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Abstract 
Layout design problem is to determine a suitable arrangement for the de-
partments so that the total costs associated with the flow among departments 
become least. Single Row Facility Layout Problem, SRFLP, is one of the layout 
problems that have many practical applications. This problem and its specific 
scenarios are often used to model many of the raised issues in the field of fa-
cility location. SRFLP is an arrangement of n departments with a specified 
length in a straight line so that the sum of the weighted distances between the 
pairs of departments is minimized. This problem is NP-hard. In this paper, 
first, a lower bound for a special case of SRFLP is presented. Then, a general 
case of SRFLP is presented in which some new and real assumptions are added 
to generate more practical model. Then a lower bound, as well as an algorithm, 
is proposed for solving the model. Experimental results on some instances in 
literature show the efficiency of our algorithm. 
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1. Introduction 

Layout design problem is to determine a suitable arrangement for the depart-
ments so that the total cost associated with the flow among departments be-
comes least. One of common layout problems is Single Row Facility Layout Prob-
lem (SRFLP). SRFLP was widely studied until the mid-nineties. Then, about the 
first years of the last decade, again an extensive research began in this field. In-
terestingly, research on many aspects of this problem is still open. SRFLP is a 
highly regarded problem in the field of facility layout (Kothari & Ghosh, 2012) 
[1]. SRFLP can be defined as follows: The main goal is to determine the arrange-
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ment of rectangular departments with the same height along a straight line such 
that the total cost of relations between departments is minimized. The cost of the 
relationship between a pair of departments is proportional to the flow rate and 
the distance between the two departments center. The number of departments in 
this problem is known as SRFLP’s size (Simmons, 1969) [2].  

It is proved that SRFLP is an NP-complete problem (Suresh & Sahu, 1993) [3]. 
So it is almost impossible to find optimal solution in large-sized instances in a 
reasonable time. Thus, efforts to obtain near-optimal solutions or remodeling the 
problem has attracted lots of attentions. SRFLP’s model is known as ABSMODEL 
and was introduced by Heragu and Kusiak (1991) [4]. 

The next section of this paper is a short literature review of SRFLP and its so-
lution procedures. A special case of the model and its lower bound are discussed 
in the Section 3. In Section 4, a Cuckoo Optimization Algorithm for solving an 
extension of SRFLP is proposed. The experimental results are reported in Sec-
tion 5. Finally, discussion, conclusion and some suggestions for future research 
are presented in the following sections.  

2. Literature Review 

SRFLP was first presented by Simmons entitled “one-dimensional space alloca-
tion problem”. (Simmons, 1969) [2]. It is associated with large classes of prob-
lems. For these problems, many exact and heuristic approaches have been pro-
posed. Some of these problems are related to each other. Some of these problems 
including SAP1 and GLOP2 have been mentioned in (Kothari & Ghosh, 2012) 
[1]. In addition to these issues, the Quadratic Assignment Problem (QAP) is 
very similar to SRFLP. The objective function of QAP can be stated as: 

( ) ( )
1 1

min ij p i p

n n

jp i j
a b

π∈ = =
∑∑                        (1) 

where π is the set of all permutations of { }1, 2, , n�  and ( ) n n
ija ×= ∈A  ,  

( ) n n
ijb ×= ∈B  . This is called Koopmans and Beckmann form of QAP (Koop-

mans & Beckmann, 1957) [5]. In a typical example of QAP, there are n depart-
ments and also n certain locations. There is a given amount of flow between each 
pair of departments i and j, namely ija  in Equation (1). For each pair of de-
partments i and j, ( ) ( )p i p jb  represents the distance between them. The commu-
nication cost of each pair of departments is equal to the product of flow and dis-
tance between them. The goal is to assign each department to a location so that 
the total cost of communications between departments is minimal (Picard & 
Queyranne, 1981) [6]. The main difference of QAP and SRFLP is that distances 
between locations are known in QAP, but in SRFLP is unknown due to uncer-
tainty about the locations of the departments.  

The graph bandwidth minimization is also a special case of the single-row 
layout problem. This is a graph in which each edge has been assigned a number 

 

 

1Space Allocation Problem. 
2Generalized Linear Ordering Problem. 
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as a weight of the edge and there is a specific mathematical function that assigns 
each vertex a certain value. The weight of each edge is the same as the amount of 
the flow between departments. In this case, the absolute value of the difference 
between two vertices labels is in accordance with the related departments dis-
tance. This problem is listed as one of the famous problems in graph theory and 
various algorithms have been developed to solve it.  

2.1. SRFLP’s Mathematical Models 

Several different models for SRFLP has been proposed in previous studies. The 
first mathematical model was developed by Picard and Queyranne, (1981) [6]. In 
their paper, for the first time, it was quite clearly stated that any solution of 
SRFLP is, in fact, a permutation of the departments set. They used  

( ) ( ) ( )( )1 , 2 , , nπ π π π= �  as a permutation of departments indices. The in-
verse of this permutation: ( )1 iπ −  is the position of department i in the permu-
tation π and ( ), ,B i j π  is the set of indices of departments between i and j. The 
main goal of the model is to find the location of each department somehow to 
minimize the total weighted flow among departments calculated as follows: 

1

1 1
Minimize

n n

ij ij
i j i

c d
−

= = +
∑ ∑  

( ), ,2 2

n
ji

ij k
k B i j

ll
d L

π∈

= + +∑  

The notations used in this formulation are presented as follows:  

ijc  Flow between the two departments i and j 

ijd  Distance between the centers of two departments i and j 
( ), ,B i j π  The set of indices of departments between i and j 

il  The length of department i 
The above constraint is illustrated in Figure 1. 
Love & Wong (1976) [7] presented the first binary mixed integer program to 

solve SRFLP. Later, a quadratic model was presented by Kumar, Hadjinicola, 
and Lin (1995) [8]. A new MIP model for SRFLP was also presented by Amaral 
(2006) [9]. In this model, additional variables ijα  were used. If department i is 
located left of the department j, then ijα  is one. Otherwise, it is zero. 

Another model of SRFLP was presented by Amaral (2009) [10]. In this model 
a three-dimensional variable ijkζ  was defined. The variable ijkζ  is one if de-
partment k lies between departments i and j and otherwise its value is zero. A 
complete review of presented models in the literature have been provided by 
Kothari and Ghosh (2012d) [1] and Keller and Buscher (2015) [11]. 
 

 
Figure 1. The basic constraint of SRFLP model. 
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2.2. Solution Procedure  

The exact methods for solving SRFLP, especially when n is big, are difficult and 
require a lot of computer memory. These methods are not able to solve large- 
scale problems in a reasonable time. Exact method proposed so far includes 
branch and bound strategies (Simmons, 1969) [2], branch and cut strategies 
(André RS Amaral & Letchford, 2013) [12], cutting plane (André RS Amaral, 
2009) [10], (Yen, 2008) [13], dynamic programming (Picard & Queyranne, 1981) 
[6] and semi-definite programming (Anjos, Kennings, & Vannelli, 2005; Anjos 
& Vannelli, 2008; Yen, 2008) [13] [14] [15]. The most efficient codes developed 
in literature was based on MIP model provided in 2008 that was able to solve 
SRFLP up to size 18 (Andre RS Amaral, 2008) [16]. In 2013, a significant im-
provement on the original codes was provided by Amaral and Letchford (2013) 
[12]. By proposing an algorithm based on branch and cut, solving time was also 
improved. In this method, problems up to size 30 departments were solved in 
reasonable time. Also, this algorithm presented a better upper and lower bounds 
on the main node. The algorithm was applied to three SRFLP with 110 depart-
ments and found that the gap between the lower and upper bounds on the run-
ning time of less than 2.5 days, was 3% to 4%. 

Given that the SRFLP’s exact algorithms are of high costs, researchers use heu-
ristic methods to solve large size SRFLP. These heuristic algorithms are much 
faster than exact algorithms, but there is no guarantee that the optimal solution 
to the problem is found. Different algorithms presented in the literature are all 
trying to find near optimal solution in the least amount of time, and they differ 
in the type and structure of algorithm, such as being construction or improve-
ment heuristic, the initial steps, search method of the feasible region, searching 
in a discrete or continuous space and stopping criteria.  

All research on this topic was in a deterministic space until that Azadeh et al. 
(2011) [17] considered the input data uncertain and presented a fuzzy multiva-
riate approach for facility layout design with ambiguity. Rubio-Sánchez, et al. 
(2016) [18] proposed an algorithm based on greedy randomized adaptive search 
procedure combined with path relinking to have a highly efficient search and 
stated that the proposed method outperformed all state-of-the-art methods until 
2016. The exact and heuristic solutions that have been proposed to solve this 
problem are summarized in Table 1. 

3. Single Row Equidistant Facility Layout Problem 
Consider the SRFLP and suppose that all departments’ length is the same, for 
example with constant length l and the flow between each two departments is an 
arbitrary number. This problem is called Single Row Equidistant Facility Layout 
Problem, SREFLP (Hungerländer, 2014) [58]. Without loss of generality, it is 
assumed that the department in the leftmost location is labeled by index 1 and 
the last department with the rightmost location is labeled with index n (number 
of departments). According to the new numbering, distance matrix of depart-
ments is shown in the below matrix. 
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Table 1. Suggested solutions and algorithms for solving SRFLP. 

 Method Papers 

Exact  
solutions 

Branch and bound (Simmons, 1969) [2], (Heragu & Kusiak, 1991) [4], (Andre RS Amaral, 2006) [9] 

Branch and cut strategies (André RS Amaral, 2009) [10], (André RS Amaral & Letchford, 2013) [12] 

Dynamic programming (Picard & Queyranne, 1981) [6] 

Semidefinite programming 
(Anjos & Vannelli, 2008) [15], (Yen, 2008) [13], (Anjos et al., 2005) [14],  

(Anjos & Yen, 2009) [19], (Anjos & Vannelli, 2006a, 2006b) [20] [21] 

Cutting plane (Anjos & Vannelli, 2008) [15], (Yen, 2008) [13], (Sanjeevi & Kianfar, 2010) [22] 

Heuristic 
methods 

Genetic Algorithm (GA) 

(Kothari & Ghosh, 2012a) [23], (Ozcelik, 2012) [24],  
(Datta, Amaral, & Figueira, 2011) [25], (Ponnambalam & Ramkumar, 2001) [26],  

(Kothari & Ghosh, 2014a) [27], (Ku, Hu, & Wang, 2011) [28],  
(Utamima & Ou-Yang, 2012) [29] 

Bat algorithm (Büyüksaatçı, 2015) [30] 

Ant Colony Optimization (ACO) 
(Guan & Lin, 2016) [31], (Solimanpur, Vrat, & Shankar, 2005) [32], 

(Clauss, Bernt, & Middendorf, 2013) [33] 

Tabu search 

(Samarghandi & Eshghi, 2009) [34], (Samarghandi & Eshghi, 2010) [35],  
(Kothari & Ghosh, 2013) [36], (Kothari & Ghosh, 2012e) [1],  

(Ahonen, de Alvarenga, & Amaral, 2014) [37], (Yu, Zuo, & Murray, 2014) [38], 
(Lenin, Siva Kumar, Ravindran, & Islam, 2014) [39] 

Cuckoo Optimization (CO) (Maadi, Javidnia, & Ghasemi, 2016) [40] 

Cross-entropy approach (Ning & Li, 2018) [41] 

Forest Optimization (FO) (Maadi et al., 2016) [40] 

Particle Swarm Optimization (PSO) 
(Samarghandi, Taabayan, & Jahantigh, 2010) [42],  

(Ou-Yang & Utamima, 2013) [43], (Utamima, 2012) [29] 

Charged System Search (CSS) (Kaveh & Safari, 2014) [44] 

Neighborhood search (Kothari & Ghosh, 2012b) [45] 

Scatter search (Kothari & Ghosh, 2014b) [45] 

Local search (André RS Amaral, 2008) [46], (Ghosh, 2011) [47], (Palubeckis, 2015a) [48] 

Path relinking (Kothari & Ghosh, 2012c) [49], (Rubio-Sánchez et al., 2016) [18] 

Hybrid algorithms 
(Ou-Yang & Utamima, 2013) [43],  

(Azadeh, Roozbahani, & Moghaddam, 2013) [17],  
(Teo & Ponnambalam, 2008) [50] 

Imperialist Competitive Algorithm (ICA) (Lian, Zhang, Gao, & Shao, 2006) [51] 

Hybrid Simulated Annealing (Kamali, 2015) [52] 

Clonal Selection Algorithm (CSA) (Ulutas, 2013) [53], (Hosseini-Nasab & Emami, 2012) [54] 

Bacterial Foraging Algorithm (BFA) (Ulutas, 2013) [53] 

Simulated Annealing (SA) 
(Palubeckis, 2017) [55], (Kamali, 2015) [52], (Ahonen et al., 2014) [37],  

(Ku et al., 2011) [28], (Palubeckis, 2015b) [56] 

Artificial bee colony algorithm (Amaral, 2019) [57] 
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�

�
� � �
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Since the distance matrix is calculated based on the center to center, adjacent 
departments have the distance l. The distance between every other one depart-
ments is equal to 2l and so on. In this case, the problem will be finding the in-
dices corresponding to the departments. Clearly, the optimal solution or the fi-
nal layout of departments is not related to the length of departments. Note that 
the distance matrix between departments with a primary index (unchanged) will 
be a permutation of the above matrix. 

Now suppose that the matrix product of the flow matrix and the distance ma-
trix is calculated. The sum of the values of the diagonal of the resulted matrix is 
equal to the objective function value. Let E be the matrix product of these two 
matrices (E = C × D). The sum of diagonal values of matrix E is calculated as 
follows: (note that C is a symmetric matrix and 0iiC = ). 

1

1 1 1 1 1
2

n n n n n

ii ik ik ik ik
i i k i k i

e C D C D
−

= = = = = +

= = ∗∑ ∑∑ ∑ ∑                 (2) 

According to the SRFLP's definition, the right amount of Equation (2) is twice 
the amount of the objective function. The sum of the values of the diagonal of a 
matrix A is called the matrix trace and denoted by ( )tr A , so we have  
( ) ( )tr tr 2Z= × =E C D . 
It is clear that the new flow matrix can be generated by arranging the rows and 

columns of the first flow matrix. Thus, this scenario of SRFLP can be described 
as finding the best permutation matrix which leads us to the smallest value of the 
trace of the matrix product of new distance matrix and the first flow matrix. In 
mathematical terms, the problem can be stated as  

( ) ( )T Tmin tr min tr=XCX D CX DX  Here X is a permutation matrix which is 
unknown and should be find. In literature, this problem is called Quadric As-
signment Problem (QAP) (Commander, 2005) [59]. 

SREFLP Lower Bound 

Rendl and Wolkowicz, (1992) [60] used a trace form of QAP and presented a 
lower bound for it. Suppose that C is symmetric. If flow matrix between depart-
ments is not symmetric, for each element ijC  the average value of ijC  and 

jiC  can be replaced. Then a symmetric matrix would be resulted. It does not 
have any effect on the optimal solution. 

Because of positive values, all eigenvalues of this symmetric matrix are real 
numbers. The matrixes C and D can be written in a diagonal format. Suppose 
that 1 2, , , nλ λ λ�  and 1 2, , , nµ µ µ�  are eigenvalues of matrix C and Matrix D 
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arranged in descending and ascending order, respectively. Λ and Σ are defined 
as follows: 

1 0

0 n

λ

λ

 
 =  
  

�
� � �
�

Λ , 
1 0

0 n

µ

µ

 
 =  
  

�
� � �
�

Σ  

Let T=C U UΛ  and T=D V VΣ , where U and V are corresponding to the 
eigenvalues of Λ and Σ respectively.  

By a theory from Rendl and Wolkowicz, (1992) [60], we will simply have for 
an arbitrary and orthogonal P (not exactly permutation matrix P), the following 
relation:  

( )T
T

,
Min Trace i j

i j
µ λ

=
= ∑PP I

CP DP  

Hence the ( )TMinTrace CP DP  for an arbitrary and orthogonal P equals to 

, i ji j µ λ∑  which ocurrs in T=P U V  (Rendl & Wolkowicz, 1992) [60]. If  
T=P U V  is a permutation matrix, it would be the optimal solution for the prob-

lem, otherwise , i ji j µ λ∑  can be considered as a lower bound for the original 
problem. 

Later on, it is proved in Lemma 1 that if CD equals to DC, U and V can be se-
lected in such a way that T=P U V  is a permutation matrix. With the men-
tioned distance matrix, in a case that C is a coefficient of D, CD equals to DC.  

If CD is not equal to DC, T=P U V  is not a permutation matrix, and, there-
fore, it can be considered as a lower bound for the optimal solution. In this case 

−CD DC  can be considered as an index for measuring the gap of the lower 
bound. 

Suppose C = αD where D is a coefficient of C, therefore, U = V. For optimum 
permutation matrix: T T= = =P U V U U I . Thus, the exact solution of this ver-
sion of SRFLP is achieved by replacing identity matrix for permutation matrix P. 
Note that, as it was mentioned in previous section, we have supposed that C is 
symmetric matrix and if it is not symmetric, for each element ijC  the average 
value of ijC  and jiC  should be replaced. For every QAP scenario when C (af-
ter changing C to become symmetric) is a coefficient of D, the exact solution is 
known. 

Example 1: Consider 5 departments with the same 4 meters length. Consider 
the flow matrix between departments as C.  

3 5 4 10
1 1 4 7
3 3 1 7
8 4 3 3
6 5 1 1

− 
 − 
 = −
 

− 
 − 

C  

Because the lengths of all departments are the same, the distance matrix is not 
related to the matrices arrangement. The distance matrix D is:  
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4 8 12 16
4 4 8 12
8 4 4 8

12 8 4 4
16 12 8 4

− 
 − 
 = −
 

− 
 − 

D  

Here, C is not symmetric and for each element ijC , the average value of ijC  
and jiC  can be replaced. After doing the calculations, C changes to: 

2 4 6 8
2 2 4 6
4 2 2 4
6 4 2 2
8 6 4 2

− 
 − 
 = −
 

− 
 − 

C  

As it can be seen, C is a coefficient of D with α = 0.5 and the best solution of 
this problem is shown in Figure 2. 

Lemma 1. If T=P U V  is a permutation matrix, it can be concluded that CD 
equals to DC. 

Proof. U and V corresponding to the eigenvalues of Λ and Σ, respectively. 
Hence, U and V are orthogonal matrices and T 1−=U U  and T 1−=V V . Sup-
pose that T=P U V  is a permutation matrix. Hence: 

( )T1 T T T− = = = =VP VP V U V VV U U  

T T T T= =PV U VV U  

Let 1−=X P PΣ . For matrix product of C and D, it can be stated that: 

( )T T T 1 T T T−= = = = =CD U U V V U P V U P P P V U XPV U XUΛ Σ Λ Σ Λ Σ Λ Λ  

For matrix product of D and C, it can be stated that: 

( )
T T T T 1 T

1 1 T 1 T T.

−

− − −

= = =

= = =

DC V V U U V P U V P U

V P P P U VP X U UX U

Σ Λ Σ Λ Σ Λ

Σ Λ Λ Λ
 

Because P is a permutation matrix, it can be concluded that X is a diagonal 
matrix. Also, Λ is a diagonal matrix. In product of matrices, two adjacent di-
agonal matrices can be replaced by each other. Therefore, if P is a permutation 
matrix, then CD equals to DC. 

4. Generalized Single Row Facility Layout Problem 

The problem presented in this study is Generalized Single Row Facility Layout 
Problem (or GSRFLP). In SRFLP, each solution shows the sequence of locations 
of departments without considering cost factor. However, in real-world, the 
construction cost of a department can be different when the location is changed.  
 

 
Figure 2. The solution of a specific scenario of SRFLP considered in Example 1. 
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On the other hand, the adjacency of two departments can be problematic. For 
example, the risk of fire or toxic gases produced in a department can be in-
creased based on safety reason. In some situations, the minimum or maximum 
distance of two certain departments is pre-determined. Furthermore, in some 
cases, it may be necessary that two departments are located within a certain dis-
tance due to the shared resources allocate. The main difference of GSRFLP with 
SRFLP is consideration of departments’ construction cost and safety factor. In 
this case, the cost of department construction is entered as a parameter through 
a matrix. The exact definition of the proposed GSRFLP is as follows: The goal is 
to determine the arrangement of rectangular departments with almost the same 
height along a straight line such that the total cost is minimized. Every two sep-
arate departments are related to each other. The relation between two depart-
ments is to move materials from one department to another and is calculated 
according to the distance between two departments. The cost of the relation be-
tween two departments is dependent on the distance between the two depart-
ments and the flow rate between them. The flow between two departments is de-
fined as the number of times the materials between two departments is trans-
ferred. 

In real-world cases, sometimes due to safety concerns, two departments should 
not be adjacent. Thus security factor is defined between each pair of depart-
ments. This parameter is imported as an input data through a matrix. Safety pa-
rameter ijb  is defined between two departments i and j. It is multiplied by the 
relation cost between two departments i and j. If adjacency of two departments 
doesn’t have any problem this parameter value equals to one, otherwise, it is less 
than one. The construction cost of departments is a matrix and considered as an 
input data. Also, the minimum or maximum distance of each two departments is 
pre-determined if necessary. The total cost is the sum of construction and trans-
portation costs between departments. 

Given that GSRFLP is more complex than SRFLP and since SRFLP is NP- 
complete (Suresh & Sahu, 1993) [3], GSRFLP is also NP-Complete. Thus, no 
polynomialy exact algorithm has presented yet to solve the problem in a reason-
able time for large-sized problems. In this study, an algorithm is also presented 
for solving a large size GSRFLP in a reasonable time. 

Constraints of the GSRFLP Model 

There are some general constraints in the model such as the distance between 
departments, no overlapping of departments, and placement of the departments 
in the given space, derived from Love & Wong (1976) [7] as follows: 

( )1 , 1,2, , ;
2ij ij j i i jL R x x L L i j n i j− = − + − = ≠�             (3) 

( ) , 1, 2, , ;i j ij ix x M L i j n i jα− + ≥ = ≠�                 (4) 

( )1 , 1,2, , ;i j ij jx x M L i j n i jα− + − ≥ = ≠�                (5) 
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( )0,1 , 1,2, ,ij i j nα = = �                       (6) 

, 1, 2, ,i iL x Y i j n≤ ≤ = �                       (7) 

In Figure 3, the distance between the two departments is shown as a function 
of the departments’ endpoints. 

Minimum or maximum distance constraints: If necessary, the restriction 
related to the minimum or maximum distance between the departments can be 
written through the following inequalities: 

( )1 , 1,2, , ;
2ij ij ij i jR L Smin L L i j n i j− ≥ + + = ≠�            (8) 

( )1 , 1, 2, , ;
2ij ij ij i jR L Smax L L i j n i j− ≤ + + = ≠�            (9) 

The construction costs constraints: The matrix CO is the construction cost 
matrix. The parameter iyco  is the construction cost of department i, if the de-
partment i locates on the point y. The variable iyδ  is defined as a binary varia-
ble which equals one, if the department i locates on the point y. Therefore, the 
following logical expression must be modeled: 

1iy ix yδ = ↔ =                          (10) 

The parameters UB and LB are defined as upper and lower limits of ix y− , 
respectively.  

{ }: min | , 1, 2, , ; 1, ,iUB u u x y i n y Y≥ − = =� �             (11) 

{ }: max | , 1, 2, , ; 1, ,iLB lb lb x y i n y Y≤ − = =� �            (12) 

Two dummy variables, 1iyδ  and 2iyδ , are used for modelling the expression 
(10).  

( )( )11 1, 2, , ; 1, ,i iyx y UB i n y Yδ− ≤ − = =� �            (13) 

( )( )1 1, 2, , ; 1, ,i iyx y LB i n y Yε δ ε− ≥ − + = =� �           (14) 

( )21 1,2, , ;  1, ,i iyx y LB i n y Yδ− ≥ − = =� �            (15) 

( )( )2 1, 2, , ; 1, ,i iyx y UB i n y Yε δ ε− ≤ + − = =� �           (16) 

1 2 1 1,2, , ; 1, ,iy iy iy i n y Yδ δ δ= + − = =� �             (17) 

( )1 2, , 0,1iy iy iyδ δ δ =                        (18) 

 

 
Figure 3. Modeling the distance between departments. 
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The objective function is shown in the Equation (19): 

( )1
1 1 1 1Minimize n n n Y

ij ij ij ij iy iyi j i i yc b R L coδ−

= = + = =
+ +∑ ∑ ∑ ∑        (19) 

Since ijc  and ijb  are defined as parameters of the model, the product of two 
matrices C and B, can be replaced by a new flow matrix. 

5. Proposed Cuckoo Optimization Algorithm for Solving 
SRFLP 

A review of SRFLP’s literature shows that many heuristic algorithms have been 
developed for finding its near-optimal solutions (Büyüksaatçı, 2015; Datta et al., 
2011; Kothari & Ghosh, 2012e, 2013, 2014a; Kumar et al., 1995; Ozcelik, 2012; 
Palubeckis, 2015b; Samarghandi & Eshghi, 2010; Samarghandi et al., 2010; Soli-
manpur et al., 2005) [1] [24] [25] [27] [30] [32] [34] [36] [38] [42] [47]. The 
Cuckoo Optimization Algorithm (COA) is a new metaheuristic algorithm with 
high performance in some NP-hard problems (Rajabioun, 2011) [61]. Here, we 
apply an algorithm based on COA for SRFLP. 

Cuckoo search algorithm was first introduced by Yang and Deb (2009) [62]. 
The COA was inspired by the life of a bird, called cuckoo. Characteristics of 
some species of this bird in egg laying in the nests of other bird spices and 
breeding was the basic motivation for the development of this new evolutionary 
optimization algorithm. The host may recognize some cuckoo eggs and kill them 
or it may abandon the nest and build a new nest elsewhere. The rest eggs that are 
not identified by the host, are fed by it. After hatching from eggs and growing 
up, the mature cuckoos follow the lifestyle of their mothers and lay eggs in other 
birds’ nests. Also, grown up cuckoo societies immigrate toward the regions with 
better access to foods (Rajabioun, 2011) [61]. The mechanism of egg laying and 
immigration in COA help find local and global optimal solution of the problem. 
After multiple iterations of the algorithm, the cuckoos inhabit in the place with 
the best access to foods. This place is the best founded solution of the problem. 
For applying COA for SRFLP, it is necessary that the concepts of eggs, nest, step, 
objective function and search space be specified in details. Following, these con-
cepts are described. 

5.1. Definitions 

Here, there are some basic definitions used in COA. 
Nest: The number of nests is constant and equals to the number of initial 

population. In SRFLP, each nest is a sequence of departments.  
Eggs: In the proposed algorithm, it is assumed that in each nest (solution), 

cuckoo puts one or more eggs. An egg is a new solution. In other words, in 
SRFLP an egg is equivalent to a permutation of the departments. The aim is to 
replace not good solutions by better ones. 

Objective function: Every solution in the search space is equivalent to a nu-
meric value for the objective function. So the quality of a possible answer is 
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proportional to the objective function value. In COA, nests with eggs having a 
lower value for the objective function, are leading to new generation of popula-
tion. The cuckoo egg quality is proportional to its ability to create new cuckoo.  

Search Space: In COA, the search space represents a potential nest. In the 
current problem, all possible permutations of departments are possible solutions 
to the problem. By changing a possible solution, creating another solution is 
possible. Searching the problem space is achieved by each step being carried out 
through consecutive changes in the solution called “laying”. 

Laying: The changes in the arrangement are determined by exchanging the 
locations of two randomly selected departments or two sequentially adjacent 
departments. To produce new solutions, steps length will be applied in accor-
dance with the theory of Lévy flight (Yang & Deb, 2009) [62]. In the proposed 
algorithm, the step length is defined as the number of consecutive changes of the 
arrangement of departments. 

5.2. Levy Flight 

In nature, some insects, birds and many other animals follow paths that have 
been modeled using Levy flight. They can find and hunt their bait or food with-
out planning ahead. In fact, they use Levy flight as a pattern for searching foods. 
A Levy flight is a complex set of random walks in which the step-lengths have a 
Levy distribution (Roy & Chaudhuri, 2013) [63]. In a Levy flight, most steps 
have a small length and the walk is within a small area, but longer routes are 
taken occasionally. In Equation (20), step length is presented in accordance with 
Levy flight distribution, where s is the step length and ( ),Levy s λ  is the proba-
bility of having step with length s. As it can be seen, by increasing the step 
length, the probability reduces. As it is shown in Equation (21), constant C is 
determined in a way that the sum of the probabilities equals to 1. The search in 
the problem space is done according to the Levy flight theory. As a result, chance 
of taking a longer step is lower compared to a shorter step. 

( ) 1 3p s CS λ λ−= < ≤                      (20) 

min

1
l

CS λ
∞

− =∑                           (21) 

5.3. Distance Matrix Calculation 

Given the importance of algorithm runtime, generating the neighborhoods of a 
solution is done in a way that would require less time to calculate the new dis-
tance matrix. If the neighborhood of a solution is generated by moving two ad-
jacent departments or two random departments, then there is no need to calcu-
late the distance matrix from the beginning, and with some changes in the dis-
tance matrix of the solution, the new distance matrix can be obtained. 

By changing two adjacent departments i and j, without loss of generality, if we 
assume that after changing the location, department i is at the right side of de-
partment j, new distance of department k with departments i and j is as follows: 
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if ik ik j
k i j

jk jk i

new D D L
x x x

new D D L

= −< <  = +
 

if ik ik j
i j k

jk jk i

new D D L
x x x

new D D L

= +< <  = −
 

Also, new distance of department k with department k' is as follows: 

, andkk kknew D D k k i j′ ′ ′= ≠  

By changing two random departments i and j, it can be stated that after chang-
ing the locations, new distance of department k (k ≠ i and j) with departments i 
and j is as follows: 

( )
( )

2
i

2
f

ik jk i j
i k j

jk ik j i

new D D L L
x x x

new D D L L

 = + −< < 
= + −

 

( )
( )

2
if

2

ik jk i j
k i j

jk ik j i

new D D L L
x x x

new D D L L

 = + −< < 
= − −

 

( )
( )

2
if

2

ik jk i j
i j k

jk ik j i

new D D L L
x x x

new D D L L

 = − −< < 
= + −

 

Also, new distance of department k with department k', when only one of k 
and k' (k and k' ≠ i and j) is between departments i and j is as follows: 

if ori k j k i k j k kk kk j ix x x x x x x x new D D L L′ ′ ′′< < < < < < = + −  

if ork i k j k i k j kk kk i jx x x x x x x x new D D L L′ ′ ′ ′< < < < < < = + −  

When departments k and k' are between departments i and j, or they are at the 
right and left side of departments i and j or vice versa, and when they are both at 
the right or left side of departments i and j, it can be shown that:  

for , andkk kknew D D k k i j′ ′ ′= ≠  

5.4. Algorithm Steps 

This section represents an efficient algorithm, Algorithm 1, based on COA for 
solving GSRFLP. After initializing the algorithm’s parameters, the first step is to 
generate cuckoos’ population. Then, the cuckoos start to search for other birds’ 
nest to lay their eggs. They choose nests with less probability of having their eggs 
recognized by the host to increase the probability of surviving. So at the second 
step, each cuckoo lay certain eggs in the host nest. Laying is done by consecutive 
changes of departments’ arrangement. Each change in the arrangement is con-
sidered as length of one. Thus a step with length s is equivalent to s consecutive 
changes of departments’ arrangement.  

The host bird may recognize some cuckoo eggs and then it will either aban-
don the nest or kill the cuckoos. If a nest is not appropriate, the cuckoos will be 
killed by the host by probability of 1 ap− . In this step, the quality of the solu-
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tions is evaluated and then decision is made by replacing the eggs in the nest. 
The survived cuckoo eggs will grow up and immigrate to new better nests. They 
will follow lifestyle of their mothers. These steps are done in algorithm until 
stopping criteria reached. The steps of the algorithm are shown in Table 2. 

5.5. Parameters Initialization 

To set parameter for our algorithm, Taguchi method was used. Therefore, first, 
with some experiments, acceptable intervals for parameters were defined and 
then, for each parameter, 4 levels were designed. These levels were, for initial 
population number, 6, 8, 10 and 12, for Levy flight parameter (λ), 1.5, 2, 2.5, and 
3, for number of eggs of each cuckoo (E), 1, 2, 3, and 4, and for maximum step 
length, 1, 2, 3, and 4. L16 was used for the 4-level design. Then, for each sets of 
parameters, 10 runs run on a sample from Heragu and Kusiak (1991) [4] with 30 
departments. The designed Taguchi experiment was analyzed using Minitab 
16.2.4. The Results of Taguchi analysis is shown in Figure 4. As it can be seen in 
Figure 4, the best initial number of population, Levy flight parameter (λ), num-
ber of eggs of each cuckoo (E), and maximum step length, were 10, 2.5, 4, and 3, 
respectively. Note that, there was a very small difference between value 3 and 4, 
for Levy flight parameter. But by considering run time, this parameter value was 
considered 3.  
 
Table 2. Proposed algorithm. 

Algorithm 1, Cuckoo Optimization Algorithm 

1) Initialization includes parameters: initial population number (n), number of eggs of each cuckoo 
(E), maximum step length, Levy flight parameter (λ), maximum iteration (max_it) 

2) Generating n initial population. 

3) While maximum number of algorithm repetition is not exceeded, it <= max_it  
4) For each cuckoo i = 1, ∙∙∙, n 

5) For e = 1, ∙∙∙, E  

6) Search in the problem space according to the Levi flight Theory (Yang and Deb 2009) [62] which 
is equivalent to laying an egg  

7) The egg quality is evaluated (fi) 

8) A nest is randomly selected. For example, Nest j 
9) If fi < fj. 
10) The cuckoo is replaced in the nest. 

11) else 
12) The inappropriate cuckoo (based on the quality) is abandoned with a probability of pa. 

13) End IF 

14) End For 
15) End For 

16) Best solutions are stored in the memory (solutions with minimum costs). 

17) it = it + 1 
18) Check stopping criteria  

19) End While 

20) Ranking the answers and determining the best 
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Figure 4. Results of Taguchi analysis for parameter setting. 

 
Another necessary step to implement the proposed algorithm was defining the 

initial population. 
The initial population was produced as below:  

• First population: Initially, a new hypothetical length for each department was 
calculated based on its actual length and its flow with other departments,  

i
i

ijj

L
NewL

c
=
∑

. Then, based on the new hypothetical length, taking into  

account a constant value for the flow between departments, the optimal solu-
tion of SRFLP with a constant value for the flow between departments, was 
considered as the initial population. 

• Second population: First, two departments with the highest flow, ijc , were 
selected and placed next to each other. Then, among the other departments, 
department with the maximum flow with selected departments (sum of flow) 
was selected and placed in the best location. This step continued until all de-
partments were selected. 

• Other solutions required for initial population, were randomly generated.  
The last step was to set a suitable stopping criteria for the algorithm. Based on 

some experiments on the instance of Heragu and Kusiak (1991) [4] with 30 de-
partments, it was considered as the minimum of 3000 algorithm runs or no 
change in the best answer in 100 consecutive runs.  

6. The Computational Results 

In this section, the performance of our approach on several sets of GSRFLP in-
stances is reported. The tests have been carried out on a portable computer with 
Intel(R) Core(TM) i3-2357M CPU with processor speed of 1.3 GHz and memo-
ry of two GB of Ram on MATLAB R2016b version 9.1.0.441655.  

The algorithm was tested on sets of SRFLP instances by Anjos et al. (2005) 
[14] with some modifications due to the difference between SRFLP and GSRFLP. 
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This set consists of four groups with instances of size 60, 70, 75 and 80 and each 
group consists five instances. 

Each problem ran ten times and the best solution of runs is considered as the 
final solution. Information related to these problems including name of the 
problem, the problem size (number of departments), the best answer found so 
far, the answer of the proposed algorithm, the running time in seconds for pro-
posed algorithm, the difference between the obtained solution and best solution 
so far in percentage, is presented as the columns of Table 3. It is seen that the 
solutions for all instances have under 0.1% gap with the optimal value. Also, for 
19 instances out of 20 instances, the proposed algorithm is able to find the best 
solution with approximately 0.0% gap. The execution time seems to be signifi-
cantly efficient for large instances compared to literature (Kothari & Ghosh, 
2014b) [64].  

In Figure 5, the horizontal axis shows the name of the problem and the ver-
tical axis shows the gap between the best eight random solutions and the first in-
itial population with the best known solution of the problem. Despite this fact 
that the proposed initial population does not guarantee the suitability of the ob-
jective function’s value in general, there is not even one case that best random 
population objective function value has been lower than the initially proposed 
population’s one. On average, the minimum distance of the objective function 
on a random solution is 42% more than the proposed layout for initial popula-
tion. In 18 from 20 instances the first initial population had less than 10% gap 
and in 5 from 20 instances it had less than 5% gap with the best found solution.  
 

 
Figure 5. Comparison between best answer of proposed initial population with random population. 
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Table 3. Comparison of thesolutions for the benchmark instances of Anjos et al. (2005) 
[14]. 

 
Name Size Best solution Proposed solution Time (seconds) Gap% 

1 Anjos-60-01 60 1477834c 1,477,834 27.66 0.0 

2 Anjos-60-02 60 841776b 841,814 23.48 ~0.0 

3 Anjos-60-03 60 648,337.5c 648,651.5 45.04 ~0.0 

4 Anjos-60-04 60 398,406b 398,481 15.60 ~0.0 

5 Anjos-60-05 60 318,805c 318,855 31.28 ~0.0 

6 Anjos-70-01 70 1,528,537b 1,528,760 55.96 ~0.0 

7 Anjos-70-02 70 1,441,028c 1,441,504 34.68 ~0.0 

8 Anjos-70-03 70 1,518,993.5c 1,519,578.5 52.48 ~0.0 

9 Anjos-70-04 70 968,796a 968,796 60.30 0.0 

10 Anjos-70-05 70 4,218,002.5b 4,218,017.5 44.87 ~0.0 

11 Anjos-75-01 75 2,393,456.5a 23,958,845 62.64 0.1 

12 Anjos-75-02 75 4,321,190c 4,321,381 75.73 ~0.0 

13 Anjos-75-03 75 1,248,423b 1,248,664 66.85 ~0.0 

14 Anjos-75-04 75 3,941,816.5b 3,942,749.5 72.41 ~0.0 

15 Anjos-75-05 75 1,791,408c 1,792,038 45.05 ~0.0 

16 Anjos-80-01 80 2,069,097.5c 2,069,192.5 62.57 ~0.0 

17 Anjos-80-02 80 1,921,136b 1,921,202 54.57 ~0.0 

18 Anjos-80-03 80 3,251,368a 3,251,435 65.37 ~0.0 

19 Anjos-80-04 80 3,746,515c 3,747,548 48.26 ~0.0 

20 Anjos-80-05 80 1,588,885b 1,588,963 65.26 ~0.0 

aIndicates the best known solution reported in Datta et al. (2011); bIndicates the best known solution re-
ported in Lian et al. (2011); cIndicates the best known solution reported in Samarghandi and Eshghi (2010). 

7. Discussion  

Single Row Facility Layout Problem, SRFLP, is one of the most interesting prob-
lems in the field of facility layout and it has many practical applications. SRFLP 
is NP-hard problem. In this paper, First, a new version of this problem, called 
Single Row Equidistant Facility Layout Problem, was introduced and its lower 
bound was calculated theoretically by proving a lemma. Then, another version of 
this problem, called Generalized Single Row Facility Layout Problem (or GSRFLP), 
was also presented and its model was discussed. Moreover, a Cuckoo Optimiza-
tion Algorithm for solving GSRFLP is proposed. The experimental results indi-
cate that the proposed cuckoo algorithm is capable of solving SRFLP and reached 
to satisfactory solutions in an acceptable time for small and large size instances. 

https://doi.org/10.4236/ajor.2020.106017


M. Meskar, K. Eshghi 
 

 

DOI: 10.4236/ajor.2020.106017 316 American Journal of Operations Research 
 

The highest gap between optimal solution and proposed algorithm solution is 
less than 0.1%. Also, it could improve the execution time for large size problems. 
The algorithm starts with a suitable population with average of 6.7% gap with 
optimal solution. In summary, three difficult models, their lower bounds and 
solution methods are discussed in this paper.  

8. Conclusions and Future Research 

In this paper, a lower bound, as well as an algorithm, are proposed for solving 
special classes of SRFLP. Computational experiments were also carried on large 
size sets of instances.  

As future work, the lower bound of SRFLP can be extended to the other types 
of row layout problems including double row layout problem and GSRFLP. 
Another additional future work is to study solving larger instances of SRFLP and 
other layout problems by exact algorithms. Finally, special type of SRFLP with 
equal length of departments (SREFLP) can be an interesting topic for future re-
search. Given known distance matrix in SREFLP, there would be cases with pre-
determined solutions. 
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