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Abstract

This article examines some of the properties of quasi-Fejer sequences when
used in quasi-gradiental techniques as an alternative to stochastic search tech-
niques for optimizing unconstrained mathematical programming models. The
convergence and efficiency of the method are analyzed, and its potential use
as an interior-point algorithm for optimizing integer linear programming
models is explored, ensuring the feasibility of the solution at each stage of the
search. To achieve this, it is proposed to remain within the feasible region by
using small perturbations around the points found until convergence is reached.
This alternative is compared with the traditional Branch and Bound method
using software programs available for this purpose. The results obtained sug-
gest that the technique, applied to models with few variables, is inefficient but
is practical for large-scale models, since simple changes in the components of
the located points generate a feasible sequence that almost always converges.

Keywords

Fejer Successions, Integer Programming, Stochastic Convergence
Techniques, Random Search

1. Introduction

Generally, Random Search Techniques (RSM) are methods used for the optimi-
zation of some mathematical programming models using approximation sequences
that improve in each iteration of the algorithm based on simple changes. Similarly,
Stochastic Quasi-Gradient (SQG) methods are stochastic algorithmic procedures

for solving general constrained optimization problems with non-differentiable and
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non-convex functions. In deterministic models, this technique offers extensive pos-
sibilities for implementing alternative heuristics that seek to minimize classical com-
putational complexity in models such as integer linear programming. This class of
algorithms defines an exploration sequence similar to sequential adaptive learning
and improves decisions based on data and simulations, which are known as Adap-
tive Monte Carlo Optimization [1].

The computational complexity of an integer linear programming model lies in
the integrality restrictions imposed on the model, which force it to explore a discrete
region with a number of combinations that grow exponentially as the model in-
creases the number of variables. This means searching for solutions in a non-con-
vex and non-continuous region, which greatly complicates the problem. Hence,
they are classified as NP-hard problems, in which the time to convergence also
grows exponentially. Methods for solving instances of integer programming mod-
els use exact algorithms and/or approximation methods that generally work using
simple rules, almost always obtaining an approximate solution. In the first case, ex-
act algorithms obtain exact solutions in reasonably finite times by reducing the search
space, called cuts. Unfortunately, these methods work well for small problems, but
are of no practical use since real problems require an enormous amount of time
(exponential) to achieve convergence. Problems related to manufacturing, logis-
tics, facility location, routing and more require millions of variables, almost always
integers, to provide a satisfactory solution to the model [2]-[6]. Heuristics for inte-
ger programming are sometimes used with relative success because their approxi-
mation is not good, but they solve large-scale problems in reasonable times. Among
the most popular are Local Branching, Relaxation-Induced Neighborhood Search
and Variants.

An integer programming problem can be presented in several forms. In its pur-
est form, all variables involved in the model must be integers; that is, it is a Pure
Integer Linear Programming (PILP) model. In other cases, binary variables are
required for yes-no decisions, in which case, the model is called Binary Linear Pro-
gramming (BLP). Finally, a mixture of integer, continuous, and even binary var-
iables in a single model produces a Mixed Integer Linear Programming (MILP)
model. It has been intensively demonstrated that the computational complexity
of an integer programming model (in any of its meanings) is classified as NPsince
the algorithm evolves in pseudo-polynomial time for any number of constraints
[7].

Some approaches to the problem are based on the use of evolutionary algorithms
that make use of selected nodes of a branching tree whose basic elements are the
population, combination, mutation and selection [8] [9]. In some cases, integer
optimization is used in novel areas such as bilevel optimization, where some var-
iables are constrained to be the solution of another optimization problem [10]. Re-
cently, learning techniques (supervised learning) have been introduced into this
algorithm to improve its critical components [11]. These techniques are being con-

sidered as an alternative to solve combinatorial optimization (CO) problems and
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for the moment, they represent a promising alternative idea to NP-complex prob-
lems. In this paper, we revisit a concept that has remained classic: the techniques
developed by Ermoliev et al [12] for optimization problems without the need for
continuity or differentiability constraints, and orient them toward optimization
models with integrity characteristics.

In the practice of engineering and science, it is frequently required to solve op-
timization models whose decision variables must be integers. This situation arises
when non-fractional quantities are handled in decision-making models, such as
the number of vehicles exported by a company, the number of people assigned to
a manufacturing operation, or the number of meals to be served in a restaurant dur-
ing a given period.

This paper analyzes and evaluates the alternative of using a perturbation and
bounding technique at feasible points in an integer linear programming model. This
allows the method to identify how a multivariate function changes in a specific di-
rection, not just along the coordinate axes. Thus, using this rate of change, it is pos-
sible to find a direction of descent, allowing the procedure to remain within the search
region while maintaining the feasibility of the solution.

Therefore, using a random search method from the first iteration, it is possible
to introduce changes into the model at regular intervals driven by a known prob-
ability distribution.

Given the nature of the problem analyzed, the properties of quasi-Fejer sequences
are useful to determine the convergence of the technique via the monotonicity prop-
erties of such sequences.

The problem is initially approached from the perspective of constructing a con-
vex and bounded set from which discrete candidate points can be generated that
can be evaluated to locate a descent direction. The p -dimensional sphere is ideal
for this purpose. A hypersphere, or more commonly called an p -dimensional
sphere, is a generalization of the circle (called a 2-sphere) and the usual sphere
(called a 3-sphere) to dimensions p > 4. Therefore, the p -sphere is defined as
the set of p -tuples of points (xl,xz,-n,xp) such that x;+x; +--+x, =R*.
In optimization theory, an p -dimensional sphere takes on special importance
because it defines a perfect convex and compact set.

For the above reasons, we take up the ideas developed in [13] [14] and extend
them to the solution of cases of entire problems, we show the underlying theory in
the proposal and we illustrate the results with a numerical example.

For this exploration, the following research questions will be answered:

1) Can an alternative metaheuristic be constructed that allows an approxima-
tion to the optimal value of an integer linear programming model using tech-
niques?

2) What should be the shape of the descent direction?

3) How can a vector perturbation of them be achieved in order to find a sequence
of integer points that satisfactorily converges to the desired optimum?

4) Would it be possible to apply the investigated method to large-scale models
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commonly required in practical engineering and science applications while mini-
mizing its inherent computational complexity?

To address this problem, the document has been organized as follows. In Sec-
tion 2, the problem to be addressed is formally presented and its notation is de-
fined. Section 3 illustrates how to apply the alternative studied and compares the
results in simple visualization examples. A discussion of the findings is presented
in Section 4; finally, Section 5 presents the conclusions of this work.

Below, we describe the sequence of steps used to solve the proposed instance.

2. Statement of the Problem

In mathematical programming, a heuristic is a technique used to approximate so-
lutions to complex problems using simple rules that do not guarantee finding the
optimal solution, but are good enough to achieve within a reasonable timeframe
[15]. When a heuristic can be implemented as a computational algorithm, then it
is called a metaheuristic [16].

In this part of the document, we are interested in analyzing an alternative method
(heuristic) to optimize models of the following type

Minimize g(X)=cx, +c,x, +--+c,x, = Z" C,X,; (1)

i=1 i
where
+ g(X) isthe objective function or utility function of the problem.
e ¢, i=12,---,n define the cost coefficients of the utility function.
e x,€Z"U {0} , i=1,2,---,n are the decision variables (positive integers) of the
problem

The restrictive set is defined by the matrix system given by

ay  an o G, X b,
Ay Ay Oy, || X b,

4 o R @)
aml am2 o amn xn bm

where a; are called the technological coefficients and 5, are the available re-
sources. For simplicity, in the remainder of this document, the problem (PILP) will
be represented in the following equivalent form

Minimice g(X)={CX'| AX =b,X e D < Z" U{0}}. 3)

here, D is the feasible region where all the restrictions are met. 4 isa matrix
of size mxn,and b isavector mxl.An overview of quasi-Fejer sequences is
provided below.

A quasi-Fejer sequence is a sequence in a finite-dimensional Hilbert space that
satisfies a Fejer monotonicity property, plus an additional error. Such sequences
approach an accumulation point by dragging along an error that decreases with time.
Formally, a sequence {X,} in a Hilbert space is Fejer monotone with respect to
D,ifforeach XeD [17].

1% _Xk"z <||x, _X||2 &
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where »'e <oo.

Similarly, the concept of a quasi-gradient will be formally addressed as a statis-
tical estimate of a true gradient. Thus, when searching within D, an estimated
approximation toward a downward direction in the first two search values will be

used. The search is the updated based on the newly acquired information.

2.1. The Concept of Quasi-Gradient and Its Construction

Let g(X) bea convex function not necessarily differentiable. The subgradient
vector at the point X =(x,---,x,) isany @g(X) vector that satisfies the ine-
quality

g(¥Y)-g(Xx)=(Vg(X),Y-Xx) 4

For any arbitrary, ¥ € R". The vector @g(X) forms a right angle with the
normal to the supporting hyperplane of the set {Y lg(Y)< g(X)} ,s0if g(X)
is differentiable, then Vg (X) coincides with the gradientof g in X, Vg(X).
Analogously, if f(X) isconvex,then g isa quasi-gradientin X if

g (Y-X)20= f(Y)= f(X)

Geometrically, g defines a supporting hyperplane to the sublevel set
{x | f(X)< f(XO )} . In this case, the set of quasigradients at X, formsa cone
[18].

Random search techniques work from a sequence of random variables X de-
finedon D that force it towards a limit point X" . The randomness of the search
consists of proposing an estimator of the subgradient vector that serves to obtain
a direction of descent. Such estimator can be constructed using the Monte Carlo

method, where the most important thing is to demonstrate that the proposed sub-

gradient estimator is an expression of the type

E(X)=E[Vg(X):|=ck6g(Xk)+®k, k=0,1-- (5)

where ¢, isanon-negative number and ®, is a vector dimensionally compatible
with the subgradient 6g(xk ).

In this analysis, it is possible to use a variant of the technique to build at least
an initial iteration to start the descent sequence, approaching the optimal point
X" step by step in such a way thatin the k -th iteration, the point X, isknown
and therefore, the next point X,,, will be achieved through the classic approxi-

mation given by

Xew =X+ Vg(X,), a>0, X, eZ', k=12~ (6)

Because of the way in which these types of algorithms approach a solution, the
criterion for stopping the search here is based on convergence in probability, that
is,

lim P[|X,,, - X,[|>€]=0, Ve>0. 7)

n—ow

This possibility is explored below.
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2.2. The Mathematical Procedure

Consider a vector 6 =(6,,---,6,) whose components are independent and uni-
formly distributed random variables in [—¢,,c, | . In this paper, a discrete uniform
distribution is used to obtain a finite set of integer values uniformly distributed over
the surface of the hypersphere.

Since there is no a priori information about the probability density that defines
the search region, we will consider that the movement can occur in any direction
with the same probability. Suppose that in iteration k, p, samplesofsize s are

available

o =(6--.0,)

0, = (0.6,

el‘Tpk =(6’]:pk ’.."el‘spk )

If X, isavector givenatiteration k with A, >0,thenan estimator &(.X,)

of the subgradient of g in X, can be written as

g(Xk +Ak61:)_g(Xk)

é(Xk): zikl Ak gki ( )
8
g(X,+A00)-2(X,) g(XkJFAk‘ngp,,)_g(Xk)
= 0, 4+ o, .
A, ! A, Ph
thus, assuming convexity in g, we have that
X, +06, —g(X -
sl os X)) 000000
k
So, applying the mathematical expectation operator, we have to
X, +A, 0
E s “e(x >E { )00 )0, | X, }
Ak
:E{ HkT 6 )|Xk}
n ~
= ey -a) Ve(X,)
Therefore,
E{g(Xk)|Xk}:i(cz_cl)zﬁg(Xk)_i_VVk 9)

12
\2
From the above, it follows that if, ¥ = (0,(’1) j=1,---,n,then Y hasa den-
sity given by

ifOSySl

N

fy(y cl)\/7

O, otherwise
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and from the previous assumption, it follows that W, is uniformly bounded, ‘e,
7 |<e, e>o0.

To facilitate the analysis process, we now simplify the search space and define the
projection operator. Let us define the set as closed and convex D ={X|a <X <b}.
Let 7(X) be the projection operatoron D ;thatis, forany X eR", 7(X)eD
and

||X — 1y (X)" = min| X -7

YeD

Let the random sequence of points X, be defined as

Xk+1:HD(Xk_ak7k§k)» k=1, (10)
where X is an arbitrary point for which E{||X0||2} =cte<o, ¢, isthe step
length, y, isa normalization factor and &, = <§k| RN ) is a random vector
whose conditional mathematical expectation is given by

E{& | X, X, }=¢Vg(X,)+O,, k=1, (11)
here, ¢, isanon-negative number, ©, = ('9k1 ;o0 0, ) is a vector, 6g(X) isa

subgradient, that is, the vector &, satisfies a relation of the form

E{&(X)|H(X)}=cVg(X)+6. (12)

Notice that, when D =R" and 7z(.X)=X, Equation (10) can be used to op-
timize models of the type (1) and the method is called the generalized stochastic
quasi-gradient method. The results presented below are based on the iconic work
of Ermoliev [19].

Lemma 1 (Convergence). Suppose that the values of %, are known such that
E{J& [ 1Ko, X} B <M, <e0, i=L b andalso [X,]<B<e,
i=1,---,k . Let be the normalization factor p, that satisfies the equation

0<y, (Tk "Xk

+hk)<oo,

where 7, (X,,---, X, ), 7, =1 if ||®k||>0, and 7, =0, if "@k":(). Let the

2k

quantities

o0 o0
o, 20, ¢, 20, Y ayn <0, D apr, <o, (13)
k=0 k=0

then, the sequence of points defined by Equation (10) is a quasi-Fejer sequence

with respect to the set D . Even more, if it satisfied
Dyl = (14)
k=0
then, the sequence {X,} converges globally to the solution of the problem
Minimizey E,, {y (X, w)| X e D}. (15)
Proof Let X~ bean arbitrary solution to the problem (15), we have to
2 N 2
= ”X —1I, (Xk 78 )”
* 2
S "X - Xy +0‘k7k§k||

:”X*—X/«”2 +2a,7, <§k,X*—Xk>+a/f7//f "§k"2

||X* _Xk+1
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Taking the mathematical expectation on both sides of the equality, we have
E{ 0’...’Xk}
* 2 ad * *
<| X" x| + 20700 (Ve (X,), X" = X, )+ 20,7, (0, X" - X;)
+ @ B{JE [ 1 X X,

T A

where

Ef|¥]}-E{|(%.(0 ))T |
=1, sz (@)P(do).

here, () is sample space corresponding to the probability space (Q,F,P). Apply-
ing the Cauchy-Schwarz inequality and considering that g (X T-g(X, )) <0, we
have to

E{"X* _X/m ’ |Xov""Xk}

<|x - x,[ 20,0 [ 2 (X)-g (X)) [+ 207 0¥ - X,
+ @ E{|E[ | X, X, |
<[ - x,[ +20,7, lo[x |+ X []+ azyQE{”;‘k HEAS Xk}
< "X* —Xk"2 +2a,7, [7* ||X*||+7k ||Xk|”+ak27/,‘2MB
< "X* —Xk"2 +2a,y, [7/* ||X*||+ y*BJ +a27/*MB.

The inequalities found and the conditions defined in Equation (13) prove the
first part of the theorem. Now, it will be proven that if the conditions of Equation
(14) are met, then one of the limit points of the succession {X s (a))} , for almost
all, @ belongs to the set of solutions to the problem (1). Applying mathematical
expectation again, we have to

E{”X ~X,., ||2} <|x -x [ 22kl (Ve (X)X - X))
+ 2[7/2 ||X*||+ 7*3]2;0 o, + zz:oa,fy*MB

N 2
From (16), it follows that E{"X -X,, } is uniformly bounded and

(16)

éakl"E{yk’<6g(Xk)’X*_Xk>} > =

Since that )" @/, =oo, we have to E{yk <@g(Xk),X* —Xk>} —0 when
k — o0 . Note also that there exists a subsequence {st},t =0,1,--- for which

Vs (0))<6g(Xx, (@), X - X, (a))> —0.

with probability one, according to ¢ — 1. It is concluded then that, for almost all
 , the sequence {X, (@)} is bounded, that is, for almost all

<§g(Xkl (a))),X—Xk, (a))> —0. Then, as ¢—> o, the sequence X, (@) con-
verges to the solution of the problem (15), the theorem is proven. 0
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2.3. Generating a Descent Trajectory

A first approach to what could be a search method using the technique is to use a
variant of Equation (11) by constructing a dome around the point X, ; that is,
create a hypersphere of dimension p centered on it and generate a sample of
points uniformly distributed on the surface of the hypersphere of unit radius and
use the distance between the center and the surface of the hypersphere as the dif-
ference between X, and X,,, toobtainanapproximation toEquation (6). The
formal ideas are discussed below.

Let’s consider a hypersphere of dimension p in which we will obtain a num-

ber of points uniformly distributed over its surface (Figure 1).

Figure 1. p discrete points uniformly distributed over the surface of a hypersphere in

R”.

Let X =(X1,X2,~-,Xp) be arandom vector where X, X,,---, X areinde-
pendent and continuous random variables defined over a probability space (€, F,5)

with joint density function given by
e R e B G (7)

By the continuity hypothesis of X, FXI,Xz,m,Xp (xl,xz,- R xp) is a non-decreas-
ing function and therefore, for each X, there is the inverse function

1

& =Fy (U) defined for any value of U e/ ~[0,1] such that
&=F; (U)=inf{x:F, (x)>U}, (18)

The generation of a random vector Y € R” on the surface of a unit hypersphere
in the same dimension is given by Algorithm 1 shown below [20].

Thus, given an initial value X, (which is the center of the unitary hypersphere),
generate p points uniformly distributed on its surface and apply the follow-
ing criterion to select the consecutive value (applicable to the minimization

case).
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Algorithm 1. Algorithm for generating vectors on an p -dimensional unit hypersphere.

Require: Generate Uy, ..., U, from U (0,1)
Ensure: Z € R?

while Y2 < 1 do
Xi(—].*QUi, iil,...,p
Y2<_Z?:1 X7

Zi —

Z=(Z,...,%,)

if Y2 > 1 then Discard the values of U; and obtain a new sample of size p. Go back to the beginning
of the algorithm.

end if

Update the Z parameter values

end while

Figure 2. Trajectory search method using a unit hypersphere.

This is, the new value X,,, becomes the center of the new hypersphere and
the process is repeated (Figure 2). The following sequencing process is then gen-

erated
Xy X, if[ (X)) <g(X,)] k=1, (19)

Otherwise, the value of X, is retained.
It can be shown that the acceptance-rejection method to generate the correspond-
ing lotteries is highly inefficient. Its effectiveness is given by

(p)= Volume of the hypersphere 1 n*l?
Volume of the hypercube ~ p2°7' T'(p/2)

where I'(-) isthe gamma function. It is easy to verify that for p >4, the algo-
rithm becomes inefficient and therefore impractical for large-scale problems (Ta-
ble 1). For this reason, it is of practical use to locate atmost p =4 points uniformly

distributed on the surface of the hypersphere.
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Table 1. Efficiency of the algorithm as a function of the number of points required.

P 1 2 3 4 5 6 7 8

n(p)  1.0000 07854 0.5236 03084 0.1645 0.0807 0.0369 0.0159

Thus, it will be perturbing just some of the components x, of X, in the fol-

lowing manner

£, =x, £, forsomex, € X,, B, ~|U[-1,2]], k=01, (20)

where || means the largest integer less than or equal to , and the draw of the
random variable [, provides the lotteries of the integer values -1, 0, 1, expand-
ing the search in the neighborhood given by Equation (20). Therefore, we now have

the perturbed sequence given by

)A(k+1:“j\(k_ak€g()’\(k)Jﬂ k=0, (21)
with X, €D known, X, isthe new perturbed vector containing one or more
perturbed components x, . This means that the search should be focused on the
direction where g(.X,) changes value as quickly as possible. The guideline for
selecting the appropriate component is to perturb the value of x, satisfying the

requirements of Equation (19) and using X, instead of X, .

Algorithm 2. Pseudocode associated with the proposal.

Require: X,, X, € D, ¢ =0.01 > Start of the algorithm
Ensure: Xj.1,
k<0

Y | Xo — X |2

ﬁg(Xk) « 9(Xp)=9(Xa)

1 X1] ¢ X, if min[g(Xa), g(Xs)] = g(Xa); otherwise | Xy ] < Xp
Yk

X% X,

Xi1 [ Xy — o Vg(Xy) |
if | Xj41] € D then
9() [ Xk |, g() « [Xt1]
while ¢, < e do
ex | g([Xnt1]) — g([Xk]) |
B+ BU—-1), U~U(0,1)
k=k+1
Xk <« | Bk X x5, for some x5 € X}, such that g(Lij) < 9(| X)), X, eD
| Xkt1] < [Xk]
| Xk | [X-1]
end while

else if LX;CHJ ¢ D then > Return to the beginning of the algorithm
end if

In this, «, satisfies the following conditions:

o, = 7/—"2, or equivalently ||X,,, — X, | = 7, (22)
e (x)
a, 20, iai <o, iak =o0. (23)
k=1 k=1
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and the quasi-gradient estimator is given by

6g(Xk):g(/%/m)_g(j(k)

() -(5)]

Equations (22) and (23) show the conditions that must be imposed on the com-

(24)

ponents of the estimator in order to achieve their concurrence at a minimum value.
Such values are necessary in the development of a Fejer sequence to guarantee the
monotonicity of its convergence and have been widely demonstrated in [21] and
Theorem 1 of this document.

Algorithm 2 and the pseudocode shown in Figure 3 illustrate the steps followed
in this process.

Once this outline is complete, we now proceed to test the proposal in the next

section.

3. Numerical Results

To illustrate the use of the algorithm, the corresponding pseudocode and the algo-

rithm associated with the proposal are shown below in Figure 3.

@ |

Get: g(1Xel, 9(1Xps1])

Input data: 1
X, X,€D
<= 001 ek = 19 (Xiea) = 91X

@ Yes

I G

Get: B, =3U —1,
U~1u(0,1)

T Xp) -~ 9(Xa)
V gy ~ £ k=k+1

Yie = 11Xy — Xall2

Xq, if minfg(X,), g(X,)] = g(Xa)

Xkl =

Xp, else.
_ Yk Obtain the following value| £ | by
Qe = 1 Xl perturbing some components x; €
| X} ] such that:
[Zs] = 1Bi * xs]
1 and
9([%]) < 901Xk, X €D
Xir1 =X — . V g(X)]
]
K1) = |X
No Ves Wil = 1] '
M 120 = 180
Initial Path to
approach convergence

Figure 3. Pseudocode associated with the proposal.
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The use of the proposal is illustrated below with a numerical example.
- Model 1

Minimize g (X ) =2x, —x, —6x; +8x, +15x; +17x, — 2Lx, +14x, +16x,
+6x,) —6x,, +2x, +7x5 +16x, +11x,5 — 5x, —3x,
=2x;5 = 9%,y +16x, +11x,, +21x,, +14x,; —5x,, +5x,5

+ 4%, + 2%, +8Xy — TX,9 + 35,

Subject to:
12x, +6x; —8x, +x +11xy +4x,) +7x;; —4x, + X5 + 5%,
—4x,; 2%, + Xy, — 2,5 + 4%y, + 606X — Xpg +8X,4 +3x;, =750
X, =Xy H4x, + T, + 2x5 +xg —8x; +11x,,, +9x, +11x,4
+ 21x,, — X5 +8x,; + X <1200
XX, X+ Xy X+ X+ X+ X + X+ X X X,
+ X3+ Xy X5 F Xy X X+ Xy X0 =Xy — 4y,
= 9%y, —11x,, —Xp5 — Xy — 2% —8Xpg + Xy + 2230 <0
Xy +Xg +Xg X X, F Xy F Xy — Xy — Xy — Xpg = —1
4x, +8xy +12x,, +16x,, +20x,, + 24x,, +28x,4 —30x,, <1350
X <4x, <6;x, <8;x, <10;x; <14;x, <18;x, <22;x, <26
Xo £205x,, <125 %, £16;x,; <18;x,, <16;x,, <18;x,, <20
X7 £22505 £265x,9 < 245x,, < 24

x; €L Vi, j

The exact solution to this instance is shown in Table 2. This is reached after 63

iterations using a standard scientific method of Integer Linear Programming (/LP)
via LINGO [22], with g(X")=-1816.

Table 2. Exact solution of the proposed instance.

X X X3 X4 Xs Xg X7 Xg X o
2 6 8 0 0 0 22 0 0 0
X1 12 X3 X4 Xis X16 X7 18 X19 X0
16 0 0 0 0 20 22 26 24 0
X X2 X3 X4 Xas Xas X7 Xog X9 X30
0 0 0 136 0 0 0 0 45 75

To illustrate the use of this algorithm, the initial steps of the algorithm applied

to the previous example are indicated below (see Table A1: Initial solutions).

1)Let X, and X;eD be defined as follows, with g(X,)=2069 and
g(X,)=2022. Thus, for ¢=0.01 and k=0, we have
X,=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
X, =1,2,3,4,5,6,6,7,8,10,11,11,13,14,15
15,17,17,18,19,21,22,22,24,24,25,26,27,29,29
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2) From the above, it is verified that y, =[x, - X, ||, =3.7417.
3) Similarly, V(X,) L 200972022 _ 1) 5611
3.7417
4) Itis also verified that min{g(X,),g(X,)}=2069, therefore X, =X,,and
Ve _ 3.7417 — 00384

“ x|, 972368

5) Therefore, for k=2, weobtain X, eD given by
X, =| X,-0.0384(12.5611) |, with g(X,)=1936

6) The incremental value obtained is ¢ =||X, — X[, =4 . Because ¢>0.01, the
specified the process continues.

7) What if X, ¢ D ? Proceed to the bounding phase as follows: get the random
variable S, =3U -1 suchthat U ~2{(0,1) and modify X, asshown below

)A(k :Lﬁk*XkJ

until X, e D.Replace X, by X,, and continue with the process.

The quantity (3U —1) allows us to recognize the neighborhood around X,
and to carefully advance in the region, avoiding falling into points outside the
boundary of D . Although slow, this procedure allows a safe advance towards an
approximate convergence. When the sequence approaches the boundary of D,
it is highly probable to generate sequences of infeasible points, having to further
reduce the size of the search. Finally, an experimental strategy found suggests per-
turbing only some components of X, asa directional derivative. The way of
choosing the components to be perturbed obeys the criterion £ =| g, *x, |, such
that g(L)A(kJ) < g(|_Xk_|) .

Clearly, if the sequence {c, } , issuch that {a,} , <1, then it satisfies the con-
ditions imposed in Equations (22) and (23).

The rest of the solutions and the convergence to the optimal solution are shown
in Table Al of Appendix.

The search behavior and its convergence are shown in Figure 4. It shows how
quickly the algorithm progresses in its first attempts to locate solutions better than
the original. However, as the algorithm progresses, the search slows, and conver-
gence encounters increasing difficulties in locating a new transfer point. This is
because both the feasibility and convergence conditions must be met. In particular,
the algorithm slows down when approaching points located on or near the bound-
aryof D, since neighborhoods are often located in infeasible zones. However, once
the subsequent points enter D, the algorithm appears to advance more quickly.
This also explains why it is slow when approaching the optimal value, since, as is
known, it lies in a corner of the simplex formed by its constraints.

Using the described technique, the convergence of the m2eth0d required 116 it-
erations. Figure 5 shows the graph of the norm “)A( o= X k“ recorded during the
iterations of the algorithm.

Finally, Figure 6 shows the behavior of the « (k) value throughout the evolu-

tion of the search.
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4. Discussion and Statistical Analysis of the Results

The results found suggest that the proposed method is feasible and constitutes an
alternative for large-scale integer models. However, there is still considerable work
to be done in the form of selection and creation of the X, sequences since a di-
rect comparison between g()?k+1 ) - g(f(k) is inefficient. So far, ensuring that
X, €D isonlyachieved through a feasibility test. Therefore, another line of research
in this regard consists of developing a method in which the {)? k} sequence re-
mains feasible at all times.

A simple way to evaluate the efficiency of the method is to determine the math-
ematical expectation of the differences in increments in a single step
A, =g(X,.)—g(X,) and obtain the estimator
E(,]
E(N,]

=

> (25)

where N, isthe number of points that must be evaluated to locate a descent di-
rection atiteration k . The approach of the research would be oriented to maximize
the value of 7, .
An approximation to the efficiency function is as follows. Note that
Xy =X, +AX, , therefore
g(Xk+1): g(Xk)+AXk
Then, by the convexity of g, we have that
g(Xk+1)=g(Xk)+AXk
=g(X,)+(AX,, Vg (X, )+ (AX,) (26)
= g(Xk)+||AXk||"Vg(Xk )"cos((p)+5(AXk)
where cos(¢) is the cosine of the angle formed by the unit sphere by the vectors
AX, and ﬁg(X . ) - These vectors are unitary and start from the center of the
sphere, generating points on its surface. Similarly, the function §(AX,) is such
that 5(AX,)—>0 when (AX,)—0.
Then

AX, =X,, - X, =-aVg(X,)
Thus, by conveniently substituting in Equation (26), we have that
g(Xe)=g(X,)+a|Ve (X, )||2 cos(p) -5 (aVg(X,)).
where for a small AX, , we have that
Mg = (X))~ (X,) = al[Ve (%) cos o).
Thus, by Equation (25), it is concluded that

_E{Ag ] _ E {a "ﬁg(Xk )"2 COS(gp)}

E{N,} E{m} (27)

= —%"@g(Xk )"2 E[cos(go)],
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where m isthe number of points evaluated before finding a descent direction, and
—n/2 <@ <m/2.]1It can be shown that the density of the random angle ¢ for an
n-dimensional hypersphere is given by [23].

(o) =2 12)

=——~"/ _—Bsin"?(p
_[0" sin"?(p)de (0)

where

T'(n/2)
Jar[(n+1))2]’

and T'(-) isthe gamma function. Thus:

Bn =
1= Fe ()], )" cos(o)sin"* (o) a0

The 7 function decreases rapidly for large values of 7, remaining insensitive

to changesin m but is highly influenced by the value of alpha (Figure 7).

2afy
mn-—1)
0.012

0.01
0.008
0.006
0.004

0.002

0
1. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

n

Figure 7. Speed of decline of the efficiency function as a function of n.

Another promising line is to find new ways to construct the subgradients that
define the search direction of the heuristic. Here, the technique’s competitive ad-
vantage lies in the convexity of g(.X') . Experimenting with various subgradients
and step sizes is also an option to improve the method’s efficiency.

There are extensive studies on the efficiency of search methods that point to the
magnitude of the complexity using this approach [24]; however, this framework
constitutes a fascinating alternative for study due to the almost unpredictable na-
ture of the method.

Comparative Aspects of the Alternative Method

Comparing two or more algorithms to evaluate their efficiency is an extensive task
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that involves several performance-related criteria. Below is an empirical analysis
on the efficiency of the proposal and its comparison with other alternatives, the
analysis is based on the suggestions given in [25].

In general, given two algorithms, ALl and AZ2, ALl is said to be more efficient
than AL2 if the following relationship holds.

a1 >1
Mar2

Likewise, the variance of the magnitude Ag, constitutes another criterion for
metric algorithm efficiency.

In the proposal presented in this document, the heuristic requires two initial fea-
sible solutions to trigger the first point of the process using a estimator. The pro-
cess then progresses by perturbing some of the components of the points already
evaluated, retaining the best values of the objective function and eliminating those
that do not contribute to minimizing it.

This approach has the advantage of providing great numerical stability, allow-
ing the objective function value to be reduced via feasible solutions at each itera-
tion.

Regarding solution quality, the results suggest a good approximation at the be-
ginning of the search, with the decline slowing as the method approaches the op-
timal solution. For practical purposes, its implementation is relatively simple because
once the first two values of the method are obtained and the first point is reached
by approximation, the rest of the process consists of perturbing the components of
the last point using a random search process. This is the part of the method that takes
the most time because, according to the graph, after four points on the sphere, the
efficiency decreases significantly.

Table 3 shows the results obtained when comparing our heuristic (which we pre-
sent as OH) with LINGO, AMPL, and GAMS. The following comparative models
(including Model 1, described above) were used to perform these runs [26] [27].
The presented mathematical models were coded in the LINGO optimization soft-
ware (which uses B&B as the default solver) and run on an Apple computer with an
M2-pro chip, 16 GHb of memory, and macOS Sequoia.

- Model 2: A model for locating warehouses in a logistics system with fixed costs,
3 warehouses, 3 consumption centers with the following data:

1) Capacity: 300, 525, 325.

2) Demand: 100, 200, 125, 225.

3) Variable costs:

10 5 12 3
4 9 15 6
15 8 6 11

4) Fixed costs: 125,000, 185,000, 100,000.
- Model 3: A multimodal transport model with 3 origins, 4 destinations and 2

modes of transport.
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Table 3. Comparisons of the exact method versus the heuristic.

&l Running using LINGO Running using OH
Mode
NV NC RI oG CPU NV NV RI oG CPU
1 30 26 63  -1816  0.09 30 26 122 -1816  0.45

2 24 37 28 289,100 0.05 24 37 75 289,000 0.42
3 288 55 9 3425 0.05 24 37 38 3400 0.40
4 3 3 20 0.9808 0.34 3 3 32 0.9800 1.03
5 18 13 242 324,760 0.07 18 13 325 32450 1.27
6 65 72 147 5732 1.03 65 72 290 5730 1.63

Running using AMPL Running using GAMS
Model

NV  NC RI oG CPU NV NV Rl oG CPU

1 30 26 80 -1816  0.11 30 26 80 -1816  0.24
24 37 32 289,100 0.09 24 37 33 289,000 0.14
288 55 14 3425 0.06 288 55 15 3400 0.11

2
3
4 3 3 24 0.9808  0.38 3 3 24 0.9800  0.39
5 18 13 248 324,760 1.01 18 13 250 324,760 1.00
6

65 72 152 5732 1.07 65 72 152 5732 1.08

Where NV denotes the number of variables involved, NCis the number of model constraints,
RIrepresents the number of iterations required for convergence, OG s the global optimal
value, CPU'is the time in seconds required by the computer.

1) Capacity: 200, 150, 300.
2) Demand: 100, 200, 125, 225.
3) Variable costs:

10.8 5.4 12.14 3.4
4.6 9.8 15.12 6.5
15.17 8.9 6.9 11.8

- Model 4: A reliability nonlinear model
Maximize R = (1 _ (1 _ 0.65)4d+1 )(1 B (1 _ 0.55)3+d2 )(1 3 (1 _ 0.70)4% )

Subject to:
16d, +12d, +13d, <75, 2<d, <3, 2<d, <2, 2<d, <4

d,d,dyeZ"

- Model 5: A production planning model with multiple processes and multiple
products [28].

m

T N
Minimize Z Z

i
ijetijt irLis
=1 i=l j=I

(cop,+CiL )

Subject to

m;

N
D >ayB, <A, t=1,2,--T; k=12,---,K
i=1 j=1
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P.I

it it

€Z', t=12,T; i=12,N; j=12,-,m,

With the following instance,
Minimize g (X ) =51, +61,, + 61, +71,, +71,,+72F,, +80F,, +85P,

Subject to:

+90P,, + 748, +78F,, +88P,, +95P,, + 15F,;
+ 78P123 + 4'P213 + 92P223

5Py +4piy +8py, +6p,,, <8600
10p,,, +8pyy, +12pyy, +9p,,, 17000
5Pin +4P 8Py, +6py, <8500
10p,, +8p1y +12py1, +9 sy, 16600
5Pis +4P1; +8Py; +6p,,; <8800
10,)113 +8piy; +12py15 +9pyy; <18200
I, =100+ £, + B, —1000

I, =1+ pyy, + Py, —1050
I;=1,+h,;+ 5, —-1100

I, =50+P,, + P, —500

Ly =1 + By, + By, =600

Ly =1y + B3 + Py =550

Pl eZ*

ijetit

- Model 6: A vehicle routing model visiting eight cities with a load capacity of

18 tons. The following distance and demand matrix is as follows.
1) Demand: 0, 6, 3,7, 7, 18,4, 5,

2) Dist. matrix:

0

0
0
0
0
0
0
0

Statistical Analysis

996
0
1167
1019
596
1059
1227
1055

2162 1067 499 2054 2134 2050
1167 1019 596 1059 1227 1055
0 1747 1723 214 168 250
1747 0 710 1538 1904 1528
1723 710 0 1589 1827 1579
214 1538 1589 0 371 36
168 1904 1827 371 0 407
250 1528 1579 36 407 0

In order to develop comparative statistics of the execution times of the proposed

models, the results obtained by applying three non-parametric tests designed spe-

cifically for such purposes are shown below [29].

- Friedman Test: As a first test, the non-parametric Friedman test is used to

compare related groups since the data do not meet the assumptions of normality.
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The Friedman test is used to demonstrate that there are significant differences in
the sample data in Table 3. The null hypothesis indicates that all algorithms be-
have similarly. Table 4 shows the ranges obtained in relation to the execution time

variable.

Table 4. Range analysis for the Friedman statistic.

LINGO OH AMPL GAMS
0.09 (1) 0.45 (4) 0.11 (2) 0.24 (3)
0.05 (1) 0.42 (4) 0.09 (2) 0.14 (3)
0.05 (1) 0.40 (4) 0.06 (2) 0.11 (3)
0.34 (1) 1.03 (4) 0.38 (2) 0.39 (3)
0.07 (1) 1.27 (4) 1.01 (3) 1(2)

0.03 (1) 1.63 (4) 1.07 (2) 1.08 (3)

Then, for n=6 and k=3, we have that the Friedman statistic is equal to

F, =%{;R‘f —3n(k+1)}=166.26 (28)

Thus, for a critical value of 0.10, F, =4.60 and the null hypothesis is rejected
and there are large significant differences between the running times of the algo-
rithms.

- Multiple Sign Test: This test uses LINGO as a study control method. This test
is an extension of the traditional method. Its objective is to determine the direc-
tion of the differences (signs) rather than their magnitude. The results are shown
in Table 5.

Table 5. Comparative results for the sign test.

LINGO OH AMPL GAMS
0.09 + + +
0.05 + + +
0.05 + + +
0.34 + + +
0.07 + + +
0.03 + + +
Number of minus signs 6 6 6
Number of plus signs 0 0 0
r 0 0 0

J

Where the respective medians of each method are given by: Med,,, , =0.08,

Med,, =0.74, Med ,,, =0.245 and Med,, =0.31. Thus, foran « =0.05,

the hypothesis H,: M, , <M, isaccepted since the number of plus signs is less

Lingo
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than the critical value R =6, with p=24 and k-1=3.

- Kruskal-Wallis Test: The Kruskal-Wallis test is a non-parametric test that will
be used to compare means and medians of independent groups, considering the
time taken by each algorithm to solve the proposed instances as a variable of interest.
This test uses the following statistic to maintain the null hypothesis of equality be-
tween the average times for all the algorithms tested (Table 3). Table 6 shows the

summary of calculations for this test.

KW:(/J—IJZ":FP{E‘E[R]T (29)

P 2

i=1 o

1 -1

where R, =6.4166, R, =10, R,=16.666, R,=11.2500,
2
E[R]:%:H.S and 022’012 =52. Thus, for p=>"" p =24, we get

that K, =8.8692. Thus, for ;(505,3 =7.8147 the null hypothesis is rejected.

Table 6. Ranges associated with the times used by the algorithms.

Alg. L L A L L A G A G G L A

Time 0.05 0.05 0.06 0.07 0.09 0.09 011 0.1 0.14 024 0.34 0.38
R 15 15 3 4 55 55 65 65 7 8 9 10

Alg. G O O 0 G A L O 4 G o O

Time 0.39 0.40 042 045 1 1.01 1.03 1.03 1.07 1.08 1.27 1.63
R 11 12 13 14 15 16 17 18 19 20 21 22

From the above results, it can be inferred that, although the proposed heuristic
appears promising, its computational efficiency is currently low compared to the
most common software programs on the market. Therefore, research into how to
improve the perturbation direction of the vector X, would have a strong impact
on the speed of convergence. Finally, converting the heuristic into a metaheuristic
would be the ideal alternative for implementation in engineering models that fre-
quently involve millions of integer variables to address real-world problems.

Like any heuristic, our proposal almost always provides convergent solutions;
however, in comparison, it is not very competitive with the branch-and-bound
method for cases with few variables. However, as mentioned at the beginning of
this presentation, this proposal is an alternative approach to traditional techniques,
such as cutting planes. As part of future research, it is recommended to evaluate

larger instances and refine the perturbation method to improve search efficiency.

5. Conclusions and Suggestions

This article presents an alternative heuristic to traditional scientific methods for op-
timizing an integer linear programming model.

The method consists of proposing two initial feasible points and, from there, us-
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ing a quasi-gradient search method to determine the direction of movement and
regulate the step size to remain within the set of integer values.

The novelty of this proposal lies in the fact that the method begins its search within
the feasible region and remains there, selecting movement directions by means of
slight perturbations to the components of the points that are not feasible, always
searching for a downward direction.

The results suggest the viability of the method for use in large-scale models since,
despite the enormous computational effort required to locate new points in the se-
quence, the search for a downward direction becomes rapid at the beginning of the
process, but slows down as the method approaches the optimal solution or when
the support point in iteration k& is on the boundary of the set D.

The results shown for locating points on a hypersphere suggest that a maximum
of four perturbed components maintains a good efficiency for the method. Although
this result is not conclusive, the alternative is to suggest other types of surfaces for
searching for alternate candidates in the descent sequence.

The experience gained in this research suggests expanding research into construc-
tion methods, search step sizes, and the selection of the best candidate components
to be perturbed during the process. Future avenues in this regard remain open to

provide more efficient methods based on the aforementioned conditions.
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Appendix: Convergence of Solutions of the Proposed Method

Table Al and Table A2 show the initial and final results of the process. Convergence is achieved after 121 iterations.

Table A1l. Initial solution and first five iterations of the process.

X] XZ X3 X4 XS Xﬁ X7 XS X9 XIO Xll X]Z XI3 X14 X]S

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15
Xlé Xl7 XIS Xl9 XZO XZI X22 X23 X24 X25 X26 X27 X28 X29 X30
6 17 18 19 20 21 2 23 24 25 26 27 28 29 30
g(X,)=2022
X] XZ X3 X4 XS X6 X7 XS X9 XIO Xll X]Z XI3 X14 X]S
1 2 3 4 5 6 6 7 8 0 1 1 13 14 15
X16 X17 XIS X19 XZ() XZI X22 X23 X24 XZS X26 X27 X28 XZ‘) X30
15 17 17 18 19 21 2 22 24 24 25 26 27 29 29
2(X,)=1936

X X, Xy X, X X X, X X, Xy X, X, X Xy X5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

X16 X17 X]8 X]9 XZ() XZI X22 X23 X24 X25 X26 X27 XZB X29 X30

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
k=4, g(X,)=1932

XX, X X, X, X, X, X, X, X, X, X, X, X, X,

1 2 3 3 4 5 6 6 8 10 11 10 12 14 15

Xlé Xl7 XIS Xl9 XZO XZI X22 X23 X24 X25 X26 X27 X28 X29 X30

15 16 16 18 19 20 22 21 24 24 24 25 26 28 29

X] XZ X3 X4 XS X6 X7 XS X9 XIO Xll X]Z X13 X14 X]S

1 2 3 3 4 5 6 6 8 10 11 10 12 14 15

X16 X17 XIS X19 XZO XZI X22 X23 X24 X25 X26 X27 X28 X29 X30

15 16 16 18 19 20 22 21 24 24 24 25 26 28 29
k=5, g(%,)=1926

X X, X, X, X, X, X, X, X, X, X, X, X, X, X,

0 7 8 7 4 7 6 6 7 8 14 10 14 12 16

15 16 14 18 19 21 22 21 27 23 24 32 26 28 32
k=5, g(X,)=190s

Xl XZ X3 X4 XS X6 X7 X8 X9 XIO Xll XIZ Xl3 X14 X15

0 2 2 2 4 4 6 6 9 10 11 9 11 13 17
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Table A2. Last seven iterations of the process.

g(X,)=-1782
X, X, X, X, X X, X, X X, X X, X, X, X, X5
1 6 8 4 0 0 22 0 0 0 16 0 0 0 0
X X, X X X, X, X, X, X, X, Xy X, Xy X, X,
20 22 26 24 0 0 0 0 136 0 0 0 0 45 75
g(XO) =-1790
X, X, X, X, X; X X, X X, X X, X, X5 X, Xis
1 6 8 3 0 0 22 0 0 0 16 0 0 0 0
X X, X X X, X, X, X, X, X, Xy X, Xy X, X,
20 22 26 24 0 0 0 0 136 0 0 0 0 45 75
g(XO) =-1798
X, X, X, X, X; X X, X X, X X, X, X3 X, Xis
1 6 8 2 0 0 22 0 0 0 16 0 0 0 0
X6 X, Xis X Xy X, Xy X, X, X5 Xy X, Xpg Xy X5
20 22 26 24 0 0 0 0 136 0 0 0 0 45 75
g(X,)=-1806
X, X, X, X, X X, X, X X, X X, X, X, X, X5
1 6 8 1 0 0 22 0 0 0 16 0 0 0 0
X6 X, Xis X Xy X, X, X, X, X5 Xy X, Xog Xy X5
20 22 26 24 0 0 0 0 136 0 0 0 0 45 75
g(X,)=-1808
X, X, X, X, X; X X, X X, X X, X, X3 X, Xis
1 6 7 0 0 0 22 0 0 0 16 0 0 0 0
X X, X X Xy X, X, X, X, X5 Xy X, Xy Xy X,
20 22 26 24 0 0 0 0 136 0 0 0 0 45 75
g(XO) =-1814
X, X, X, X, X; X X, X X, X X, X, X3 X, Xis
1 6 8 0 0 0 22 0 0 0 16 0 0 0 0
X6 X, Xis X Xy X, X, X, X, X5 Xy X, Xog Xy X5
20 22 26 24 0 0 0 0 136 0 0 0 0 45 75
g(XO) =-1816
X, X, X, X, X; X, X, X X, X X, X, X, X, X5
0 6 8 0 0 0 22 0 0 0 16 0 0 0 0
X6 X, Xis X Xy X, X, X, X, X5 Xy X, Xog Xy X5
20 22 26 24 0 0 0 0 136 0 0 0 0 45 75
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