation (15) is not satisfied when respecting 
the FIFO scheduling principle, the OTD condition might be achieved by re-
scheduling the BL for product k according to a priority scheduling principle. 
Therefore, we can now enounce the generalization of the OTD Theorem: 

Third Corollary to the Theorem of General Production Requirements 
(Corollary of Post-optimal Backlog Waiting Time): 
Given is a B & Q push-based single workstation or a multi-workstation 
process. The necessary, but not sufficient condition to supply an arri-
val-order Ωk for product k with batch-size Bk complying with OTD can be 
generalized that the BWTk−1 has to be shorter than the inherent virtual elas-
ticity ΔTk of the manufacturing system reflecting the post-optimality range 
of the solution. 

Please note, this is only the necessary condition for OTD. If the capacity re-
quirement of Equation (5) is not given, only a weak solution is possible. To have 
a strong solution depends again on the capacity, i.e. the ER, hence the impor-
tance to model the ER. Equations (1) and (2) remain of central importance. The 
virtual elasticity is defined by the First Corollary to the Theorem of General 
Production Requirements [1]. The generalization just stated by the third corol-
lary is feasible, because the virtual elasticity ΔT contains the information of the 
OTD theorem. In the following, we will therefore put the attention on the BWT 
and how to model it. Please note that this implies that PLT and MLT remain 
constant. This can be assured by keeping WIP constant which is generally the 
case in SPF regimes, but has to be implemented for B & Q push systems 
(so-called CONWIP or generic pull systems). 

In this paper we will try to analyze the problem to set the post-optimal condi-
tions of maximum (or better to say upper limit) BWT while still observing OTD 
for mixed-product cells. We will apply the theory-derived findings of [1] to er-
godic and non-ergodic order arrival processes to comply with the OTD re-
quirement for mixed-production. It has to be noted again and explicitly that in 
lean JIT-managed pull production systems the problem of post-optimality does 
not exist. Indeed, the production is deterministically scheduled based on super-
market replenishment-pull. Nevertheless, the customer-order call-offs most 
probably are of non-ergodic characteristic. In fact, the supermarket de-couples 
demand and supply, which have different characteristics. Lean JIT-productions 
based on pull manufacturing principles are therefore asynchronous production 
systems and not, as often wrongly stated, synchronous. The TR imposes only the 
pace, but does not directly control the triggering! However, we will hereafter 
analyze the consequences of a stochastic OR to the production based on a classic 
Western push production such as represented by envisaged CPPS, which may 
continue to base mainly on traditional B & Q production systems. 

https://doi.org/10.4236/ajor.2021.113009


B. G. Rüttimann, M. T. Stöckli 
 

 

DOI: 10.4236/ajor.2021.113009 155 American Journal of Operations Research 
 

3. Developing Post-Optimality Conditions for Complying  
with OTD 

For solving the post-optimality conditions for on-time-delivery (OTD) com-
pliance we have to analyze the specific capacity, i.e. the ER of the process. For 
that we will distinguish different cases. The simple cases for an arrival order 
process of a single product (mono-product manufacturing) have been analyzed 
in [1]. In that case, the arriving orders could have been a single order to produce 
one product or a single order to produce a batch of identical products, but al-
ways the same product. Therefore, the logic is the same, because the products to 
manufacture are identical and has not to be distinguished, i.e. ( )1 ,kX tτ−  or 

kTT ; only the pace of manufacturing at the bottleneck would need to change, 
but this leads to the same solution space shown in Equations (1) and (2). It has 
to be remarked that general queuing theory only operates with the unspecified 
term “lot”. The CT may refer to a single piece or a batch, which would corres-
pond in our definition to MLT. In such a case, the transfer principle can only be 
batch-wise. Here, this simplification of non-distinction between single product 
and batch as well as batch or 1-piece transfer principle is not allowed. 

However, in the case of a product-mix the arrival orders Ωk have associated its 
type of product as well as the order quantity (batch-size Bk of the product k). In 
this paper, we will analyze two main cases: The first main case considers a mul-
ti-product manufacturing with stable deterministic product-mix resulting from 
an ergodic stochastic OR process. The second main case—increasing the com-
plexity of the problem—we have still a deterministic product-mix of OR, how-
ever with a non-ergodic order process. Indeed, only the composition of the 
product-mix may change, but not the number and type of products of the mix, 
i.e. we treat the arrival cases of a deterministically established product-mix. Fur-
thermore, we will distinguish the case of a single workstation and the case of 
several workstations grouped into a cell. 

3.1. The Case of an Ergodic OR Process with Deterministic  
Product-Mix 

3.1.1. The Simplest Case of a Single Workstation 
In this first case here, we analyze a single multi-product workstation. In such a 
case, the matrix of Equation (7) reduces to a row-vector with the deterministic 
product-specific manufacturing cycle times CTk of the k products on the ma-
chine m 

[ ] 1 2k k mm
CT CT CT CT= �                  (16) 

We assume that the order batch-size Bk for the product k is fix and time-invariant, 
however we will assume they are not equal, i.e. 1A B k kB B B B +≠ ≠ ≠ , and is 
passed as-is to the shopfloor. This is an important assumption, because we will 
not use a lean Heijunka-levelled scheduling to eliminate Mura (unevenness of 
Bk). Furthermore, we assume to have a fixed alternating sequence of the prod-
uct-mix (A, B, C, …, A, B, C, …), resulting then in 1

A B k kPIT PIT PIT χ−= = =  
(Figure 3). 
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Figure 3. Non-Heijunka pitch-leveled scheduling, however the scheduling is based on a 
repetitive fixed order of production sequence (with batch Bk of different, but fixed size). 
Then it results in PITA = PITB = PITC independent of Bk; ( )1 ,X tτ−  is the prod-

uct-independent inter-arrival time of orders. ( )1 ,k tχ τ−  is the generic product-specific 

inter-scheduling time of products. 
 

Due to the assumption of deterministic order-mix sequence, it results in this 
case that for the order inter-arrival time ( )1 ,kX tτ−  Equation (17) applies 

( )1 1
1

|

,
:

and therefore
k k k k

k m K

t PIT PIT
k

PIT WTT
χ τ χ− −

+ = = =∀ 
=

              (17) 

Equation system 17 leads to the important conclusion that ( )1
,: k m Kk WTTχ τ−∀ =  

or better said, they have to be 1
,: m K kk WTT χ−∀ =  . 

If the arrival rate ( ),X tτ  of Ωk respects the ordered WTT-composition, 
then the “between”-sample statistical-parameters of orders in the periodically 
recurring timeframe Δt WTT=  do not change and the arrival process of orders 
Ωk is ergodic, i.e. ( ) ( ) ( )1 2, ,X t X t Xτ τ τ= =  and X would be deterministic. 
Furthermore, the ( ),X tτ  of Figure 3 is the product-independent arrival rate 
of the single product arrival rates ( ),kX tτ , which symbolically we can 
represent as  

( ) ( ), ,k kkX t X tτ τ= ∑  

and specifically also (if 1k kPIT PIT +≠ ) 

( )1 1
kkχ τ χ− −= ∑  

The resulting average performance, intended as nominal ER of a mul-
ti-product workstation m, is given by Equation (18), which reflects the real av-
erage ER performance of the workstation in the timespan WTT. We can call it 
nominal, because characteristic of the cell. In this case the WTT product/cell 
characteristic is invariant. Equation (18) defines a norm on the capacity, i.e. the 
physical ER of a multi-product equipment 

( ) ( )
|

kk
m m

m K t WTT

B
E ER t WTT

WTT
λ

∆ =

∆ = =  
∑

           (18) 

The nominal ER of the multi-product workstation in Equation (18) assumes 
to produce repeatedly the same product mix with the same 1

kχ
−  for all products 

k. If the ergodicity in Δt periods of ( )1X τ−  does not apply, Equation (18) is 
not valid and has to be adapted (see the next main section). However, the instant 
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ER according to Equation (13) is always valid. Equation (18) is a nominal prod-
uctivity characteristic of a machine with a given product-mix. It is necessary to 
distinguish the average nominal exit rate ( )m WTTλ  in Equation (18) of a 
workstation, which we could apply for a rescheduled ergodic IR process in dis-
crete timespan, from the instant exit rate of product k (Equation (13)) repre-
sented by ( )k tλ  on the workstation. The distinction of nominal (which for a 
multi-product machine is an average) and instant ER is also applicable in the 
contingent situation of modelling deterministic specific order arrivals to reduce 
complexity of infinitesimal representation. In the following, we will try to give 
an algebraic representation and solution to a dynamic system. 

Furthermore, to calculate MLT we can rely on Equation (4). For a single 
workstation the distinction of SPF and B & Q vanishes and the MLT can be 
computed as 

k
k k k

k

B
MLT B CT

λ
= ⋅ =  

which reflects Little’s law for a single workstation, but at which has to be added 
the set-up time (ST). With the assumed fixed sequence of arrivals, the problem 
situation becomes deterministic. If the batch-size of the arriving orders is too 
unbalanced, i.e. a successive series of large batches, an alternation of scheduling 
large and small batches may help to become OTD compliant for all orders. 
However, arrival orders cannot always be influenced if a FIFO order processing 
is supposed. The BWT can be modelled generally by setting k kER λ=  resulting 

1
1 1

1
2 1

K
k

k k
k k

B B tBLBWT BWT ST
ER

λ
λ λ

−

−
=

  − ⋅∆
≤ → = + + 

 
∑        (19) 

The BWT of Equation (19) is composed of a “waiting” BL and a BL being 
currently in the course to be “worked down” usually called WIP where Δt is the 
time already elapsed the product k = 1 being manufactured. In a FIFO organized 
waiting queue, order Ωk for product k has to wait until the BL is worked-down. 
Notice that the BL-waiting term of Equation (19) shows only apparent similarity 
to Equation (1): indeed, Equation (1) is a OR/ER comparison during a certain 
time-span whereas Equation (19) is a BL/ER ratio computing the time needed to 
work down a BL. Please note that Χk are orders per time-unit; however λk are 
pieces per time-unit. A piece-specific “takt” would be given by k k kOR B X⋅= . 
However, if the order frequency Χk of Ωk is too high, the BWTk−1 may exceed the 
allowed ΔTk of Ωk to be supplied on time. Instead of applying the extended and 
analytical BWT according to Equation (19), we could use the nominal ER ac-
cording to Equation (18) approximating 

( )

1

1
1

K

k
k

k
m

B
BWT

WTTλ

−

=
− ≈

∑
 

3.1.2. The Case of a Manufacturing Cell with Several Workstations 
In this sub-section, we will analyze the post-optimality for OTD compliance for 
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an order arrival process with a defined product-mix manufactured within a sin-
gle manufacturing cell or transfer line (TFL) according to the matrix of Equation 
(8). We will omit in future “or TFL”, being ideally a cell a TFL process in minia-
ture. A manufacturing cell is the physical materialization of a process, which is a 
sequence of several logical steps (manual operations at workstations or machin-
ing operations on a workstation). The situation to be analyzed is described in 
Figure 4.  

In addition, we will suppose that a SPF is applied to the process. Indeed, ac-
cording to the just before enounced Corollary of Balanced Line by applying the 
de-bottleneck principles, it is generally possible to transform an unbalanced SPF 
with unequal CT (SP handling) into a perfectly balanced SPF with operations of 
equal CT. This allows calculating the MLT according to Equation (4). We will 
therefore analyze the case for a balanced SPF. Applying mathematical transfor-
mation by setting k km CT WC⋅ =  it is possible to write Equation (4) as 

( )1SPF
k k k kMLT B CT WC= − ⋅ +  

reflecting that MLT depends on the batch-size, cycle time, and work content. 
This shows very well, that it is not sufficient to reduce cycle times, and therefore 
also the work content, but also batch-size has to be reduced to shorten lead-time. 
And exactly this is the aim of pitch-levelled Heijunka-box of the TPS to reduce 
Mura (unevenness). If the sequenced product-mix of orders (the scheduling or-
der of the k products) remains stable in the time-dimension t, we have a perfect 
ergodic process. The instant ERk(t) of the cell for product k, which corresponds 
to the 1/CTmk of the cell or generally to the bottleneck workstation according to 
Equation (13), is valid also for a manufacturing cell. Due to the fact, that the 
products of a perfectly conceived cell follow the Linear Dependency Theorem, 
the bottleneck workstation is time-invariant. Indeed, due to the linear depen-
dency theorem the First Corollary to the WTT Aggregated Bottleneck Theorem, 
which states that the bottleneck becomes time-variant in a mixed-product man-
ufacturing cell, should not materialize in a lean conceived JIT cell. However, this 
will not be the case in a CPPS for a B & Q manufacturing system. The bottle-
neck-workstation of a multi-product multi-workstation cell (mixed-model) is 
defined by the before mentioned Theorem of Generalized Throughput (or  
 

 

Figure 4. General representation of a FIFO push-scheduled, but flow-based manufactur-
ing cell applying 1-piece transfer principle with m workstations manufacturing k prod-
ucts reflected by Equation (8) (adapted from [1]). 
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WTT-aggregated Bottleneck Theorem). This translates into an average exit rate 
E[ERk(t)] of the cell for the k products, representing the mid-term production 
capacity of the manufacturing cell, and therefore, depends on the WTTmK of the 
bottleneck machine, i.e. 

( ) [ ] { }|sup m K
m

k t WTTcell
E ER t E λ∆=    

Also in this case of increased complexity, the average exit rate [ ]E λ  of the 
cell will correspond to the ER of the bottleneck machine mλ  which at the in-
stant t is determined by the universally valid Theorem of Throughput (Bottle-
neck Theorem). The average exit rate of the machine [ ]mE λ  can be increased 
by reducing setup-time (ST) applying lean SMED technique (single minute ex-
change of die), because WTT contains the ST. However, to implement a perfect 
balanced SPF, the Tayloristic-splitting of CT would lead to an additional 
workstation, de-bottlenecking technique to be used in a constraint process, in-
creasing the column dimension m of matrix of Equation (8). 

Now, based on the nominal ER defined in Equation (18) for a single worksta-
tion, we can extend the departure rate norm applied to a manufacturing cell j. 
The nominal capacity of the cell results in Equation (20) 

( ) ( )
|

kk
j j

j K t CTT

B
E ER t CTT

CTT
λ

∆ =

 ∆ = = 
∑

            (20) 

where the cell turnover time (CTT) is similar to the WTT defined in Equation 
(3) and is the time to produce once the product-mix manufactured within the 
cell. The CTT allows defining within a complex multi-cell manufacturing system 
the bottleneck cell. The CTT is defined in Equation (21) where K denotes the 
number of different products manufactured in the cell j with m machines com-
posing the cell. For further information consult [2]. 

( )| |j K m k kk mCTT ST MLT= +∑ ∑                (21) 

Please note that in a multi-station cell not the process lead-time PLT of a sin-
gle product applies, but the MLT of the entire batch. Furthermore, the im-
provement potential exists to shorten the sum of ST starting already when the 
last piece of the batch has left the first workstation (during emptying set-up), or 
by parallelizing the ST. This leads directly to define an additional implementa-
tion principle: the Set-up Principle (after emptying set-up, during emptying 
set-up). To facilitate calculation, we will assume after emptying set-up principle 
(ST and MLT do not overlap, i.e. , 1m k km ST MLT+ ∩ = ∅∑ ).  

The post-optimal condition for the last order arrival Ωk for a cell with M ma-
chines (workstations) has to obey to the virtual elasticity Equation (15) where 
BWT can be approximated to Equation (22), which is similar to Equation (19) 

( ) ( )
1

1 | 1
2 1

K M

k m k k
k m

BLBWT BWT t ST MLT mlt t
ER

−

−
= =

 ≤ → = + + 
 

∑ ∑        (22) 

where the lower case writing of MLT shows that the WIP status of the process 
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progress depends on the instant t and therefore ( )1 1mlt t MLT<  results de-
pending on the arrival-instant of the order Ωk. The index k represents here the 
orders of products and not the number of products defining the mix. We leave 
to the interested reader to develop the analytic expression of mlt(t). Again, 
Equation (22) is an approximation; indeed, the next order may not wait until the 
last piece of the batch has left the last operation, but will enter the cell as soon as 
the last piece has left the first operation and the set-up of the first machine has 
been completed (during emptying set-up principle). This is less important in 
manually operated cells than in automatic high performance FMS TFL. 

3.2. The Case of a Non-Ergodic OR Process with Deterministic  
Product-Mix 

3.2.1. The Case of a Single Multi-Product Workstation 
The before analyzed cases of product k-ordered arrival and input-sequence of Ωk 
is an artificial assumption for non-JIT productions. Now in this case we analyze 
the more realistic situation of random arrival of orders ( )k tΩ  of the different 
products of non-ergodic characteristic. However, we will maintain the fixed 
batch-size for every specific product of the still deterministic product-mix. This 
simple assumption at least allows to maintaining the important concept of WTT 
also for non Heijunka-levelled cells (or single workstations). Nevertheless, if the 
virtual elasticity ΔT is large enough (i.e. ΔT > WTT) the possibility exists to re-
schedule the random order entry by sequencing the input rate (IR) into the 
shopfloor according to the WTT composition to approach an ergodic process for 
the IR for timeframes ΔT > WTT. This important property leads directly to 
enounce a new corollary 

Forth Corollary to the Theorem of General Production Requirements 
(Corollary of Ergodic Backlog Rescheduling):  
Given is a non-ergodic OR with a deterministic product-mix manufactur-
ing. If the virtual elasticity ∆T is large enough (ΔT > WTT), in certain cases 
the possibility exists to transform the non-ergodic OR in an ergodic IR with 
a defined scheduling sequence, trying at least to approach perfect ergodici-
ty. 

However, the resulting rescheduled IR may constitute only a weak solution for 
OTD compliance. The conditions to have a strong solution is given by the tau-
tological Equation (23) 

lim
k

k

T WTT

T
WTT∆

∆
= ∞

�
                        (23) 

On the other hand, the ergodic process characteristic is important in order to 
have an ergodic output performance, i.e. to approaching a deterministic perfor-
mance according to the nominal ER of Equation (18). Furthermore, the deter-
ministic product-mix allows to keeping the CT-vector representation of Equa-
tion (16). This will not be the case in CPPS with stochastic product-mix, because 
the CT-array cannot be defined in advance. The rescheduling to obtain an er-
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godic process corresponds to the concept of Toyota’s Mura reduction. Now, for 
the BWT of Equation (19), the index k − 1 is the rescheduled order of the IR. 
The verification for OTD has to be done for each product in the BL to satisfy 
Equation (15). As the forth corollary states, we are in presence of a weak solu-
tion, because it may suit only for some product-orders. In this case a further re-
scheduling may be applied although loosing ergodicity. In that case, the nominal 
ER of Equation (18) is not valid anymore, as this is not representing adequately 
the actual system status. 

Generally, we have seen that in the case of a deterministic product-mix the 
ergodicity for the OR is not required, because the IR can be rescheduled if Δt is 
large enough. Under these assumptions, it would not be necessary to further 
analyze the OR characteristic and its repercussion on the ER and OTD. Howev-
er, we will analyze it in view of non-ergodic and non-deterministic product-mix 
performance, in the case that the just enounced Corollary of Ergodic Backlog 
Rescheduling may not apply for the IR, because we have a non-deterministic 
product-mix.  

In that case, the assumptions made in Equation (17) for the OR are not valid 
anymore, because the concept of PIT (deterministic interval) has definitely to be 
substituted with ( )1 ,kX tτ−  based on a stochastically variable interval. These 
circumstances lead to Equation (24) 

( ) ( ) ( )1
1 2: ,k k kk PIT t PIT t X tτ−∀ ≠ ⇒                (24) 

and therefore ,k m KPIT WTT≠  as well as ( ) ( )1 1
1, ,k kX t X tτ τ− −
+≠   

We are in presence of a non-ergodic arrival order process ( )k tΩ , or IR, when 
Equation (25) applies 

( ) ( )1 1
1 2: , ,k kk X t X tτ τ− −∀ ∆ ≠ ∆                   (25) 

i.e. the inter-arrival times τ show a non-constant distribution in the time dimen-
sion t. If we apply the concept of norm on the capacity defined in Equation (18) 
to a single multi-product workstation with a deterministic product-mix, but 
stochastic arrival of orders ( )k tΩ  the situation gets complicated. In fact, we 
cannot talk anymore about a nominal capacity of the workstation according to 
Equation (18), because the real ER of the workstation becomes highly non-ergodic 
itself, which we could represent as (Equation (26)) 

( ) ( ) ( )*

|

,
,k kk

m m k
m K t WTT

B t
E ER t WTT

WTT
λ

∆ =

Ω
∆ = = Ω  

∑
        (26) 

Nevertheless, due to the non-ergodicity it is necessary, and thanks to the 
WTT, it is possible to talk of a pseudo-nominal ER (or pseudo-mean capacity) 

( )* ,m k WTTλ Ω  due to the presence of the WTT in the denominator of Equation 
(26) whereas the batches Bk of different products k in the nominator depend on 
the orders ( )k tΩ  in the time period Δt = WTT. If compared to Equation (18), 
Equation (26) allows assessing the nominal gain or loss in capacity due to mix 
variation. The real, stochastic changing, mean ER is shown in Equation (27), 
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which has also the real orders ( )k tΩ  in the denominator during the considered 
timespan Δt; the ER itself in the subsequent timespans Δt becomes non-ergodic 
and is a function of Bk and t 

( ) ( )
( ) ( )

,
,k kk

m m k
k k k kk t

B t
E ER t t

ST CT B
λ

∆

Ω
∆ = = Ω ∆   Ω + ⋅

∑
∑

      (27) 

The real ER in the instant tk of the order ( )k tΩ  is determined according to 
Equation (13) by the CTk of the product k (Equation (28)) 

( ) ( ) 1
k

m k m kt
k

E ER
CT

λ Ω = Ω =                   (28) 

We can therefore talk about an instant real ER (Equation (28)) which reflects 
Equation (13), an average real ER (Equation (27)), and a pseudo-nominal ER 
(Equation (26)). The nominal ER according to Equation (18) exists also for 
non-ergodic processes, but will realistically not materialize. As already stated, 
the pseudo-nominal ER of Equation (26) (with equal timespan corresponding to 
WTT) could be used to evaluate comparatively the ER of the workstation for 
several instants based on the actually produced product-mix. 

Now, to be OTD compliant, Equation (15) has to be satisfied in any case, 
which is generally valid also for non-ergodic arrival processes. Due to the appli-
cation of the product-specific ERk, which is λk, Equation (19) is independent of 
the ergodic process characteristics and, therefore, is also valid in the case of 
non-ergodic processes. 

3.2.2. The Case of a Manufacturing Cell 
Also for a deterministic product-mix manufacturing cell, defined according to 
Equation (8) and represented by Figure 4, the just enounced 4th Corollary to the 
Theorem of General Production Requirements (Corollary of Ergodic Backlog 
Rescheduling) applies. However, as we have just seen, the ergodicity is not ne-
cessary to comply with Equation (15), because Equation (15) has to be satisfied 
for all processes in order to be on time. Therefore, the post-optimal condition 
for OTD compliance of an order Ωk is also given for a non-ergodic arrival 
process (order intake) by Equation (22). We can therefore enounce the 

Lemma to the Third Corollary of the Theorem of General Production 
Requirements (Lemma to the Corollary of Post-optimal BWT), the 
Lemma of Ergodic-independent Validity: 
The necessary condition ( )1k kBWT t T− ≤ ∆  for OTD is generally valid, in-
dependent of the character of order arrivals, i.e. deterministic, ergodic, or 
non-ergodic. 

The equivalent ER to Equation (26) (ER valid for a single workstation) for a 
multi-product manufacturing cell j is  

( ) ( ) ( )*,
,k kk

j j kt
j k t CTT

B t
E ER t CTT

CTT
λ

∆
∆ =

Ω
  = = Ω 

∑          (29) 
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Equation (29) gives the pseudo-nominal ER of the cell. We call it “nominal” 
due to the presence of the CTT in the denominator, and “pseudo”, because in 
the nominator may not appear the corresponding batches of the CTT prod-
uct-mix in the timeframe CTT. It is highly improbable to have in a non-ergodic 
order intake regime the materialization of the nominal ER, but not impossible. 
Due to the application of the just enounced Corollary of Ergodic BL Reschedul-
ing, the possibility exists of rescheduling the orders for shopfloor release if the 
virtual elasticity is high enough approaching Equation (23). The desired charac-
teristic of ergodicity translates into Toyota’s Mura, i.e. reducing unevenness.  

However, the average real ER of the cell in the generic time span Δt derived 
from Equation (27) is given by the real orders also in the denominator leading to 
Equation (30)  

( ) ( )
( )

( )
( )

( )

,

,

k k kk k
j t

k kk km kt k m t

j k

B t B n
E ER t

MLT ST MLT

tλ

∆
∆

∆

Ω
  = =  Ω +

= Ω ∆

∑ ∑
∑ ∑ ∑     (30) 

From the denominator it is evident that Equation (30) implies the after emp-
tying set-up principle to change the set-up of the workstations (machines) from 
product batch k to k + 1 where m are the machines in the cell. The MLT is cal-
culated according to Equation (4) for a SPF. However, Equation (30) is generally 
valid and therefore also for an entire batch transfer principle, or for a n-piece 
transfer principle with obvious different calculation of MLT [2]. Please note that 
an unfortunate mix-shifted product-mix may deteriorate the intrinsic nominal 
ER of the cell reducing the profitability potential, or increasing the profitability 
in the case of a favorable mix-shift. The key parameter is therefore not the ER in 
terms of manufactured pieces, but the generated margin contribution (MC) per 
time unit. Indeed, the industrial logic has changed from MC per piece to MC per 
time. However, this is another topic.  

With the definition of normed ER we can now generalize the first condition 
5a of Equation (5) by setting 

( ) ( )j k k tt
E ER E OR

∆∆
   Ω ≥ Ω                   (31) 

Equation (31) is generally valid and can be rewritten by emphasizing the dis-
tribution of orders as 

( ) ( ),j k k tt
E E X tλ χ τ

∆∆
  ≥                      (32) 

If the necessary condition of Equation (15), i.e. ( )1k kBWT t T− ≤ ∆ , is res-
pected, then Equation (32) stresses the distribution of arrivals and the capacity 
requirement for OTD compliance. For a strong solution, Equation (32) is subject 
to the Second Corollary to the Theorem of General Production Requirements 
(Corollary of Strong and Weak OTD Solution) regarding the distribution of ar-
rivals [1]. 
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4. Outlook for Complex Manufacturing Systems 

A complex manufacturing system (multi cell manufacturing) is a production 
system where different products are manufactured in several manufacturing cells 
or dedicated shopfloor departments (jobshops) producing a complex component 
or a final product. The multi-product cells may constitute different stages of the 
manufacturing process with increasing value-add content supplying a backbone 
TFL or being part of a graph-based organized shopfloor. We can therefore dis-
tinguish between a product-structured inter-linked cellular manufacturing and a 
manufacturing with a generic complex layout. 

For the inter-linked cellular manufacturing there is no further complication 
due to the presence of Kanban-managed supermarkets decoupling the various 
manufacturing cells. The manufacturing cells are managed autonomously solely 
triggered by the withdrawals of the products (components) out of the super-
market. The backlog is limited by the production Kanbans in the Heijunka level-
ling box. The supermarket is a proof that lean JIT manufacturing is not a syn-
chronous system—it bases on asynchrony by decoupling supply from demand. 
However, JIS manufacturing systems are synchronous systems where the 
supply-cell is synchronized with the final assembly line (demand scheduled). By 
the way, the logic of Toyota’s complexity reducing cell-fractional manufacturing 
has already been applied long time before by Roman emperors to govern com-
plex territorial systems known as “divide et impera”. Therefore, there is no need 
to further analyze the dynamic of lean JIT manufacturing systems. 

However, a graph-modelled complex shopfloor which manufactures not only 
a single component, but a finished product has the task to control autonomously 
interacting, intelligent single objects (workstations, AGVs, components) along 
the whole flexible manufacturing path. Further challenges may arise regarding 
performance in terms of ER, MLT, and OTD in non-optimally conceived CPPS, 
trying to solve the quest of the optimal manufacturing process in its entirety. 
Nevertheless, the new Lemma of Ergodic-independent Validity extends the ap-
plicability of the Corollary of Post-optimal BWT also to CPPS; this will be very 
important for OTD dynamic rescheduling. In addition, the here defined norm 
on the ER will allow the analysis of the performance of CPPS with its high 
non-ergodic commercial order characteristic. The OTD corollaries stand at the 
base of the predominantly B & Q driven CPPS trying to comply to customer 
OTD. JIT manufacturing systems guarantee intrinsically OTD, hence the supe-
riority of the cell-fractional “divide et impera”-model allowing pull-JIT manu-
facturing. This tricky, but interesting topic of CPPS will be addressed in a later 
paper. 

5. Conclusion 

We have seen that the traditional Western large B & Q manufacturing combined 
with OTIF deliveries can compromise the OTD requirement for other products. 
However, the TPS JIT pitch-based pull-manufacturing has solved this problem 
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for a deterministic product-mix. In this paper, we set the necessary and suffi-
cient conditions to generalize the OTD theorem for a deterministic product-mix. 
The Third Corollary to the Theorem of General Production Requirements (Co-
rollary of Post-optimal BWT) giving only the necessary, but not sufficient condi-
tion for OTD has induced to define a normed ER to derive also the sufficiency 
condition for OTD in different production regimes. The norm has been defined 
for various “objects” (such as single workstations or manufacturing cells in 
presence of ergodic and non-ergodic order regimes) resulting in a space of 
normed nominal capacities which completes the Corollary of Post-optimal BWT 
with the sufficiency condition for OTD according to Equation (5). This allows 
structuring the generic manufacturing term ER (called departure rate in queuing 
theory). These findings are important, because gaining a rational law-based Car-
tesian insight into the theory of general OTD requirements for queued manu-
facturing systems also in view of future CPPS, allowing limitless product custo-
mization. As demonstrated, the virtual elasticity applies also for a mixed-product 
manufacturing with deterministic product-mix, independent of the ergodic or-
der-arrival characteristic as the new enounced Forth Corollary to the Theorem of 
General Production Requirements (Corollary of Ergodic BL Rescheduling) states. 
However, if OR processes are highly non-ergodic and show a non-deterministic 
product-mix, such as envisaged by Industry 4.0-type CPPS, the findings such as 
the new enounced Corollary of Ergodic BL Rescheduling as well as other conclu-
sions elaborated in this paper may not be applicable and may need to be revised. 
This has to be further investigated. Nevertheless, the result of this paper gives in-
sights into the manufacturing “physics” in presence of different commercial or-
der-arrival characteristics and shopfloor implementation principles. It allows 
understanding the behavior and calculating the performance of a simple 
cell-type manufacturing system without computer simulation. And finally, the 
hypothesis of extended conditions for general OTD compliance has been proven 
in a deterministic product-mix push manufacturing environment.  
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