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Abstract 
Respecting the on-time-delivery (OTD) for manufacturing orders is manda-
tory. This depends, however, on the probability distribution of incoming or-
der rate. The case of non-equal distribution, such as aggregated arrivals, may 
compromise the observance of on-time supplies for some orders. The pur-
pose of this paper is to evaluate the conditions of post-optimality for stochas-
tic order rate governed production systems in order to observe OTD. Instead 
of a heuristic or a simulative exploration, a Cartesian-based approach is ap-
plied to developing the necessary and sufficient mathematical condition to 
solve the problem statement. The research result demonstrates that increasing 
speed of throughput reveals a latent capacity, which allows arrival orders above 
capacity limits to be backlog-buffered and rescheduled for OTD, exploiting 
the virtual manufacturing elasticity inherent to all production systems to in-
crease OTD reliability of non JIT-based production systems. 
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1. Introduction 

According to the production-specific SPQR axiom, which addresses the obser-
vance of business requirements of speed, punctuality, quality, return [1], the ob-
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servance of on-time-deliveries (OTD) for customer orders is compulsory to have 
a viable and sustainable business model. Punctuality and quality are at the centre 
of customer satisfaction. Many operational excellence projects are targeted to 
increase OTD, hence the importance of this topic. Therefore, directing the re-
search attention to the requirements and conditions to observe OTD generally 
for all types of production systems by applying a structured Cartesian view of the 
topic is essential [2].  

Just in time (JIT) production systems are mainly taktrate (TR)-governed manu-
facturing systems with SD[TR] = 0 where SD denoting the standard deviation 
and TR representing the pace of ordering. The necessary and sufficient condi-
tions for a TR-governed manufacturing system to observe OTD is given by the 
Equation system 1 [1] 

{ }: inf
:

i

Z

i ER TR
Z PLT EDT
∀ ≥


≤
                       (1) 

The first condition for OTD requires that the capacity is sufficient—capacity 
given by the exit rate (ER) which is determined by the smallest ERi of each 
process step. The ER has to be large enough to process the arriving orders ex-
pressed by the taktrate (TR). The second condition to be observed requires that 
the process lead-time (PLT) is shorter than the customer’s expected delivery 
time (EDT) confirmed at the moment of the ordering. Having a TR-governed 
production system with a deterministic call-off characteristic of production or-
ders within a defined timespan, we can assume an even spreading of incoming 
orders within this timespan. With spreading we intend here the time-dimension 
of distribution. 

For non-deterministic order-based JIT production systems, or more generally, 
for batch& queue (B&Q) production systems based on a push manufacturing 
principle—which is a manufacturing system modus operandi usually applied in 
the case of erratic order entry—Equation (1) has to be modified. Indeed, the or-
der arrival rate is stochastic and we should not talk any more about a TR, but 
about an order rate (OR) with the characteristic of SD[OR] > 0. To observe OTD 
in this case, the more general Equation system 2 is valid 

[ ]
{ } [ ]

for : 0

: inf
:

i

Z Z

SD OR

i ER E OR
Z BWT PLT EDT

>

∀ >


+ ≤

                    (2) 

The variable OR will sometimes exceed ER, and therefore according to the Theo- 
rem of WIP build-up a work in progress (WIP) stock at the process entry point 
Z which we will name backlog (BL). Usually the production order input rate (IR) 
to the shopfloor is reduced to match the ER, i.e. IR = ER. The production system 
to be modelled is schematically shown in Figure 1. 

The customer visible time (CVT) will therefore comprise the PLT plus the 
WIP-generated backlog waiting time (BWT) which has to be shorter than EDT; 
for simplicity reason, we are not considering the shipping time, which is not an  
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Figure 1. Production system with variable OR forming a BL if OR exceeds ER. 

 
issue of manufacturing. Equation (2) is directly derived from the following im-
portant theorem, the Theorem of General Production Requirements or OTD 
Theorem, which sets the necessary conditions for OTD [1]: 

Theorem of General Production Requirements (or OTD Theorem): 
The necessary and sufficient conditions to supply a customer with OTD, i.e. 
with the right quantity at the right time, is that first the capacity require-
ment and second the lead time requirement have to be satisfied simulta-
neously, independent of the applied transfer principle, i.e. SPF or B&Q. The 
capacity requirement is given by the Corollary of Weak WIP Stationarity 
and the lead time requirement necessitates that MLT plus BWT is shorter 
than EDT. 

As mentioned in the OTD theorem, it would be more appropriate to talk 
about MLT (Manufacturing Lead Time) instead of PLT, which indicates the 
timespan one single piece needs to transit the process. The MLT comprises the 
lead time to produce the entire batch B(n) with the transfer principle of n pieces, 
i.e. when the first piece enters the process and the last piece of the batch leaves 
the process. In Western production systems, with its dominant batch-culture 
and B&Q production systems making the lion’s part, the difference between 
MLT and PLT can be considerably big. The application of the MLT metric will 
be mandatory in multi-product manufacturing systems where order-batches of 
different products are produced and have to be delivered again on time as whole 
batches to the customer. In this introductory paper of conceptualization regard-
ing post-optimality for OTD we will refrain from considering batches and will 
therefore view each order as a single product to be delivered. 

These are the general, theorem-based requirements to observe OTD. Howev-
er, such as Equation (1) for the TR, also Equation (2) for the OR applies the dis-
crete Poissonian view of average occurrences per timespan represented by λ. If λ 
is an average, the same average can be the result of different distributions of the 
phenomenon to be modeled. The two extreme distributions are on the one hand 
the ideal situation of the even spreading over time of occurrences with constant 
inter-arrival time (TR-like) and on the other hand the bulk occurrence, i.e. the 
verification of concentrated arrivals. In this context we rather prefer the word 
spreading instead of distribution, indicating the focus on the random sequence 
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of arrival orders (or the sequence of changing patterns which would lead to a 
non-ergodic process) in the time-dimension t of the distribution τ of the sto-
chastic variable x(t). However, we use the appropriate word distribution to cha-
racterize the sequence-independent view of arrival orders represented by the ag-
gregated shape of the inter-arrival time ( )1x tτ −=  of the random variable. If 
the process is ergodic, it is not necessary to make this difference because the 
process is time-invariant. It seems to be clear that in the case of an ideal situation 
of even arrival sequence of orders, Equation (1) can be observed theoretically 
depending in reality only on the characteristics of underlying manufacturing sys-
tems to transform efficiently “order arrivals” into “product deliveries”. However, 
if the arrival spreading of orders is aggregated (bulk arrivals), the instantly needed 
capacity is not enough to process all the orders at the same instant forcing them 
to be queued and compromising eventually the observance of OTD. This is true 
even though the average condition of Equation (2) may be observed. Indeed, 
whereas usually the constant ER for a mono-product manufacturing system al-
ways presents an even deterministic spreading over time, this might not be the 
case for the OR. In the case of non-deterministic arrival rate the question now is, 
in which post-optimal range of a non-evenly time-distributed OR, Equation sys-
tem 2 will be observed. 

The treated topic is complex and until presently it has not yet been investi-
gated although queuing theory application is wide-spread. In fact, the findings 
have far-reaching implications in production economics and manufacturing 
theory as well as optimization under uncertainty. Therefore, this paper does only 
have introductory character. The complex character of the topic requires a swing 
back to basic theory. This entails rather a didactic connotation of the presenta-
tion and might be seen as an unnecessary step in scientific papers. However, in 
this context for sure it increases understanding of the whole topic allowing to 
reaching a larger readership.  

In the following, we will use for the solution finding a new production ma-
thematics’ reasoning based on a Cartesian scientific approach [1] [2], which is 
a theory-cognitive foundation allowing to understand the behavior of a produc-
tion system instead of explore the behavior via solution-oriented discrete dy-
namic simulation techniques. This Cartesian approach is a didactically sensible 
extension to today’s still heuristic-cognitive based production-theory teaching. 

2. A Little Bit More Theory 

Let us have a closer look at two important production topics, on the one hand 
the production capacity and on the other hand the manufacturing elasticity. We 
prefer to call it manufacturing elasticity and not production elasticity in order 
not to confuse it with the economic output elasticity. In this paper, we are expli-
citly not interested in the topic of production flexibility, i.e. the capability to 
transform different type of products resulting in a high mix variability. Not be-
cause this topic is not of importance, on contrary, however, because it adds a 
further complexity to the problem statement, which is a variable ER instead of a 
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deterministic ER with a mix-specific distribution. Indeed, the concurrent opti-
mization of two target functions, such as elasticity and flexibility, is a problem of 
Pareto efficiency [2] [3], multivariate-type of problem optimization, which 
would only increase the complexity of this paper. 

Production capacity defines the amount of products, or generally, the volume 
of produced items, which a certain production infrastructure can transform 
from raw materials or components into intermediate or finished goods. The ex-
pressions throughput or exit rate (ER) define the concept of capacity figurative-
ly. The concept of production capacity is directly linked to the concept of bot-
tleneck, modelled in Equation (3) 

{ }sup
1

b i

b
b

CT CT

ER ER
CT

 =

 = =


                       (3) 

which is a mathematical representation directly derived from the following Theo-
rem of Throughput [1]. This theorem unequivocally defines the concept of bottle-
neck  

Theorem of Throughput (or Bottleneck Theorem): 
Given is a sequence of production steps with each process step having a de-
terministic, but different cycle time CT. The maximum throughput, i.e. the 
maximum exit rate ER, of a process is given by the slowest process step, i.e. 
the process step with the longest cycle time CT; this process step is called 
bottleneck. 

The ER is a performance concept, defined as number of pieces per time unit 
and represents the productivity of the process constituting the nominal specific 
capacity. The absolute production volume V is given by the timespan t the ER is 
applied, i.e. V ER t= ⋅ . The production capacity is therefore also a concept of 
the applied work shift regime. 

Manufacturing elasticity, however, deals with the cost of a variable production 
regime subject to load changes for the quantity to be produced. Usually, produc-
tion capacity is defined for an optimal volume range, production minimum giv-
en by the long-term minimal economic sustainable production level VBEP, i.e. by 
the break-even point (BEP). In this paper we are not primarily interested in the 
BEP, but rather in the concept of insensitivity to cost change for various produc-
tion level regimes. The BEP is a function of fixed cost Kfix of investment depreci-
ation as well as fixed operating cost (Equation (4)) 

( )BEP : fix

v

K
V

p k V
=

−
                       (4) 

where p is the price and kv(V) represents the variable unitary specific cost. 
Therefore ( ) ( )vm V p k V= −  is the margin contribution per unit sold. Please note 
that the variable cost show in reality a variable unitary characteristic with cubical 
exponent in function of increasing production volume V due to inefficiencies at 
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low volume and increased expenses for additional shifts. Moreover, the produc-
tion volume where the variable cost kv are minimum is given by 

{ } ( ){ }{ } { } ( )min min
d: min 0

dv vv vk kV V k V V k V
V

 
= → = 

 
 

This leads to a non-linear model with an optimal finite operational produc-
tion level Vopt above the BEP and not in the infinite like a linear model would 
suggest. The optimal production level is the associated production volume where 
the marginal price decrease equals the marginal variable cost increase 

( ) ( )d d:
d dopt vV V p V k V

V V
 

= = 
 

 

or 

( ) ( )( ){ }{ } ( )( )d: max 0
dopt v optV V p V k V V V m V V
V

 
= − ⋅ → ⋅ = 

 
 

In addition, it is evident from the equation that the optimal production re-
gime Vopt is not at the volume level where kv(V) is minimal, but where the mar-
gin m(V) is maximal, i.e. marginal cost equal marginal price (Figure 2, right side). 
Please note that in reality also the price p might be a function of volume V re-
sulting in p(V). However, the average specific cost are based on the full costing 
model divided by the production volume (Figure 2, left side). 

The “art” of maximizing manufacturing elasticity is therefore not reduced to 
the problem of minimizing investment in order to lower the BEP, but to have an 
extended range of volume with reduced kv(V). How industry 4.0-type produc-
tion system, allowing batch size one (one-offs), will solve this contradiction, is 
left out in this paper. However, this is very important. Because to define correct-
ly elasticity of production we have to distinguish two different elasticities: we can 
call it improperly the average elasticity based on a full costing model and the 
classical is the marginal elasticity based only on variable cost. Please note that  
 

 
Figure 2. Didactic break-even model (left side) vs. realistic BEP model (right side) showing the basic differences adding also the 
average specific full cost (left side) as well as marginal unitary variable cost and price (qualitative representation). 
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the rarely precisely defined word elasticity in production theory of manufactur-
ing, if ever defined, is intended of having low sensitivity of cost change to vo-
lume change { }min k Vε = ∂ ∂ . However, nota bene, this corresponds in eco-
nomics to inelasticity. In production theory elasticity has a different meaning. 
Production systems with high elasticity allow the usage of the equipment over a 
large production volume range without significant cost changes. Elasticity is 
linked to the kind of invested equipment and work shift model. Nevertheless, 
automation generally comprises high investment increasing BEP and therefore 
lowering, i.e. worsening the average elasticity, presenting a high average elastici-
ty only in the high volume range (Figure 2, left side); this confirms the fact that 
high investment are not apt for low volume production. However, high invest-
ment do not affect marginal elasticity depending only from variable cost or, if 
ever, due to lower specific variable cost, even increases marginal elasticity. It is 
very important to keep in mind this behaviour for future investment in automa-
tion. If an appropriate investment will allow a high marginal elasticity it will de-
pend on the specific investment, which reduces the employment of blue-collar 
workforce, mainly responsible for the non-linear shape of the variable cost 
curve. Therefore, high investment in automation allows to approach the linear 
didactic break-even model. Solving the enigma of how to obtain a high elasticity 
corresponds therefore to the quest of solving “the squaring of the circle”. This 
leads directly to enounce the: 

Theorem of Optimal Production Range (or Limited Elasticity Theorem) 
Given is a production system characterized by fixed cost Kfix and non-constant 

specific variable cost kv(V) in function of production volume. The marginal elas-
ticity is the insensitivity of variable cost in presence of changes in production 
volume. Due to the variability of the specific variable cost, the optimal manufac-
turing elasticity is confined within a limited range around minimal cost volume 

{ }min vkV  and with economic meaningful extension towards the volume around 
the optimal production level Vopt. 

Therefore, this theorem reveals that the exploitation of optimal manufacturing 
elasticity is not only a function of cost, but also of revenue. It is directly linked to 
the Postulate of Incompatibility (or Flexibility-Elasticity Contradiction Post-
ulate) enounced in [2] stating the impossibility to have at the same time a high 
flexible and a high elastic production system under realistic conditions (i.e. with-
out near-infinite investment in production machinery which eliminates the ne-
cessity of blue-collar workforce). In any case, this would result in a low average 
elasticity and a high marginal elasticity. In the following, we will assume  

[ ]ER E OR≈  where ER stands at the base of the optimal operational level in 
order to comply with the just enounced theorem. 

3. The Paradoxon of the Mean 

We are used to apply statistical parameters, especially such as the mean value, 
everywhere we have to describe synthetically the characteristic of a physical or 
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social phenomenon. The mean is the average or better the expected value of a 
stochastic data set of a random variable X, represented with E[X]. Moreover, 
many think that the mean is a good representation of this random variable X 
and don’t further care about the dispersion of the data around the mean de-
scribed as the variance Var[X] or the standard deviation SD[X]. However, the 
“mean” does not exist physically, but is basically an artificial value—a “fiction” if 
you want—derived from a dataset of variable X with a mathematical description 
(the first statistical moment). In fact, a random variable is usually represented by 
its real distribution. Generally, statistical parameters are not sufficient to define a 
distribution unequivocally [4]. 

Let us suppose a random process ( ),OR X tτ=  with an average arrival rate 
of call-offs (representing potentially immediate executable manufacturing or-
ders) E[OR] of λ = 12 orders/day during a certain timeframe t and that the sup-
plier has agreed with the customers to respect a commonly accepted EDT. These 
12 orders per day might already be an average scale down from 60 weekly or-
ders. We are used to transform weeks in days, days in hours, or even hours in 
minutes for high performance lean-takted lines or paced manufacturing cells, to 
bring it to shopfloor cycle time (CT) dimensions shown in Equation (5) which 
looks logic and apparently not questionable. 

12 day 1.5 hλ = =                          (5) 

with 8 working hours/day 
The mean is an interesting parameter because it is a so-called non-biased es-

timator of a sample statistics for the population with a reduced SE of the mean  

given by [ ]
X

E X n
σσ = . Nevertheless, Equation (5) makes implicitly an important 

simplification of an even distribution of the order arrivals. 
If we are bringing the average consideration of 12 orders/day to a proportion-

al value of 1.5 order/h, we imply an even uniform spreading of arrivals over the 
time span of one day, which could be represented again by a TR. Then this TR 
can be approximated to a “deterministic” ergodic process. With an OR of 1.5/h, 
most probably, it is potentially possible to fulfill the OTD theorem of Equation 2 
for all orders. It will, however, most probably not be possible to fulfill it with the 
mean logic of considering E[X] = 12/day, because it depends on the underlying 
order arrival distribution X. Indeed, for a potential bulk arrival of all 12 orders 
within one hour, only for some of the first orders of the bulk OTD may be res-
pected, but not for all orders. This leads directly to the apparent paradoxical 
contradiction 

12 day 1.5 hλ = ≠  

Therefore, we can generalize and let evolve the attention catching title of this 
section “Paradoxon of the mean” into the more appropriate statement “para-
doxon of proportions”. While an infinitesimal approach applied to the distribu-
tion would not rise any concern, the so often applied discrete view, using for 
simplification an average approach based on the mean, however, may become a 
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concern—in certain cases. 
Indeed, we have to analyze the arrival process by taking into account its real 

distribution. Therefore, we will look at the OTD performance of a defined pro-
duction system under different arrival random variables. For this purpose, we 
define the following queuing system taking alternative arrival processes into 
consideration. We consider a M = Markovian (i.e. exponential), U = uniform 
(even), N = normal distribution, and D = deterministic according to Dirac’s 
δ-function, all distributions with the same mean inter-arrival time E[τ(OR)] = 
1/λ where τ(OR) denotes the inter-arrival time of the order rate distribution. In 
our example 1/λ = 0.66 h. Furthermore, let us take a deterministic D characte-
rized server process, with only a single server, which in our case is a machine or 
workstation (no parallelization of processing capacity) and unlimited buffer ca-
pacity b, queuing system formalized as 

( )/ /1/
: , , ,
i

i

X D
X M U N D

 ∞


=
 

If the machine s is not a single stage server but a process, we get the case of a 
manufacturing process. Let us compare EX[τ(OR)] = 1/λ of the four arrival rate 
distributions X to the deterministic CT of the workstation or the CTb of the bot-
tleneck of the process, which determines the ER of the process, supposing to be 
CTb =1/λ. The distributions M, U, N are shown in Figure 3. 

The probability of symmetric distributions PX (the third statistical moment is 
µ3 = 0) for shorter or longer arrival intervals than the cycle time of the bottleneck 
is intrinsically given by the definition of the mean (and median) and equals 0.5. 
The random variable X stands for the four specific distributions and PX is the 
cumulative distribution function (i.e. it is the integral of the probability density 
function pX of the arrival intervals). 

Nota bene, the OR cannot really be influenced and hardly a company decides 
to refuse an incoming order. Therefore, to maintain an efficient and lean manu-
facturing process, the input rate (IR) of the order release to the shopfloor will be 
adapted down to the existing ER capacity, with the consequence that orders ex-
ceeding instant capacity will become backlog (BL) and therefore experience a 
BWT. This has not to be a concern—it is just a natural consequence of the ca-
pacity limit of the production line. However, OTD might be compromised. 
Nevertheless, this BL could then be rescheduled according to customer-specific  

 

 
Figure 3. Arrival probability density functions (exponential, uniform, normal) generated randomly by 1000 data points with the 
same mean EX[τ] = 1/λ and SDX[τ] > 0 where τ is the inter-arrival time of OR. 
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urgencies with different scheduling principles, for instance LIFO instead of FIFO 
or a preferential “VIP” scheduling might be applied to observe OTD. 

Now, transforming the Poissonian rate-view of the first condition of Equation 
2 into the Markovian time-view becomes 

{ } { } [ ]
1 1inf : supi i bER CT CT

E OR λ
= = < =  

We can therefore assume that for inter arrival times τ = 1/x longer than CTb 
(i.e. 1 1 bCx Tλ> = ) the first condition is observed, being possible to process 
immediately arriving orders if no WIP exists. On the other side, for the contrary 
with short arrivals (i.e. 1 1 bCx Tλ< = ), the capacity (i.e. ER) will not be 
enough to process the orders immediately. Indeed, according to the Theorem of 
WIP [1], the orders have to queue forming a WIP, which we call BL at the begin 
of the process, with a certain BWT.  

For the exponential distribution the probability PM(τ) of arrival times up to 
CTb and above CTb is given by the Equation system 6 

( )
( )
0 1 e

e

b

b

CT
M b

CT
M b

P CT

P CT

λ

λ

τ

τ

− ⋅

− ⋅

 ≤ ≤ = −


< ≤ ∞ =
                   (6) 

The Markov distribution is very interesting, because it is characterized by only 
one parameter λ. This reality-matching probability density function is often used 
to model queuing systems, covering partially also the bulk arrival characteristics. 
It has the advantage of an easy to calculate integral of the cumulative distribu-
tion function, not necessitating statistical tables, which makes it the preferred 
stochastic function to model queuing systems. Without showing the calculus, 
assuming [ ] 1bCT E τ λ= = , where τ =1/x then 

( )
( )
0 0.63

0.37
M b

M b

P CT

P CT

τ

τ

 ≤ ≤ ≈


< ≤ ∞ ≈
                    (7) 

meaning the probability of short inter-arrivals is higher than the long inter-arrivals 
above the mean, asymmetry which is typical of skewed probability density func-
tions. Again, without showing the calculus, the median results to be 

[ ] [ ]1 1ln 2E Eτ τ
λ λ

= < =�  

what demonstrates that the median is below the mean being 

[ ]( )
[ ]( )

0 0.5

0.5

M

M

P E

P E

τ τ

τ τ

 ≤ ≤ =


< ≤ ∞ =

�

�
 

Remember the median corresponds to the 50% percentile. This is an indica-
tion that the mean arrivals should not be applied for the first condition of Equa-
tion (2); the median of arrivals would be more appropriate, because the number 
of arrivals is relevant. If the order arrivals are not single orders but each order 
has an own batch-size of its own, the situation changes further. This situation 
has to be taken into consideration in the case of a multi-product manufacturing 
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system. In this case here, we can neglect this further complication which would 
require an adaptation of the OR and ER. 

For the uniform distribution, the probability PU(τ) of arrival times up to CTb 
and above (assuming τmax = 2CTb) is shown in Equation (8) 

( ) ( )

( ) ( )

max
max

max max
max

10 1 0.5

1 0.5

U b b

U b b

P CT CT

P CT CT

τ τ
τ

τ τ τ
τ

 ≤ ≤ = − ⋅ − =

 < ≤ = ⋅ − =


             (8) 

The uniform distribution is simple, but doesn’t reflect well the reality of arriv-
al rates. Nevertheless, through its simplicity, it is very easy to analyze the post- 
optimal conditions to observe OTD. 

The normal cumulative distribution function (we do not apply the better 
suited lognormal distribution for simplicity reason, although being conscious of 
non-existing negative arrival times) is shown in Equation (9). If we assume CTb 
= 1/λ we obtain 

( ) ( )
( ) ( )

1 0.5

0.5
N b

N b

P CT z

P CT z

τ

τ

 −∞ ≤ ≤ = −Φ =


< ≤ +∞ = Φ =
                 (9) 

where Φ(z), the standardized integral of the probability density function pN(τ), is 
a non-elementary function difficult to calculate 

( )
21

2

0

1: e d
2

z

z z
τ τ µτ

σ
− − Φ = = 

  π 
∫  

The symmetric normal distribution is made-up of two independent parame-
ters, the mean and the variance. We will conceive the variance as small as neces-
sary in order not to get negative arrivals. This parametric analysis of variance 
leads at the limit to Dirac’s δ-function 

( ) ( )2

0
lim ,N
σ

µ σ δ τ
→

=  

which we model as deterministic arrivals in the following with [ ] 0XSD τ = . For 
deterministic arrivals following Dirac’s δ-function, the probability density func-
tion is summarized in Equation (10) 

( )
( )
( )

0 0

0

D b

D b

D b

p CT

p CT

p CT

τ

τ

 ≤ < =


= ∞
 < ≤ +∞ =

                    (10) 

with ( ) 1D bP CT τ= < ∞ = . Being X in this case a deterministic arrival process, 
we can substitute the concept of OR with that of TR = λ for which the Equation 
(1) is valid building-up no backlog with no BWT. Assuming no saturation ef-
fects of the process, the production process will therefore be able to process all 
arriving orders on-time. This is the ideal case for a deterministic TR-based 
JIT-production system. As this case is deterministic, no post-optimality analysis 
is necessary, because the TR has to be forcedly below the nominal ER to have a 
sustainable solution. However, we will analyze the post-optimality conditions for 
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a non-ergodic type process within a restricted time-period for which the deter-
ministic OR is above the ER. 

4. Developing Post-Optimality Conditions to Respect OTD 

To analyze the post-optimality conditions to respect OTD we have to distinguish 
different cases. The simplest case is an arrival order process of a single product 
and stage-changing deterministic OR (“deterministically non-ergodic” process). 
A more general case, always based on a mono-product manufacturing line, as-
sumes the OR as a stochastic variable of ergodic process characteristic. For these 
two cases, the Second Corollary to the Theorem of Throughput (Corollary of 
Bottleneck Time-invariance) applies which states that the ER for a mono-product 
manufacturing line is time-invariant [1]. The most generalized case (not treated 
here) considers a multi-product line with stable product-mix or, increasing the 
complexity of the problem, with a variable product-mix of OR. In these mul-
ti-product cases the before mentioned Corollary of Bottleneck Time-invariance 
does not apply any more. We will concentrate in this paper on the first two cases 
of a mono-product manufacturing line and analyze the multi-product OR re-
gime in a following paper. 

4.1. The Case of a Non-Ergodic Process with a Time-Bound  
Deterministic OR above ER 

In our case, the post-optimality conditions are determined by the deviation of 
the OR from the nominal capacity of the production system, which, according to 
the Theorem of Throughput, is given for a mono-product manufacturing line by 
the deterministic cycle time CTb at the bottleneck. According to the OTD theo-
rem and Equation system 2, the solution space is also limited by EDT. Whereas 
OR < ER is not critical, OR > ER might become a concern. The post-optimality 
question is: what is the sup{OR} and the maximum timespan sup{Δt} of a tem-
porarily higher order-entry regime while still observing the second condition of 
Equation system 2. During the Δt the OR behaves like a TR. We are expressly 
writing sup{OR} and not using the diction max{OR}, because we are not in-
tending to maximize a target function, i.e. solving an optimization problem, but 
we are interested in the largest admissible value of the random-deterministic va-
riable OR. 

In this case of non-ergodicity we will assume for OR(t) and especially for the 
sup{OR} deterministic values over the timespan Δt. To develop the post-optimality 
conditions for observing OTD we have to take Equation system 2 and solve it in 
view to determine the solution space for the OR. Please note that apart from the 
SPQR axiom, if the Theorem of General Production Requirements would not 
have been enounced, the problem of post-optimality of order entry cannot be 
defined, hence the fundamental importance of this OTD theorem for production 
systems. Notice that the compliance of OTD refers directly to the punctuality 
axiom.  
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For developing the post-optimality conditions, we can rewrite the second con-
dition of Equation (2) as 

BWT EDT PLT T≤ − = ∆  

where ΔT allows to let aside the real values of EDT and PLT. In any case it has to 
be BWT < ΔT. The backlog waiting time (BWT) can be modelled by setting OR 
= x and ER = λ 

( )1 1
b

BLBWT BL CT BL x t
ER

λ
λ λ

≤ = ⋅ = ⋅ = − ∆ ⋅  

and where the backlog (BL) has been computed as 

( ) ( ) ( )
2

2

1
1

d
t

t

t
t

BL OR ER t x t x tλ λ= − = − ⋅ = − ⋅∆∫  

and where Δt is the timespan of duration the higher order regime (x > λ) is ac-
tive. The resulting post-optimality condition to determine the admissible range 
of data for x and Δt is shown in Equation (11) 

( ) ( )1
x t

t f T
λ

 
− ⋅∆ ≤ ∆ 

 
                    (11) 

Equation (11) is a parametric relation of implicit type, such as ( ), , 0f x y k = , 
with the variables x(t) and Δt in parametric function of ΔT, i.e. the difference 
between the customer’s expected delivery time and the process lead time. There-
fore, given EDT and being ΔT = EDT-PLT, the faster the throughput speed 
PLT is, the production systems can process a higher order rate during a cer-
tain timespan while respecting OTD. This intuitive, but now finally derived 
and explicitly formulated conclusion is very important, because it allows for 
non-TR governed production systems to play with the backlog. That means 
high order entry can be managed by buffering temporarily instant-capacity 
exceeding orders as BL and reschedule them accordingly to observe OTD. 
These findings are compliant to the Lemma of Flexible Scheduling Principle [1] 
which refers to how to manage the shopfloor order release of a forming backlog. 
This possibility avoids expensive investment in overcapacities with their costly 
consequences, which are a big issue in today’s supply chains of fragmented val-
ue-add economy [5] [6]. The graphical interdependence of variables resulting 
from Equation (11) is shown in Figure 4 for parametric iso ΔT lines. 

From Figure 4 is evident that different combinations of higher order entry 
during a certain timespan are possible satisfying the iso ΔT lines. It reveals that it 
is possible to have in the shown case a 30% higher order entry than the capacity 
during 3.3 time units (P1) or 45% higher OR during 2.2 time units(P2) and still  

observe OTD. If 1 0x
λ

 − > 
 

 then BWT will increase, else decrease (Figure 4,  

right side). The virtual elasticity can be exploited until the BWT has reached ΔT, 
which represents the maximum intrinsic virtual capacity reserve of fast produc-
tion lines. When this virtual production capacity has been exploited, backlog has 
to diminish with an OR below ER to be exploited again. The maximum reduction 
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Figure 4. Graphic representation of post-optimality (in function of x, Δt) regarding OTD for higher order rate x than equilibrium λ 
modelled with Equation (11). The graphic shows exemplarily two equivalent post-optimality situations P1 and P2 for a given isoline 
ΔT = 1 (of any given time-unit) from different possible ΔT = EDT − PLT isolines (left side). Right side: Alternative representation of 
the same concept adding BL-reducing OR conditions (qualitative representation). 

 

rate of BL is when 
0

lim 1 1
x

x
λ→

 − = − 
 

 representing the case of no-order entry.  

These time-bound discrete values of x refer to deterministic order entry, an OR 
situation which corresponds seldom to reality. Such a changing deterministic 
process behavior with [ ] [ ]1 2, ,D DE t E tτ τ∆ ≠ ∆  and [ ], 0DSD tτ ∆ =  within de-
fined timespans Δt can be assimilated to a non-ergodic process. 

4.2. The Case of a Stochastic OR with Stationary Ergodic Process 
Characteristic 

If the order rate x is not a deterministic value, as assumed before, but more rea-
listically a random variable X, the probability to experience a higher order rate x 
than λ depends on the probability density function and is (written in the Marko-
vian time-dimension of inter-arrival time τ) 

( )
1

1

1 1 , dX X
x

P p
x

λ

τ λ τ τ
λ

 < < = 
  ∫  

and depends not only on the increased OR, but also on the type of probability 
density function pX(τ). Please note that here τ stands for the inter-arrival time. 
Do not confuse it with the timespan Δt during which a higher OR is present. Let 
us take as an example an OR higher up to 30% respect to λ = 1.5/h resulting in 
extremis x = 1.95 orders/h. This corresponds for the Markovian time view to a 
shorter inter-arrival time of 1/x = 0.51 h compared to the CTb = 1/λ = 0.66 h re-
sulting into a 23% shorter inter-arrival time. Figure 5 shows the probability for 
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the three different probability density functions for shorter inter-arrival times up 
to 0.51 h, as deviations from the mean 1/λ = 0.66 h (red area). 

The computation reveals for a Markovian exponential process a probability of 
9.4%, for an even distribution a probability of 11.4%, and for a normal distribu-
tion a probability of 25.2%. The big difference between 9.4% and 25.2% shows 
that the assumed underlying distribution of arrival rate OR(τ) is of utmost im-
portance. Therefore, for non-deterministic arrival rates, i.e. for a random varia-
ble X, Equation (11) has to be rewritten resulting in Equation (12) 

( ) ( )
2

1

,
1 d

t

t

x t
t f T

τ
λ

 
− ⋅ ≤ ∆ 

 
∫                    (12) 

Equation (12) models the generic condition for post-optimality of a stochastic 
process to observe OTD. If the stochastic variable ( ),x tτ  becomes time-invariant 
( )x τ , i.e. E[X] = const and SD[X] = const, then the process is ergodic. The 

computational solution of this integral equation for different OR distribution 
( )x τ  is left to the interested reader. 
In Equation (11) we have assumed a deterministic OR temporarily higher 

than the nominal capacity calculating the timespan during which a higher OR 
regime might be “digested” by the manufacturing system. However, this is not 
the typical case of a random variable. Indeed, how a random variable is defined, 
also lower OR than the mean E[X], i.e. the assumed capacity given here by λ, 
have a certain probability to occur reducing the BL-WIP. Equation (12) has a 
general validity covering also this real situation of a random variable. Equation 
(12) gives the general post-optimality condition for stochastic OR in pres-
ence of a fixed capacity characterized by the ER in parametric function of 
faster PLT than the requested EDT. This difference ΔT between PLT and 
EDT can be considered to be the built-in virtual elastic capacity of a pro-
duction system. 

We can therefore enounce the following Corollary of Post-Optimality (or Co-
rollary of Virtual Elasticity). This new corollary belongs to the mathematical 
category of problem existence and in this case, not giving the solution, it is of 
non-constructive type for which Equation (12) is a non-constructive proof for 
Equation (2) (OTD theorem): 

 

 
Figure 5. Probabilities of occurrences with inter-arrival time τ = 1/x in the interval of [0.51; 0.66] hours for exponential, uniform, 
and normal distribution of τ. 
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First Corollary to the Theorem of General Production Requirements (Co-
rollary of Post-Optimality or Virtual Elasticity) 

Given is a production system with a deterministic exit rate ER and a stable 
process lead-time PLT. The market is characterized by a stochastic order arrival 
rate OR each single order with expected delivery time EDT. The post-optimality 
range to comply to on-time-deliveries OTD depends on the difference ΔT be-
tween EDT and PLT as well as from the distribution of OR. This virtually in-
creased capacity is called virtual elasticity of a production system. 

This corollary seems to be in contradiction to the OTD theorem itself because 
according to the corollary it can temporarily also result OR > ER while still res-
pecting OTD. This has not to be a contradiction because the OTD theorem is 
generally valid and over a long time-span whereas this corollary is valid for a li-
mited time-span (post-optimality condition) according to Equation (12) (in-
deed, by increasing virtually production capacity) and constitute generally only a 
weak solution for OTD. However, we can therefore take a practical recommen-
dation, synthesized in the following 

Lemma to the Corollary of Post-Optimality (Lemma of Increasing Speed) 
Based on ΔT = EDT − PLT, accelerating PLT of the production process in-

creases the manufacturing-inherent reserve ΔT of production capacity, i.e. the 
virtual elasticity, in order to observe OTD for stochastic OR. 

Therefore, it is always recommendable to speed-up processes and to reduce 
PLT. This is in perfect concordance with the Lemma to the Theorem of Genera-
lized Lead Time (Lemma of SPF Desirability) [1], which invites trying to install 
always a fast single piece flow (SPF) in order to have a shorter PLT. 

The new coined term virtual elasticity is opposed to costly conceived physical 
elasticity of production equipment, which is depending on the BEP. Elasticity, 
i.e. the non-sensitivity of production cost to load-changes, will become very im-
portant for so-called Industry 4.0 type production systems allowing batch size 
one [7] [8]. Increasing speed, i.e. reducing PLT and at the same time shorten 
cash-to-cash cycle, is therefore a very important topic on every production man-
ager’s agenda and a topic of core attention in the domain of JIT Lean production 
systems. In order to respect OTD, the BL can be rescheduled accordingly to op-
timize the scheduling sequence of orders to respect OTD. Why is Equation (12) 
a very important result especially in view of Industry 4.0 type of manufacturing 
systems? These types of production systems show, or aim to allow, a high va-
riance of OR as well as a high mix variability, stating literally, for instance, to 
have the possibility “to put a Porsche seat into a VW” [7] [8]. Such generalized 
OR processes are highly non-ergodic. However, the aim to be able to produce a 
one-off, or more generally a variable non-defined mix, entails a dynamic bottle-
neck, i.e. a changing ER = λ, leading to the undesired effect of unevenness, 
which Toyota called Mura, leading finally to Muda (waste). However, the Toyota 
JIT lean production system bases on ergodic-type of processes. This undesired 
consequence of changing mix and dynamically changing bottleneck leads to 
another mathematical problem—an optimization problem to be further investi-
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gated. Indeed, instead of applying discrete brute-force simulation methods, Equ-
ation (12) allows to frame a functional understanding of the “physics” to re-
spects OTD for general conditions. Please note that the capacity is only virtually 
increased. Indeed, the nominal specific capacity is still given by CTb i.e. the cycle 
time at the bottleneck. 

Furthermore, symmetric probability density functions, such as uniform (U) or 
normal (N) distributions, show the same cumulative distribution probability on 
the left and on the right side of the mean or median, levelling out in the average 
higher and lower OR than the ER. This is not the case for a skewed probability 
density such as the exponential Markovian (M) density function, i.e. 

( ) ( )
1

0 1

d dM Mp p
λ

λ

τ τ τ τ
∞

≠∫ ∫                     (13) 

where [ ] 1E τ λ= , and referring to the case before with λ = 1.5 

( ) ( )0 0.66 0.66M MP Pτ τ< < > < < ∞  i.e. 0.63 > 0.37 (QED) 

which confirms the statement of Equation (7). Due to the asymmetric probabili-
ty of the probability function with regard to the mean (Equation (13)), this would 
imply an increasing backlog. Excluding seasonality effects and economic growth, 
this suggests that not the mean, but the median has to be taken as reference for 
capacity considerations. Figure 6 shows the Markovian probability density func-
tion of inter-arrival times with its descriptive statistics. 

Now, the asymmetric extension of inter-arrival time of probability PM (0.19 < 
x < 0.45) with higher density and PM (0.45 < x < 0.89) with lower density have 
the same probabilities to occur which is 0.25 corresponding to the definition of 
quartile. 
 

 
Figure 6. Randomly generated Markovian distributed inter-arrival times with λ = 1.5 showing 1st, 2nd (median), and 3rd quartile. 
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These quartile/median figures are quite different from the figures computed 
with Equation (13) referring to the mean. These differences do not exist in sym-
metric distributions. 

Conclusion: If symmetric distributions show random arrivals, they represent 
stochastically a strong solution for OTD depending only on Equation (2a). If 
they show an enhanced but non-random behavior above the mean over a certain 
timespan, they can only have a weak solution for OTD. Asymmetric distribu-
tions always represent only weak solutions. A strong solution means that OTD 
can probabilistically always be fulfilled, weak solution means that it can be ful-
filled under certain circumstances given by the Corollary of Post-Optimality just 
enounced before. We can therefore enounce the 

Second Corollary to the Theorem of General Production Requirements 
(Corollary of Strong and Weak OTD Solutions) 

Given is an order rate with generally random arrival character within a fixed- 
capacity regime. Necessary and sufficient condition for a strong OTD solution is 
the ergodic characteristic of a stochastic order process paired with asymmetric 
distribution of order rates of the random OR variable and if they comply with 
the requirements of the OTD theorem. However, non-ergodic processes with ar-
bitrary arrivals, or ergodic processes with asymmetric random distributions of 
order rate, constitute only a weak solution for OTD observance that is depend-
ing on the specific circumstances. The circumstances are the distribution of ar-
rivals, the sequence of arrivals, and timespan of non-randomness, as well as de-
pendency on the virtual elasticity of the production system. 

Please note that this just enounced corollary constitutes a constructive proof 
to Equation (12), whereas the Corollary of Post-Optimality belongs to the ma-
thematical category of existence problem with non-constructive proof. The Co-
rollary of Strong and Weak OTD Solutions states clearly that a Poisso-
nian-distributed order rate process in this case might only constitute a weak so-
lution to respect OTD.  

4.3. Practical Application of Theoretic Findings 

An increased order entry is beneficial for every enterprise. With the utilization 
of the virtual elasticity and despite limited capacity, in certain cases, it is possible 
to observe the mandatory OTD in order to maintain a high related customer sa-
tisfaction referred to punctuality of deliveries. However, in extreme cases it 
might be necessary to increase capacity by additional shifts. In this case, addi-
tional aspects have to be taken into consideration to benefit from increased or-
der intake: 

Two aspects have to be satisfied 
• Maximizing marginal manufacturing elasticity 
• Maximizing margin contribution m(V) 

These two conditions translate into (see Figure 2 and Figure 7) 

( )d 0
d vk V

V
=  
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and 

( )d 0
d

m V
V

=  

The concept of optimal cost-level and optimal production-level are schemati-
cally shown in Figure 7 on the left side. The optimal cost-level is subordinate to 
the optimal production-level to maximize profit, and generally, the optimal 
production-level is above the optimal cost-level. 

However, the virtual elasticity allows to process increased order entry while 
still satisfying the OTD customer requirements. Interesting is that the variable 
production cost are not those of higher production volume, because the tempo-
rarily increased volume are produced at the same cost of the actual (not speed- 
up produced) volume Vact within the ΔT timespan, if staying in the same shift 
regime. Given that the maximum production level depends also on the price 
curve, the maximum volume Vmax can go theoretically beyond the optimal vo-
lume Vopt to maximize margin contribution if the ΔT timespan is large enough 
(right graph of Figure 7). Please note that this statement is valid for a certain 
timespan Δt and not for the entire production. This reasoning is based on the 
assumption, that the further order intake in the future is unknown. Indeed, in a 
real situation we have a case after case order-intake evaluation and not the mi-
cro-economic aggregated ex-post overview according to Figure 7. In other 
words, the price reality of the arriving orders is not of ordered decreasing cha-
racter but with varying prices of random orders according to the exact chrono-
logical order entry sequence. However, with these order prices in random se-
quence the revenue curve can be approximated with an average linear specific 
price curve. 

From an economic point of view, the additional order entry is limited to the 
condition of marginal sales equaling marginal virtual elasticity variable cost, 
condition given in Equation (14) 

 

 
Figure 7. Graphical representation of optimal cost and optimal production level (left side) as well as the representation of virtual 
elasticity (right side) enabling to increase maximum margin contribution theoretically even beyond the level of classic optimal 
volume for respecting OTD (idealized and much exaggerated conceptual representation). 
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( ) ( )max OTD
d d:

d d v elast optV V p V k V V
V V

 
= ∆ = > 
 

           (14) 

Although Equation (14) might be of limited applicability in high performance 
production systems given by reduced ΔT it is for sure of theoretic importance. 
Nevertheless, we can come back to the Theorem of Optimal Production Range 
and therefore enounce the following lemma: 

Lemma to the Theorem of Optimal Production Range (Lemma of Hidden 
Potential Exploitation) 

Based on the realistic BEP model determining an optimal production volume 
to maximize margin contribution with an existent equipment, exploiting the 
property of virtual elasticity it is possible to extend maximization of margin 
contribution theoretically even beyond the common optimal production vo-
lume. This is possible due to the property of virtual elasticity of production sys-
tems and the resulting virtually increased capacity by speeding-up processes 
(Lemma of Increased Speed) in order to observe OTD also for increased order 
entry. 

The finding summarized in Equation (14) and paraphrased with the Lemma 
of Hidden Potential Exploitation is an important revelation in the world of eco-
nomic manufacturing and adds new insights of manufacturing-related proper-
ties of every production systems. This revelation is as well as important for prac-
tical reasons as for theoretical understanding of the value of speed. It helps to 
face the challenge of increased order entry with variable arrival rate above the 
nominal capacity allowing to satisfy OTD without physical capacity extension, at 
least for a limited timespan. Although this finding is very interesting, it has to be 
admitted that the virtual elasticity cannot replace consistent physical nominal 
extension of capacity and are limited within the scope of ΔT to observe OTD. It 
is ideally suited to absorb order peaks, but not structurally increased order levels. 

It may emerge the question of the practical applicability, or better practical 
implementation, of these findings. Two related topics have to be investigated: 
firstly, finding manufacturing solutions to speed-up processes to increase virtual 
capacity, and secondly, finding scheduling algorithms allowing most of the back-
logged orders to satisfy OTD. The first topic can be easily resolved by TPS-derived 
Lean JIT techniques, hence the importance to transform B&Q Systems into Lean 
JIT production systems [2].Traditional concepts applied to speed-up processes are 
e.g.: 
• Shorten CT at the bottleneck (increase capacity without investing) 
• Eliminate non value-add steps in the process such as searching (eliminate 

Muda) 
• Reduce batch-size (in order to reduce WIP). 

To generate significantly the virtual elasticity, however, introducing a SPF is 
mandatory, see the Main Theorem of Production Time (or SPF Dominance Theo- 
rem) and its corollary and lemma [1]. In lean JIT manufacturing systems, how-
ever, the virtual elasticity is usually already exploited. 
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5. Future Research Opportunities 

Lean JIT-based production systems show a superior performance versus tradi-
tional B&Q production systems and stand at the base to reduce PLT and res-
pecting OTD [2]. However, production systems are usually not TR-based but 
stochastic OR-governed due to variable order entry rate reflecting natural mar-
ket demand fluctuation. This topic has just been treated summarily in this paper 
for a single product with deterministic ER. However, Industry 4.0 production 
systems aim at enabling an infinite mix variability including to attain batch size 
one with variable PLT according to change of mix [7] [8]. This high mix varia-
bility induces a variable bottleneck with variable ER of the production system. 
The questions, however, are what the constructive proof of post-optimality con-
ditions in such a production regime will be and, especially, what type of sche-
duling algorithms are recommendable for non-ergodic stochastic variable mix 
regime with consequent variable ER and variable PLT. This quest might be ex-
tended beyond the usual application of brute force simulation methods, which 
can be of NP-complexity. The question is which new laws and principles can be 
enounced to optimize ER and PLT to meet OTD in a highly variable production 
context. In the case of additional complexity given by flexible non-deterministic 
product-mix order entry, and thus a variable ER, an intelligent scheduling algo-
rithm must also take into consideration the set-up time of different equipment 
as well as transfer time in a graph-modeled equipment layout [2]. The Lean SMED 
Technique (Single Minute Exchange of Die) might get, in this case, an additional 
core aspect to be focused on.  

6. Summary 

Originally, Lean JIT production systems have been conceived for stable TR- 
based production regimes for the manufacturing of a deterministic product mix 
with adequate, but inelastic capacities. These production systems are largely rep-
resentative for the automotive industry. However, in many industries, order en-
try is a random variable. This makes it difficult, but not impossible to implement 
JIT-like Lean systems. In addition, economy shows seasonal patterns requiring a 
variable capacity, not mentioning the variability originated by pipeline-filling ef-
fects of fragmented global supply chains during economic cycles. This complex 
variability of order entry may lead to costly investment in order to observe OTD 
resulting in production overcapacities. This does not have to be the case, at least 
not for limited variability and limited timespans, if the virtual elasticity of a 
production system is discovered, implemented, and exploited. The virtual elas-
ticity is the result of the inherent latent production capacity resulting from the 
difference between EDT and PLT. This insight is an important result. Even though 
the findings of the paper may seem trivial, it has to be stated that this is not self- 
evident. Indeed, instead of investing in costly production capacities covering the 
upper range of order variability that is leading to overcapacities, the latent ca-
pacity intrinsic to every production systems given by increased speed of SPF and 
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JIT production systems can be exploited especially for arrival distributions con-
stituting a weak solution for OTD. It goes without saying that reducing PLT is 
not intended simply to operate the equipment at higher speeds, but by applying 
appropriate manufacturing and transfer principles in order to implement a high 
performance production system. 
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