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Abstract 
This article examines some of the properties of quasi-Fejer sequences when 
used in quasi-gradiental techniques as an alternative to stochastic search tech-
niques for optimizing unconstrained mathematical programming models. The 
convergence and efficiency of the method are analyzed, and its potential use 
as an interior-point algorithm for optimizing integer linear programming 
models is explored, ensuring the feasibility of the solution at each stage of the 
search. To achieve this, it is proposed to remain within the feasible region by 
using small perturbations around the points found until convergence is reached. 
This alternative is compared with the traditional Branch and Bound method 
using software programs available for this purpose. The results obtained sug-
gest that the technique, applied to models with few variables, is inefficient but 
is practical for large-scale models, since simple changes in the components of 
the located points generate a feasible sequence that almost always converges. 
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1. Introduction 

Generally, Random Search Techniques (RSM) are methods used for the optimi-
zation of some mathematical programming models using approximation sequences 
that improve in each iteration of the algorithm based on simple changes. Similarly, 
Stochastic Quasi-Gradient (SQG) methods are stochastic algorithmic procedures 
for solving general constrained optimization problems with non-differentiable and 
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non-convex functions. In deterministic models, this technique offers extensive pos-
sibilities for implementing alternative heuristics that seek to minimize classical com-
putational complexity in models such as integer linear programming. This class of 
algorithms defines an exploration sequence similar to sequential adaptive learning 
and improves decisions based on data and simulations, which are known as Adap-
tive Monte Carlo Optimization [1]. 

The computational complexity of an integer linear programming model lies in 
the integrality restrictions imposed on the model, which force it to explore a discrete 
region with a number of combinations that grow exponentially as the model in-
creases the number of variables. This means searching for solutions in a non-con-
vex and non-continuous region, which greatly complicates the problem. Hence, 
they are classified as NP-hard problems, in which the time to convergence also 
grows exponentially. Methods for solving instances of integer programming mod-
els use exact algorithms and/or approximation methods that generally work using 
simple rules, almost always obtaining an approximate solution. In the first case, ex-
act algorithms obtain exact solutions in reasonably finite times by reducing the search 
space, called cuts. Unfortunately, these methods work well for small problems, but 
are of no practical use since real problems require an enormous amount of time 
(exponential) to achieve convergence. Problems related to manufacturing, logis-
tics, facility location, routing and more require millions of variables, almost always 
integers, to provide a satisfactory solution to the model [2]-[6]. Heuristics for inte-
ger programming are sometimes used with relative success because their approxi-
mation is not good, but they solve large-scale problems in reasonable times. Among 
the most popular are Local Branching, Relaxation-Induced Neighborhood Search 
and Variants. 

An integer programming problem can be presented in several forms. In its pur-
est form, all variables involved in the model must be integers; that is, it is a Pure 
Integer Linear Programming (PILP) model. In other cases, binary variables are 
required for yes-no decisions, in which case, the model is called Binary Linear Pro-
gramming (BLP). Finally, a mixture of integer, continuous, and even binary var-
iables in a single model produces a Mixed Integer Linear Programming (MILP) 
model. It has been intensively demonstrated that the computational complexity 
of an integer programming model (in any of its meanings) is classified as NP since 
the algorithm evolves in pseudo-polynomial time for any number of constraints 
[7]. 

Some approaches to the problem are based on the use of evolutionary algorithms 
that make use of selected nodes of a branching tree whose basic elements are the 
population, combination, mutation and selection [8] [9]. In some cases, integer 
optimization is used in novel areas such as bilevel optimization, where some var-
iables are constrained to be the solution of another optimization problem [10]. Re-
cently, learning techniques (supervised learning) have been introduced into this 
algorithm to improve its critical components [11]. These techniques are being con-
sidered as an alternative to solve combinatorial optimization (CO) problems and 
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for the moment, they represent a promising alternative idea to NP-complex prob-
lems. In this paper, we revisit a concept that has remained classic: the techniques 
developed by Ermoliev et al. [12] for optimization problems without the need for 
continuity or differentiability constraints, and orient them toward optimization 
models with integrity characteristics. 

In the practice of engineering and science, it is frequently required to solve op-
timization models whose decision variables must be integers. This situation arises 
when non-fractional quantities are handled in decision-making models, such as 
the number of vehicles exported by a company, the number of people assigned to 
a manufacturing operation, or the number of meals to be served in a restaurant dur-
ing a given period. 

This paper analyzes and evaluates the alternative of using a perturbation and 
bounding technique at feasible points in an integer linear programming model. This 
allows the method to identify how a multivariate function changes in a specific di-
rection, not just along the coordinate axes. Thus, using this rate of change, it is pos-
sible to find a direction of descent, allowing the procedure to remain within the search 
region while maintaining the feasibility of the solution. 

Therefore, using a random search method from the first iteration, it is possible 
to introduce changes into the model at regular intervals driven by a known prob-
ability distribution. 

Given the nature of the problem analyzed, the properties of quasi-Fejer sequences 
are useful to determine the convergence of the technique via the monotonicity prop-
erties of such sequences. 

The problem is initially approached from the perspective of constructing a con-
vex and bounded set from which discrete candidate points can be generated that 
can be evaluated to locate a descent direction. The ρ -dimensional sphere is ideal 
for this purpose. A hypersphere, or more commonly called an ρ -dimensional 
sphere, is a generalization of the circle (called a 2-sphere) and the usual sphere 
(called a 3-sphere) to dimensions 4ρ ≥ . Therefore, the ρ -sphere is defined as 
the set of ρ  -tuples of points ( )1 2, , ,x x xρ   such that 2 2 2 2

1 2x x x Rρ+ + + =  . 
In optimization theory, an ρ -dimensional sphere takes on special importance 
because it defines a perfect convex and compact set. 

For the above reasons, we take up the ideas developed in [13] [14] and extend 
them to the solution of cases of entire problems, we show the underlying theory in 
the proposal and we illustrate the results with a numerical example. 

For this exploration, the following research questions will be answered: 
1) Can an alternative metaheuristic be constructed that allows an approxima-

tion to the optimal value of an integer linear programming model using tech-
niques?  

2) What should be the shape of the descent direction?  
3) How can a vector perturbation of them be achieved in order to find a sequence 

of integer points that satisfactorily converges to the desired optimum?  
4) Would it be possible to apply the investigated method to large-scale models 
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commonly required in practical engineering and science applications while mini-
mizing its inherent computational complexity?  

To address this problem, the document has been organized as follows. In Sec-
tion 2, the problem to be addressed is formally presented and its notation is de-
fined. Section 3 illustrates how to apply the alternative studied and compares the 
results in simple visualization examples. A discussion of the findings is presented 
in Section 4; finally, Section 5 presents the conclusions of this work. 

Below, we describe the sequence of steps used to solve the proposed instance. 

2. Statement of the Problem 

In mathematical programming, a heuristic is a technique used to approximate so-
lutions to complex problems using simple rules that do not guarantee finding the 
optimal solution, but are good enough to achieve within a reasonable timeframe 
[15]. When a heuristic can be implemented as a computational algorithm, then it 
is called a metaheuristic [16]. 

In this part of the document, we are interested in analyzing an alternative method 
(heuristic) to optimize models of the following type 

 ( ) 1 1 2 2 1Minimize n n ii
n

ig X c x c x c x c x
=

= + + + =∑  (1) 

where 
• ( )g X  is the objective function or utility function of the problem.  
• ic , 1,2, ,i n=   define the cost coefficients of the utility function.  
• { }0ix +∈  , 1,2, ,i n=   are the decision variables (positive integers) of the 

problem  
The restrictive set is defined by the matrix system given by 

 

11 12 1 1 1

21 22 2 2 2

1 2

n

n

m m mn n m

a a a x b
a a a x b

a a a x b

    
    
    =
    
    
    





     



 (2) 

where ija  are called the technological coefficients and ib  are the available re-
sources. For simplicity, in the remainder of this document, the problem (PILP) will 
be represented in the following equivalent form 

 ( ) { }{ } Minimice | , 0 .tg X CX AX b X += = ∈ ⊂   (3) 

here,   is the feasible region where all the restrictions are met. A  is a matrix 
of size m n× , and b  is a vector 1m× . An overview of quasi-Fejer sequences is 
provided below. 

A quasi-Fejer sequence is a sequence in a finite-dimensional Hilbert space that 
satisfies a Fejer monotonicity property, plus an additional error. Such sequences 
approach an accumulation point by dragging along an error that decreases with time. 
Formally, a sequence { }kX  in a Hilbert space is Fejer monotone with respect to 
 , if for each X ∈  [17]. 

 2 2
1k k k kX X X X+ − ≤ − +    
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where k < ∞∑ . 
Similarly, the concept of a quasi-gradient will be formally addressed as a statis-

tical estimate of a true gradient. Thus, when searching within  , an estimated 
approximation toward a downward direction in the first two search values will be 
used. The search is the updated based on the newly acquired information. 

2.1. The Concept of Quasi-Gradient and Its Construction 

Let ( )g X  be a convex function not necessarily differentiable. The subgradient 
vector at the point ( )1, , nX x x= 

 is any ( )g X∇  vector that satisfies the ine-
quality 

 ( ) ( ) ( ) ,g Y g X g X Y X− ≥ ∇ −  (4) 

For any arbitrary, nY ∈ . The vector ( )g X∇  forms a right angle with the 
normal to the supporting hyperplane of the set ( ) ( ){ }|Y g Y g X< , so if ( )g X  
is differentiable, then ( )g X∇  coincides with the gradient of g  in X , ( )g X∇ . 
Analogously, if ( )f X  is convex, then g  is a quasi-gradientin X  if 

 ( ) ( ) ( )T 0g Y X f Y f X− ≥ ⇒ ≥   

Geometrically, g  defines a supporting hyperplane to the sublevel set  

( ) ( ){ }0|x f X f X≤ . In this case, the set of quasigradients at 0X  forms a cone 
[18]. 

Random search techniques work from a sequence of random variables X  de-
fined on   that force it towards a limit point *X . The randomness of the search 
consists of proposing an estimator of the subgradient vector that serves to obtain 
a direction of descent. Such estimator can be constructed using the Monte Carlo 
method, where the most important thing is to demonstrate that the proposed sub-
gradient estimator is an expression of the type 

 ( ) ( ) ( )  , 0,1k k kX g X c g X kΞ = ∇ = ∇ +Θ =   

E  (5) 

where kc  is a non-negative number and kΘ  is a vector dimensionally compatible 
with the subgradient ( )kg x∇ . 

In this analysis, it is possible to use a variant of the technique to build at least 
an initial iteration to start the descent sequence, approaching the optimal point 

*X  step by step in such a way that in the k -th iteration, the point kX  is known 
and therefore, the next point 1kX +  will be achieved through the classic approxi-
mation given by 

 ( )1 , 0, , 1, 2,k k k k kX X g X X kα α +
+ = + ∇ > ∈ =

  (6) 

Because of the way in which these types of algorithms approach a solution, the 
criterion for stopping the search here is based on convergence in probability, that 
is, 

 1lim 0, 0.k kn
X X+→∞

 − ≥ = ∀ >  P  (7) 

This possibility is explored below. 
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2.2. The Mathematical Procedure 

Consider a vector ( )1, , nθ θ θ= 
 whose components are independent and uni-

formly distributed random variables in [ ]1 2,c c− . In this paper, a discrete uniform 
distribution is used to obtain a finite set of integer values uniformly distributed over 
the surface of the hypersphere. 

Since there is no a priori information about the probability density that defines 
the search region, we will consider that the movement can occur in any direction 
with the same probability. Suppose that in iteration k , kρ  samples of size s  are 
available 

 ( )1 1 1

T 1 , , s
k k kθ θ θ= 

  

    

 ( )T 1 , ,
i i i

s
k k kθ θ θ= 

  

 ( )T 1 , ,
k k k

s
k k kρ ρ ρ

θ θ θ=    

If kX  is a vector given at iteration k  with Δ 0k > , then an estimator ( )kXξ  
of the subgradient of g  in kX  can be written as 

 
( )

( ) ( )

( ) ( ) ( ) ( )
1

1

T

1

TT

Δ

Δ

ΔΔ
,

Δ Δ

ik

i

k

k

k k k k
k ki

k

k k k kk k k k
k k

k k

g X g X
X

g X g Xg X g X ρ

ρ

ρ θ
ξ θ

θθ
θ θ

=

+ −
=

+ −+ −
= + +

∑



 (8) 

thus, assuming convexity in g , we have that 

 
( )( )

( )
T

T
Δ

, .
Δ

i

i i i

k k k k
k k k k

k

g X g X
g X

θ
θ θ θ

+ −
≥ ∇   

So, applying the mathematical expectation operator, we have to 

 

( )( )
( ){ }

( ){ }
( ) ( )

T
T

T

2
2 1

Δ
, |

Δ

, |

12

i

i i i

i i

k k k k
k k k k k

k

k k k k

k

g X g X
g X X

g X X

n c c g X

θ
θ θ θ

θ θ

 + −  ≥ ∇ 
  

= ∇

= − ∇







E E

E   

Therefore, 

 ( ){ } ( ) ( )2
2 1|

12k k k k
nX X c c g X Wξ = − ∇ +E  (9) 

From the above, it follows that if, ( )2

i

j
kY θ=  1, ,j n=  , then Y  has a den-

sity given by 

 ( ) ( )2 1

1 1, if 0
4

0, otherwise
Y

y
c c yf y

 ≤ ≤ −= 


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and from the previous assumption, it follows that kW  is uniformly bounded, i.e., 

kW ≤  , 0> . 
To facilitate the analysis process, we now simplify the search space and define the 

projection operator. Let us define the set as closed and convex { }|X a X b= ≤ ≤ . 
Let ( )Xπ  be the projection operator on  ; that is, for any nX ∈ , ( )Xπ ∈  
and 

 ( ) min
Y

X X X Yπ
∈

− = − 
  

Let the random sequence of points kX  be defined as 
 ( )1 , 1, ,k k k k kX X kα γ ξ+ = Π − =   (10) 

where 0X  is an arbitrary point for which { }2
0 cteX = < ∞E , kα  is the step 

length, kγ  is a normalization factor and ( )1
, ,

nk k kξ ξ ξ= 
 is a random vector 

whose conditional mathematical expectation is given by 

 { } ( )0| , , , 1, ,k k k k kX X c g X kξ = ∇ +Θ =

 E  (11) 

here, kc  is a non-negative number, ( )1
, ,

nk k kθ θΘ = 
 is a vector, ( )g X∇  is a 

subgradient, that is, the vector kξ  satisfies a relation of the form 

 ( ) ( ){ } ( )| .X H X c g Xξ = ∇ +ΘE  (12) 

Notice that, when n=   and ( )X Xπ = , Equation (10) can be used to op-
timize models of the type (1) and the method is called the generalized stochastic 
quasi-gradient method. The results presented below are based on the iconic work 
of Ermoliev [19]. 

Lemma 1 (Convergence). Suppose that the values of kh  are known such that 

{ }2 2
0 , ,|k k k BX X h Mξ ≤ ≤ < ∞E , 1, ,i k=  , and also kX B≤ < ∞ ,  

1, ,i k=  . Let be the normalization factor kγ  that satisfies the equation 

 ( )0 ,k k k kX hγ τ≤ + < ∞   

where ( )0 , ,k kh X X
 , 1kτ =   if 0kΘ >  , and 0kτ =  , if 0kΘ =  . Let the 

quantities 

 2

0 0
0, 0, , ,k k k k k k

k k
c r rα α α

∞ ∞

= =

≥ ≥ < ∞ < ∞∑ ∑  (13) 

then, the sequence of points defined by Equation (10) is a quasi-Fejer sequence 
with respect to the set  . Even more, if it satisfied 

 
0

k k
k

lα
∞

=

= ∞∑  (14) 

then, the sequence { }kX  converges globally to the solution of the problem 

 ( ){ }Minimize , | .W X w Xψ ∈X E  (15) 

Proof. Let *X  be an arbitrary solution to the problem (15), we have to 

 

( )
2 2* *

1

2*

2 2* * 2 22 , .

k D k k k k

k k k k

k k k k k k k k

X X X X

X X

X X X X

α γ ξ

α γ ξ

α γ ξ α γ ξ

+− = −Π −

≤ − +

= − + − +
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Taking the mathematical expectation on both sides of the equality, we have 

 

{ }
( )

{ }

2*
1 0

2* * *

22 2
0

|

|

, ,

2 , 2 ,

, , ,

k k

k k k k k k k k k k

k k k k

X X X X

X X c g X X X X X

X X

α γ α γ

α γ ξ

+−

≤ − + ∇ − + Θ −

+







E

E

  

where 

 
{ } ( ) ( )( ){ }

( ) ( ) ( )

T
1

2 2
1

, ,

, , d .

n

n

X X X

X X

ω ω

ω ω ω
Ω

=

= ∫





E E

P
  

here, Ω is sample space corresponding to the probability space ( )Ω, ,F P . Apply-
ing the Cauchy-Schwarz inequality and considering that ( )( )* 0kg X g X− ≤ , we 
have to 

 

{ }
( ) ( )

{ }
{ }

2*
1 0

2* * *

22 2
0

2 2* * * 2 2
0

2* * * 2 2

2* * * * 2 *

| , ,

2 2

| , ,

2 | , ,

2

2 .

k k

k k k k k k k k k

k k

k k k k k k

k k k k k k k B

k k k B

X X X X

X X c g X g X X X

X X

X X X X X X

X X X X M

X X X B M

α γ α γ

α γ ξ

α γ α γ ξ

α γ γ γ α γ

α γ γ γ α γ

+−

 ≤ − + − + Θ − 

+

 ≤ − + Θ + + 

 ≤ − + + + 

 ≤ − + + + 







E

E

E
  

The inequalities found and the conditions defined in Equation (13) prove the 
first part of the theorem. Now, it will be proven that if the conditions of Equation 
(14) are met, then one of the limit points of the succession ( ){ }sX ω , for almost 
all, ω  belongs to the set of solutions to the problem (1). Applying mathematical 
expectation again, we have to 

 
{ } ( ){ }2 2* * *

1 0

* * * 2 *
0 0

2 ,

2

k k k k k k kk

k k k k Bk

s

s s
k

X X X X l g X X X

X B r M

α γ

γ γ α α γ

+ =

= =

− ≤ − + ∇ −

 + + + 

∑

∑ ∑

E E
 (16) 

From (16), it follows that { }2*
1kX X +−E  is uniformly bounded and 

 ( ){ }*

0
, , .k k k k k

k
l g X X Xα γ

∞

=

∇ − ≥ −∞∑ E   

Since that 
0 k kk lα∞

=
= ∞∑ , we have to ( ){ }*, 0k k kg X X Xγ ∇ − →E  when 

k →∞ . Note also that there exists a subsequence { }, 0,1,ts t = 
 for which  

 ( ) ( )( ) ( )*, 0.st st stg X X Xγ ω ω ω∇ − →   

with probability one, according to 1t → . It is concluded then that, for almost all 
ω , the sequence ( ){ }kX ω  is bounded, that is, for almost all ω   

( )( ) ( ), 0
t tk kg X X Xω ω∇ − → . Then, as t →∞ , the sequence ( )

tkX ω  con-
verges to the solution of the problem (15), the theorem is proven.          ☐ 
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2.3. Generating a Descent Trajectory 

A first approach to what could be a search method using the technique is to use a 
variant of Equation (11) by constructing a dome around the point kX ; that is, 
create a hypersphere of dimension ρ  centered on it and generate a sample of 
points uniformly distributed on the surface of the hypersphere of unit radius and 
use the distance between the center and the surface of the hypersphere as the dif-
ference between kX  and 1kX +  to obtain an approximation to Equation (6). The 
formal ideas are discussed below. 

Let’s consider a hypersphere of dimension ρ  in which we will obtain a num-
ber of points uniformly distributed over its surface (Figure 1). 
 

 
Figure 1. ρ  discrete points uniformly distributed over the surface of a hypersphere in 

ρ . 
 

Let ( )1 2, , ,X X X X ρ=   be a random vector where 1 2, , ,X X X ρ  are inde-
pendent and continuous random variables defined over a probability space ( ), , SΩ F  
with joint density function given by 

 ( ) ( )
1 2, , , 1 2 1, , , ,X X X i iif x x x f x

ρ

ρ
ρ =
=∏




 (17) 

By the continuity hypothesis of X , ( )1 2, , , 1 2, , ,X X XF x x x
ρ ρ

  is a non-decreas-
ing function and therefore, for each iX  there is the inverse function  

( )1
ii XF Uξ −=  defined for any value of [ ]~ 0,1U ∈  such that 

 ( ) ( ){ }1 inf : ,
i ii X XF U x F x Uξ −= = ≥  (18) 

The generation of a random vector Y ρ∈  on the surface of a unit hypersphere 
in the same dimension is given by Algorithm 1 shown below [20]. 

Thus, given an initial value kX  (which is the center of the unitary hypersphere), 
generate ρ  points uniformly distributed on its surface and apply the follow-
ing criterion to select the consecutive value (applicable to the minimization 
case). 
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Algorithm 1. Algorithm for generating vectors on an ρ -dimensional unit hypersphere. 

 
 

 
Figure 2. Trajectory search method using a unit hypersphere. 

 
This is, the new value 1kX +  becomes the center of the new hypersphere and 

the process is repeated (Figure 2). The following sequencing process is then gen-
erated  

 ( ) ( )1 1if , 1, ,k k k kX X g X g X k+ + ← < =    (19) 

Otherwise, the value of kX  is retained. 
It can be shown that the acceptance-rejection method to generate the correspond-

ing lotteries is highly inefficient. Its effectiveness is given by 

 ( ) ( )
2

1
Volume of the hypersphere 1
Volume of the hypercube 22

ρ

ρη ρ
ρρ −

π
= =

Γ
  

where ( )Γ ⋅  is the gamma function. It is easy to verify that for 4ρ > , the algo-
rithm becomes inefficient and therefore impractical for large-scale problems (Ta-
ble 1). For this reason, it is of practical use to locate at most 4ρ =  points uniformly 
distributed on the surface of the hypersphere. 
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Table 1. Efficiency of the algorithm as a function of the number of points required. 

ρ  1 2 3 4 5 6 7 8 

( )η ρ  1.0000 0.7854 0.5236 0.3084 0.1645 0.0807 0.0369 0.0159 

 
Thus, it will be perturbing just some of the components kx  of kX  in the fol-

lowing manner 

 [ ], for?some , ~ 1,2 , 0,1,ˆk k k k k kx x x X kβ β  = ± ∈ − =    (20) 

where r    means the largest integer less than or equal to r , and the draw of the 
random variable kβ  provides the lotteries of the integer values −1, 0, 1, expand-
ing the search in the neighborhood given by Equation (20). Therefore, we now have 
the perturbed sequence given by 

 ( )1
ˆ ˆ ˆ , 0,1,k k k kX X g X kα+

 = − ∇ = 


  (21) 

with 0X ∈  known, ˆ
kX  is the new perturbed vector containing one or more 

perturbed components ˆkx . This means that the search should be focused on the 
direction where ( )kg X  changes value as quickly as possible. The guideline for 
selecting the appropriate component is to perturb the value of kx  satisfying the 
requirements of Equation (19) and using ˆ

kX  instead of kX . 
 

Algorithm 2. Pseudocode associated with the proposal. 

 
 

In this, kα  satisfies the following conditions: 

 
( )

2
12 , or equivalentlyk

k k k k

k

X X
g X

γ
α γ+= − =  (22) 

 2

1 1
0, , .k k k

k k
α α α

∞ ∞

= =

≥ < ∞ = ∞∑ ∑  (23) 
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and the quasi-gradient estimator is given by 

 ( )
( ) ( )
( ) ( )

1

2

1

ˆ ˆ

ˆ ˆ
k k

k

k k

g X g X
g X

X X

+

+

−
∇ =

−
  (24) 

Equations (22) and (23) show the conditions that must be imposed on the com-
ponents of the estimator in order to achieve their concurrence at a minimum value. 
Such values are necessary in the development of a Fejer sequence to guarantee the 
monotonicity of its convergence and have been widely demonstrated in [21] and 
Theorem 1 of this document. 

Algorithm 2 and the pseudocode shown in Figure 3 illustrate the steps followed 
in this process. 

Once this outline is complete, we now proceed to test the proposal in the next 
section. 

3. Numerical Results 

To illustrate the use of the algorithm, the corresponding pseudocode and the algo-
rithm associated with the proposal are shown below in Figure 3. 

 

 
Figure 3. Pseudocode associated with the proposal. 
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The use of the proposal is illustrated below with a numerical example. 
- Model 1 

 

( ) 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25

26 27 28 29 30

Minimize 2 6 8 15 17 21 14 16
6 6 2 7 16 11 5 3
2 9 16 11 21 14 5 5
4 2 8 7 3

g X x x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x

= − − + + + − + +

+ − + + + + − −

− − + + + + − +

+ + + − +

  

Subject to: 

 

2 3 4 8 9 10 11 12 13 15

17 21 22 23 24 26 28 29 30

1 2 3 4 5 6 7 14 16 18

22 25 27 29

1 2 3 4 5 6 7 8 9 10 11 12

13

12 6 8 11 4 7 4 5
4 2 2 4 6 8 3 750

4 7 2 8 11 9 11
21 8 1200

x x x x x x x x x x
x x x x x x x x x

x x x x x x x x x x
x x x x

x x x x x x x x x x x x
x x

+ − + + + + − + +

− + + − + + − + + ≥

− + + + + − + + +

+ − + + ≤

+ + + + + + + + + + +

+ + 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30

2 5 8 11 14 17 20 23 26 29

4 8 12 16 20 24 28 30

1 2 3 4 5 6 7

4
9 11 2 8 2 0

1
4 8 12 16 20 24 28 30 1350

4; 6; 8; 10; 14; 18; 22

x x x x x x x x
x x x x x x x x

x x x x x x x x x x
x x x x x x x x

x x x x x x x

+ + + + + + − −

− − − − − − + + ≤

+ + + + + + − − − ≥ −

+ + + + + + − ≤

≤ ≤ ≤ ≤ ≤ ≤ ≤ 8

9 10 11 13 14 15 16

17 18 19 20

; 26
20; 12; 16; 18; 16; 18; 20
22; 26; 24; 24

,ij

x
x x x x x x x
x x x x

x i j+

≤

≤ ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

∈ ∀

  

The exact solution to this instance is shown in Table 2. This is reached after 63 
iterations using a standard scientific method of Integer Linear Programming (ILP) 
via LINGO [22], with ( )* 1816g X = − . 

 
Table 2. Exact solution of the proposed instance. 

1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  

2 6 8 0 0 0 22 0 0 0 

11x  12x  13x  14x  15x  16x  17x  18x  19x  20x  

16 0 0 0 0 20 22 26 24 0 

21x  22x  23x  24x  25x  25x  27x  28x  29x  30x  

0 0 0 136 0 0 0 0 45 75 

 
To illustrate the use of this algorithm, the initial steps of the algorithm applied 

to the previous example are indicated below (see Table A1: Initial solutions). 
1) Let AX  and BX D∈  be defined as follows, with ( ) 2069Ag X =  and  

( ) 2022Bg X = . Thus, for 0.01=  and 0k = , we have 

 

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
1,2,3,4,5,6,6,7,8,10,11,11,13,14,15
15,17,17,18,19,21,22,22,24,24,25,26,27,29,29

A

B

X

X

=

=
  

https://doi.org/10.4236/ajor.2025.156010


G. Pérez-Lechuga 
 

 

DOI: 10.4236/ajor.2025.156010 208 American Journal of Operations Research 
 

2) From the above, it is verified that 
2 3.7417k b aX Xγ = − = . 

3) Similarly, ( )0
2069 2022 12.5611

3.7417
X −

∇ ≈ = . 

4) It is also verified that ( ) ( ){ }min , 2069A Bg X g X = , therefore 1 AX X= , and 

 
1 2

3.7417 0.0384
97.2368

k
k X

γα = = =   

5) Therefore, for 2k = , we obtain 2X ∈  given by 

 ( ) ( )2 1 20.0384 12.5611 , with 1936X X g X= − =     

6) The incremental value obtained is 2 1 2 4X X= − = . Because 0.01> , the 
specified the process continues. 

7) What if kX ∉ ? Proceed to the bounding phase as follows: get the random 
variable 3 1k Uβ = −  such that ( )~ 0,1U   and modify kX  as shown below 

 ˆ
k k kX Xβ ∗=      

until ˆ
kX ∈ . Replace ˆ

kX  by 1kX +  and continue with the process. 
The quantity ( )3 1U −  allows us to recognize the neighborhood around kX  

and to carefully advance in the region, avoiding falling into points outside the 
boundary of  . Although slow, this procedure allows a safe advance towards an 
approximate convergence. When the sequence approaches the boundary of  , 
it is highly probable to generate sequences of infeasible points, having to further 
reduce the size of the search. Finally, an experimental strategy found suggests per-
turbing only some components of kX  as a directional derivative. The way of 
choosing the components to be perturbed obeys the criterion ˆs k sx xβ= ∗   , such 
that ( ) ( )ˆ

k kg X g X  <     . 
Clearly, if the sequence { }k k

α  is such that { } 1k k
α < , then it satisfies the con-

ditions imposed in Equations (22) and (23). 
The rest of the solutions and the convergence to the optimal solution are shown 

in Table A1 of Appendix. 
The search behavior and its convergence are shown in Figure 4. It shows how 

quickly the algorithm progresses in its first attempts to locate solutions better than 
the original. However, as the algorithm progresses, the search slows, and conver-
gence encounters increasing difficulties in locating a new transfer point. This is 
because both the feasibility and convergence conditions must be met. In particular, 
the algorithm slows down when approaching points located on or near the bound-
ary of  , since neighborhoods are often located in infeasible zones. However, once 
the subsequent points enter  , the algorithm appears to advance more quickly. 
This also explains why it is slow when approaching the optimal value, since, as is 
known, it lies in a corner of the simplex formed by its constraints. 

Using the described technique, the convergence of the method required 116 it-
erations. Figure 5 shows the graph of the norm 

2

1
ˆ ˆ

k kX X+ −  recorded during the 
iterations of the algorithm. 

Finally, Figure 6 shows the behavior of the ( )kα  value throughout the evolu-
tion of the search. 
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Figure 4. Required iterations and speed of convergence of the objective function. 
 

 
Figure 5. Difference in norms during the convergence process. 
 

 
Figure 6. Values of the parameter kα  as a function of the number of iterations. 
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4. Discussion and Statistical Analysis of the Results 

The results found suggest that the proposed method is feasible and constitutes an 
alternative for large-scale integer models. However, there is still considerable work 
to be done in the form of selection and creation of the ˆkx  sequences since a di-
rect comparison between ( ) ( )1

ˆ ˆ
k kg X g X+ −  is inefficient. So far, ensuring that 

ˆ
kX ∈  is only achieved through a feasibility test. Therefore, another line of research 

in this regard consists of developing a method in which the { }ˆ
kX  sequence re-

mains feasible at all times. 
A simple way to evaluate the efficiency of the method is to determine the math-

ematical expectation of the differences in increments in a single step  
( ) ( )1Δk k kg X g X+= −  and obtain the estimator 

 { }
{ }
Δ

,k
k

kN
η = −

E
E

 (25) 

where KN  is the number of points that must be evaluated to locate a descent di-
rection at iteration k . The approach of the research would be oriented to maximize 
the value of kη . 

An approximation to the efficiency function is as follows. Note that  

1 Δk k kX X X+ = + , therefore 
 ( ) ( )1 Δk k kg X g X X+ = +   

Then, by the convexity of g , we have that 

 

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1 Δ

Δ , Δ

Δ cos Δ

k k k

k k k k

k k k k

g X g X X

g X X g X X

g X X g X X

δ

ϕ δ

+ = +

= + 〈 ∇ 〉 +

= + ∇ +





 (26) 

where ( )cos ϕ  is the cosine of the angle formed by the unit sphere by the vectors 
Δ kX  and ( )kg X∇ . These vectors are unitary and start from the center of the 
sphere, generating points on its surface. Similarly, the function ( )Δ kXδ  is such 
that ( )Δ 0kXδ →  when ( )Δ 0kX → . 

Then 

 ( )1Δ k k k kX X X g Xα+= − = − ∇   

Thus, by conveniently substituting in Equation (26), we have that 

 ( ) ( ) ( ) ( ) ( )( )1 2
cos .k k k kg X g X g X g Xα ϕ δ α+ = + ∇ − ∇    

where for a small Δ kX , we have that 

 ( ) ( ) ( ) ( )1 2
Δ cos .k k k kg g X g X g Xα ϕ+= − = ∇   

Thus, by Equation (25), it is concluded that 

 

{ }
{ }

( ) ( ){ }
{ }

( ) ( )

2

2

cos

cos ,

kk

k

k

g Xg
N m

g X
m

α ϕ
η

α ϕ

∇∆
= − = −

= − ∇   





EE
E E

E

 (27) 
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where m  is the number of points evaluated before finding a descent direction, and 
2 2ϕ−π ≤ ≤ π . It can be shown that the density of the random angle ϕ  for an 

n-dimensional hypersphere is given by [23]. 

 ( ) ( )
( )

( )
2

2

2
0

sin
sin

sin d

n
n

n nn
B

ϕ
ζ ϕ ϕ

ϕ ϕ

−
−

π −
= =
∫

  

where 

 
( )
( )

2
,

1 2n
n

B
n

Γ
=

πΓ +  
  

and ( )Γ ⋅  is the gamma function. Thus: 

 
( ) ( ) ( )

( ) ( )

2

2

2

0
2cos sin d

2 .
1

n
k

n
k

g X
m

B g X
m n

αη ϕ ϕ ϕ

α

π −= − ∇

= ∇
−

∫



  

The η  function decreases rapidly for large values of n , remaining insensitive 
to changes in m  but is highly influenced by the value of alpha (Figure 7). 
 

 
Figure 7. Speed of decline of the efficiency function as a function of n. 

 
Another promising line is to find new ways to construct the subgradients that 

define the search direction of the heuristic. Here, the technique’s competitive ad-
vantage lies in the convexity of ( )g X . Experimenting with various subgradients 
and step sizes is also an option to improve the method’s efficiency. 

There are extensive studies on the efficiency of search methods that point to the 
magnitude of the complexity using this approach [24]; however, this framework 
constitutes a fascinating alternative for study due to the almost unpredictable na-
ture of the method. 

Comparative Aspects of the Alternative Method 

Comparing two or more algorithms to evaluate their efficiency is an extensive task 
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that involves several performance-related criteria. Below is an empirical analysis 
on the efficiency of the proposal and its comparison with other alternatives, the 
analysis is based on the suggestions given in [25]. 

In general, given two algorithms, AL1 and AL2, AL1 is said to be more efficient 
than AL2 if the following relationship holds. 

 1

2

1AL

AL

η
η

>   

Likewise, the variance of the magnitude Δ kg  constitutes another criterion for 
metric algorithm efficiency. 

In the proposal presented in this document, the heuristic requires two initial fea-
sible solutions to trigger the first point of the process using a estimator. The pro-
cess then progresses by perturbing some of the components of the points already 
evaluated, retaining the best values of the objective function and eliminating those 
that do not contribute to minimizing it. 

This approach has the advantage of providing great numerical stability, allow-
ing the objective function value to be reduced via feasible solutions at each itera-
tion. 

Regarding solution quality, the results suggest a good approximation at the be-
ginning of the search, with the decline slowing as the method approaches the op-
timal solution. For practical purposes, its implementation is relatively simple because 
once the first two values of the method are obtained and the first point is reached 
by approximation, the rest of the process consists of perturbing the components of 
the last point using a random search process. This is the part of the method that takes 
the most time because, according to the graph, after four points on the sphere, the 
efficiency decreases significantly. 

Table 3 shows the results obtained when comparing our heuristic (which we pre-
sent as OH) with LINGO, AMPL, and GAMS. The following comparative models 
(including Model 1, described above) were used to perform these runs [26] [27]. 
The presented mathematical models were coded in the LINGO optimization soft-
ware (which uses B&B as the default solver) and run on an Apple computer with an 
M2-pro chip, 16 GHb of memory, and macOS Sequoia. 

- Model 2: A model for locating warehouses in a logistics system with fixed costs, 
3 warehouses, 3 consumption centers with the following data: 

1) Capacity: 300, 525, 325. 
2) Demand: 100, 200, 125, 225. 
3) Variable costs:  

10 5 12 3 

4 9 15 6 

15 8 6 11 

4) Fixed costs: 125,000, 185,000, 100,000. 
- Model 3: A multimodal transport model with 3 origins, 4 destinations and 2 

modes of transport. 
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Table 3. Comparisons of the exact method versus the heuristic. 

Model 
Running using LINGO Running using OH  

NV NC RI OG CPU NV NV RI OG CPU 

1 30 26 63 −1816 0.09 30 26 122 −1816 0.45 

2 24 37 28 289,100 0.05 24 37 75 289,000 0.42 

3 288 55 9 3425 0.05 24 37 38 3400 0.40 

4 3 3 20 0.9808 0.34 3 3 32 0.9800 1.03 

5 18 13 242 324,760 0.07 18 13 325 32450 1.27 

6 65 72 147 5732 1.03 65 72 290 5730 1.63 

Model 
Running using AMPL Running using GAMS  

NV NC RI OG CPU NV NV RI OG CPU 

1 30 26 80 −1816 0.11 30 26 80 −1816 0.24 

2 24 37 32 289,100 0.09 24 37 33 289,000 0.14 

3 288 55 14 3425 0.06 288 55 15 3400 0.11 

4 3 3 24 0.9808 0.38 3 3 24 0.9800 0.39 

5 18 13 248 324,760 1.01 18 13 250 324,760 1.00 

6 65 72 152 5732 1.07 65 72 152 5732 1.08 

Where NV denotes the number of variables involved, NC is the number of model constraints, 
RI represents the number of iterations required for convergence, OG is the global optimal 
value, CPU is the time in seconds required by the computer. 

 
1) Capacity: 200, 150, 300. 
2) Demand: 100, 200, 125, 225. 
3) Variable costs:  

10.8 5.4 12.14 3.4 

4.6 9.8 15.12 6.5 

15.17 8.9 6.9 11.8 

- Model 4: A reliability nonlinear model 

 ( )( ) ( )( ) ( )( )2 34 1 3 4Maximize 1 1 0.65 1 1 0.55 1 1 0.70d d dR + + += − − − − − −   

Subject to:  

 1 2 3 1 2 316 12 13 75, 2 3, 2 2, 2 4d d d d d d+ + ≤ ≤ ≤ ≤ ≤ ≤ ≤   

 1 2 3, ,d d d +∈   

- Model 5: A production planning model with multiple processes and multiple 
products [28]. 

 ( )
1 1 1

Minimize
jmT N

p I
ijt ijt it it

t i j
C P C I

= = =

+∑∑∑   

Subject to 

 
1 1

, 1, 2, , ; 1, 2, ,
jmN

ijk ijt kt
i j

a P A t T k K
= =

≤ = =∑∑  
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 1
1

, 1, 2, , ; 1, 2, ,
jm

it it ijt it
j

I I P D t T i N−
=

= + − = =∑  
  

 , 1, 2, , ; 1, 2, , ; 1, 2, ,ijt it jP I t T i N j m+∈ = = =     

With the following instance, 

 
( ) 11 12 21 22 23 111 121 211

221 112 122 212 222 113

123 213 223

Minimize 5 6 6 7 7 72 80 85
90 74 78 88 95 75
78 4 92

g X I I I I I P P P
P P P P P P
P P P

= + + + + + + +

+ + + + + +

+ + +
  

Subject to: 

 

111 121 211 221

111 121 211 221

112 122 212 222

112 122 212 222

113 123 213 223

113 123 213 223

11 111 121

5 4 8 6 8600
10 8 12 9 17000
5 4 8 6 8500
10 8 12 9 16600
5 4 8 6 8800
10 8 12 9 18200

100 1000
p

p p p p
p p p p

p p p p
p p p p

p p p p
p p p

I P P
I

+ + + ≤
+ + + ≤
+ + + ≤
+ + + ≤
+ + + ≤

+ + + ≤

= + + −

12 11 112 122

13 12 113 123

21 211 221

22 21 212 222

23 22 213 223

1050
1100

50 500
600
550

I p p
I I P P
I P P
I I P P
I I P P

= + + −
= + + −

= + + −
= + + −
= + + −

  

 ijt itP I +∈   

- Model 6: A vehicle routing model visiting eight cities with a load capacity of 
18 tons. The following distance and demand matrix is as follows. 

1) Demand: 0, 6, 3, 7, 7, 18, 4, 5, 
2) Dist. matrix:  

0 996 2162 1067 499 2054 2134 2050 

0 0 1167 1019 596 1059 1227 1055 

0 1167 0 1747 1723 214 168 250 

0 1019 1747 0 710 1538 1904 1528 

0 596 1723 710 0 1589 1827 1579 

0 1059 214 1538 1589 0 371 36 

0 1227 168 1904 1827 371 0 407 

0 1055 250 1528 1579 36 407 0 

Statistical Analysis 
In order to develop comparative statistics of the execution times of the proposed 
models, the results obtained by applying three non-parametric tests designed spe-
cifically for such purposes are shown below [29]. 

- Friedman Test: As a first test, the non-parametric Friedman test is used to 
compare related groups since the data do not meet the assumptions of normality. 
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The Friedman test is used to demonstrate that there are significant differences in 
the sample data in Table 3. The null hypothesis indicates that all algorithms be-
have similarly. Table 4 shows the ranges obtained in relation to the execution time 
variable. 

 
Table 4. Range analysis for the Friedman statistic. 

LINGO OH AMPL GAMS 

0.09 (1) 0.45 (4) 0.11 (2) 0.24 (3) 

0.05 (1) 0.42 (4) 0.09 (2) 0.14 (3) 

0.05 (1) 0.40 (4) 0.06 (2) 0.11 (3) 

0.34 (1) 1.03 (4) 0.38 (2) 0.39 (3) 

0.07 (1) 1.27 (4) 1.01 (3) 1 (2) 

0.03 (1) 1.63 (4) 1.07 (2) 1.08 (3) 

 
Then, for 6n =  and 3k = , we have that the Friedman statistic is equal to 

 
( ) ( )212   3 1 166.26

1F j
j

F R n k
nk k

 
= − + = +  

∑  (28) 

Thus, for a critical value of 0.10, 4.60FF =  and the null hypothesis is rejected 
and there are large significant differences between the running times of the algo-
rithms. 

- Multiple Sign Test: This test uses LINGO as a study control method. This test 
is an extension of the traditional method. Its objective is to determine the direc-
tion of the differences (signs) rather than their magnitude. The results are shown 
in Table 5. 

 
Table 5. Comparative results for the sign test. 

LINGO OH AMPL GAMS 

0.09 + + + 

0.05 + + + 

0.05 + + + 

0.34 + + + 

0.07 + + + 

0.03 + + + 

Number of minus signs 6 6 6 

Number of plus signs 0 0 0 

jr  0 0 0 

 
Where the respective medians of each method are given by: 0.08LingoMed = , 

0.74OHMed = , 0.245AMPLMed =  and 0.31GAMSMed = . Thus, for an 0.05α = , 
the hypothesis 0 : Lingo jH M M≤  is accepted since the number of plus signs is less 
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than the critical value 6= , with 24ρ =  and 1 3k − = . 
- Kruskal-Wallis Test: The Kruskal-Wallis test is a non-parametric test that will 

be used to compare means and medians of independent groups, considering the 
time taken by each algorithm to solve the proposed instances as a variable of interest. 
This test uses the following statistic to maintain the null hypothesis of equality be-
tween the average times for all the algorithms tested (Table 3). Table 6 shows the 
summary of calculations for this test. 

 
[ ] 2

2
1

 1   ‍  
k

i i
W

i

R R
K

ρρ
ρ σ=

 − −  =  
 

∑
E

 (29) 

 
where 6.4166LR = , 10AR = , 16.666OR = , 11.2500GR = ,  

[ ] 1 12.5
2

E R ρ +
= =  and 

2
2 1 52

12R
ρσ −

= = . Thus, for 
1

24 24iiρ ρ
=

= =∑ , we get 

that 8.8692WK = . Thus, for 2
0.05,3 7.8147χ =  the null hypothesis is rejected. 

 
Table 6. Ranges associated with the times used by the algorithms. 

Alg. L  L  A  L  L  A  G  A  G  G  L  A  

Time 0.05 0.05 0.06 0.07 0.09 0.09 0.11 0.11 0.14 0.24 0.34 0.38 

R 1.5 1.5 3 4 5.5 5.5 6.5 6.5 7 8 9 10 

Alg. G  O  O  O  G  A  L  O  A  G  O  O  

Time 0.39 0.40 0.42 0.45 1 1.01 1.03 1.03 1.07 1.08 1.27 1.63 

R 11 12 13 14 15 16 17 18 19 20 21 22 

 
From the above results, it can be inferred that, although the proposed heuristic 

appears promising, its computational efficiency is currently low compared to the 
most common software programs on the market. Therefore, research into how to 
improve the perturbation direction of the vector kX  would have a strong impact 
on the speed of convergence. Finally, converting the heuristic into a metaheuristic 
would be the ideal alternative for implementation in engineering models that fre-
quently involve millions of integer variables to address real-world problems. 

Like any heuristic, our proposal almost always provides convergent solutions; 
however, in comparison, it is not very competitive with the branch-and-bound 
method for cases with few variables. However, as mentioned at the beginning of 
this presentation, this proposal is an alternative approach to traditional techniques, 
such as cutting planes. As part of future research, it is recommended to evaluate 
larger instances and refine the perturbation method to improve search efficiency. 

5. Conclusions and Suggestions 

This article presents an alternative heuristic to traditional scientific methods for op-
timizing an integer linear programming model. 

The method consists of proposing two initial feasible points and, from there, us-
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ing a quasi-gradient search method to determine the direction of movement and 
regulate the step size to remain within the set of integer values. 

The novelty of this proposal lies in the fact that the method begins its search within 
the feasible region and remains there, selecting movement directions by means of 
slight perturbations to the components of the points that are not feasible, always 
searching for a downward direction. 

The results suggest the viability of the method for use in large-scale models since, 
despite the enormous computational effort required to locate new points in the se-
quence, the search for a downward direction becomes rapid at the beginning of the 
process, but slows down as the method approaches the optimal solution or when 
the support point in iteration k  is on the boundary of the set  . 

The results shown for locating points on a hypersphere suggest that a maximum 
of four perturbed components maintains a good efficiency for the method. Although 
this result is not conclusive, the alternative is to suggest other types of surfaces for 
searching for alternate candidates in the descent sequence. 

The experience gained in this research suggests expanding research into construc-
tion methods, search step sizes, and the selection of the best candidate components 
to be perturbed during the process. Future avenues in this regard remain open to 
provide more efficient methods based on the aforementioned conditions. 
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Appendix: Convergence of Solutions of the Proposed Method 

Table A1 and Table A2 show the initial and final results of the process. Convergence is achieved after 121 iterations. 
 
Table A1. Initial solution and first five iterations of the process. 

 ( )0 2069g X =   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

 ( )0 2022g X =   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

1 2 3 4 5 6 6 7 8 10 11 11 13 14 15 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

15 17 17 18 19 21 22 22 24 24 25 26 27 29 29 

 ( )0 1936g X =   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

 4k = , ( ) 2ˆ 193kg X =   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

1 2 3 3 4 5 6 6 8 10 11 10 12 14 15 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

15 16 16 18 19 20 22 21 24 24 24 25 26 28 29 

 5k = , ( ) 7ˆ 192kg X =   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

1 2 3 3 4 5 6 6 8 10 11 10 12 14 15 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

15 16 16 18 19 20 22 21 24 24 24 25 26 28 29 

 5k = , ( ) 6ˆ 192kg X =   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

0 7 8 7 4 7 6 6 7 8 14 10 14 12 16 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

15 16 14 18 19 21 22 21 27 23 24 32 26 28 32 

 5k = , ( ) 5ˆ 190kg X =   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

0 2 2 2 4 4 6 6 9 10 11 9 11 13 17 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

14 16 16 14 19 19 21 20 23 23 24 22 25 28 29 
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Table A2. Last seven iterations of the process. 

 ( )0 1782g X = −   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

1 6 8 4 0 0 22 0 0 0 16 0 0 0 0 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

20 22 26 24 0 0 0 0 136 0 0 0 0 45 75 

 ( )0 1790g X = −   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

1 6 8 3 0 0 22 0 0 0 16 0 0 0 0 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

20 22 26 24 0 0 0 0 136 0 0 0 0 45 75 

 ( )0 1798g X = −   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

1 6 8 2 0 0 22 0 0 0 16 0 0 0 0 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

20 22 26 24 0 0 0 0 136 0 0 0 0 45 75 

 ( )0 1806g X = −   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

1 6 8 1 0 0 22 0 0 0 16 0 0 0 0 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

20 22 26 24 0 0 0 0 136 0 0 0 0 45 75 

 ( )0 1808g X = −   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

1 6 7 0 0 0 22 0 0 0 16 0 0 0 0 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

20 22 26 24 0 0 0 0 136 0 0 0 0 45 75 

 ( )0 1814g X = −   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

1 6 8 0 0 0 22 0 0 0 16 0 0 0 0 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

20 22 26 24 0 0 0 0 136 0 0 0 0 45 75 

 ( )0 1816g X = −   

1X  2X  3X  4X  5X  6X  7X  8X  9X  10X  11X  12X  13X  14X  15X  

0 6 8 0 0 0 22 0 0 0 16 0 0 0 0 

16X  17X  18X  19X  20X  21X  22X  23X  24X  25X  26X  27X  28X  29X  30X  

20 22 26 24 0 0 0 0 136 0 0 0 0 45 75 
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